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Abstract— Nonlinear systems identification is a research topic of great interest in several fields, such as Eco-
nomics, Electrical and Control Engineering. Therefore, this paper pursues the identification of a buck converter
through the orthonormal basis functions of Laguerre and Kautz. In order to evaluate the coefficients of the
functions, a Genetic Algorithm (GA) is proposed. This GA uses the Nelder Mead algorithm and the Least Mean
Square method as local optimizers during the search process. A comparison between the models obtained from
each of the orthonormal basis is presented. Moreover, the functionality of the proposal is proved through the
comparison between the proposed GA and a classic GA.
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Resumo— Os problemas de identificação de sistemas não lineares vem se tornando cada vez mais presentes
nas áreas de Economia, Engenharia Elétrica e Engenharia de Controle. Neste contexto, este artigo aborda a
identificação de um conversor CC-CC do tipo Buck. Para tanto são utilizadas funções de base ortonormal,
como as bases de Laguerre e de Kautz. Para a determinação dos parâmetros de modelo são utilizados métodos
heuŕısticos, como os Algoritmos Genéticos e Nelder Mead. Tais métodos se fazem necessários devido a extensão
do espaço de busca dos parâmetros de modelo. Ao final do artigo são apresentadas comparações entre os modelos
obtidos a partir cada uma das bases ortonormais.

Palavras-chave— Identificação de sistemas, Funções Ortonormais, Algoritmos Genéticos, Nelder Mead.

1 Introduction

The use of orthonormal basis functions in dy-
namic systems identification is widely found in
literature (CAMPELLO et al., 2007; HEUBER-
GER et al., 2005; MACHADO et al., 2010; ROSA
et al., 2009). Among these functions, the clas-
sic functions of Laguerre and Kautz are the most
used. The combination of these functions, pa-
rameterized by different poles, is known as Ge-
neralized Orthonormal Functions and it consti-
tutes an appealing alternative for the identifica-
tion of systems whose dynamic is more complex
(HEUBERGER et al., 2005).

The final objective of this paper is the identi-
fication of a real Buck converter using the discrete
orthonormal functions of Laguerre and Kautz, im-
plemented as digital filters. In order to accomplish
this goal, first a Genetic Algorithm (GA) is pro-
posed. The novelty in this algorithm is the use of
the Nelder Mead, NM, algorithm and the Least
Mean Square, LMS, method as local optimizers
in order to obtain the parameters of the model.
These local optimizers are expected to accelerate
the convergence of the optimization problem as
well as to obtain more accurate solutions for the
identification problem.

The functions of Laguerre are better sui-
table to model systems with poles purely real

or whose imaginary component value is small
(HEUBERGER et al., 2005). On the other hand,
the functions of Kautz usually obtain better per-
formance in modeling underdamped dynamical
systems (MACHADO et al., 2010).

The orthonormal basis functions approach is
interesting due to two key aspects: first, the kno-
wledge of past terms of the input and output sig-
nals is not necessary and, second, there is no out-
put feedback, therefore, there is no propagation of
recursion errors (CAMPELLO et al., 2007).

Identification process aim to find a model for a
system, based on empirical data (LJUNG, 1999).
This could be a very complex problem, depending
on how difficult is to finding the derivatives, Jaco-
bian and Hessian matrix of the system. Thus, the
use of heuristic methods is appealing.

This paper is organized as follows: Section
2 explains the basic concepts of dynamic systems
identification and presents some simulations in or-
der to illustrate the application of orthonormal
basis functions. Then, in section 3, the functio-
nality of the proposed method is shown through
the identification of a real Buck converter. Sec-
tion 4 presents a comparison between the results
obtained and, finally, section 5 gives the main con-
clusions of this work.
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2 Dynamic System Identification

This section presents a discussion of the identifi-
cation of simulated linear systems. The identifica-
tion was based on Laguerre and Kautz functions.
The main goal is to show how these functions can
be employed in the identification of dynamic sys-
tems.

2.1 Orthonormal Functions

The main property of the orthonormal functions
is expressed by (1):

〈ψm, ψn〉 =

{
0 m 6= n
1 m = n

(1)

where ψm and ψn are orthonormal functions and
〈.〉 is an inner product, proper to those continu-
ous functions, defined by equation (2) as given by
(HEUBERGER et al., 2005):

〈ψm(z), ψn(z)〉 =
1

2πi

∮
C
ψm(z).ψ∗n(1/z∗)

dz

z
,

(2)

where C is the unitary circle and i is the imaginary
unity. For discrete functions one can define an
inner product by equation (3 ).

〈ψm(k), ψn(k)〉 =
∞∑

k=−∞

ψm(k).ψ∗n(k). (3)

Thus, the orthonormal functions must meet
the following requirements:

• ψm⊥ ψn for m 6= n;

• |ψn| = 1, ∀n.

The main orthonormal functions are the Her-
mit, Jacobi, Laguerre, Legendre, Kautz and
the generalized orthonormal functions (GOBF),
(WILLEM BELT, 1997). In the next subsection,
the orthonormal functions employed in this paper
are presented.

2.1.1 Laguerre Functions

Laguerre functions are parameterized by a real
pole (ROSA et al., 2009; LEMMA et al., 2010),
and they can be expressed by:

Ln(z) =

√
1− p2
z − p

(
1− pz
z − p

)n−1
(4)

where p is the pole of the Laguerre functions and
z is the complex variable associated with the Z
transform. The functions of a Laguerre basis can
be implemented in the form of filters, so that each

function will be associated to a filter, as can be
seen in figure 1.

Figura 1: OBF model with Laguerre dynamics.

In the case of Linear Time-Invariant (LTI)
systems, the operator H can be defined as
the linear combination of the Laguerre filters
l1, l2, · · · , ln.

In order to exemplify the concept of modeling
a LTI system with Laguerre functions, regard the
following stable LTI system sampled at a rate of
50 ms:

H(z) =
z + 2

z2 − 0.3z + 0.02
(5)

The response of the system to a step input (5)
is shown in figure 2.

Figura 2: Step response of system with real poles

As can be seen in figure 2, the system response
presents no overshoot. As already mentioned, La-
guerre functions perform better in modeling un-
derdamped systems. Thus, it can be concluded
that Laguerre functions are the most suitable for
representing this system.

In order to identify the model, a simulation
was performed. The input to that simulation was
a PRBS (Pseudo Random binary Sequence) with
128 samples.

As a result, a model, MnL(z), based on linear
combinations of n Laguerre functions was obtai-
ned. This model approximates the system descri-
bed in equation (6).
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MnL(z) = c1L1(z) + c2L2(z) + ...+ cnLn(z)

=
n∑
i=1

cnLn(z), (6)

where Ln(z) represents the Laguerre functions
and cn, the coefficients.

Figura 3: Comparison of the simulated system
and an model approximation, with 3 Laguerre
functions.

In figure 3, the simulation of the linear model
obtained through the combination of 3 Laguerre
functions is shown. The PRBS input is applied
to the original system (5) and to the model. The
output of the system is presented in continuous
line and the model output is in x markers. In
order to obtain this result, the GA proposed in
this paper was used. Section 3.2 presents details
of this algorithm. The best result, represented
by a chromosome, provided by the GA is shown
below.

[1.448 2.151 − 0.172 0.192]

where the last gene, 0.192, corresponds to the pole
that parameterized the 3 Laguerre functions. The
other genes express the coefficients in (7).

M3L(z) = 1.448.L1(z) + 2.151.L2(z) +

−0.172.L3(z) (7)

where M3L is the model comprehending 3 La-
guerre functions and L1(z), L2(z) e L3(z) are the
Laguerre’s functions of 1st, 2nd e 3rd order, respec-
tively. This model reached a fitness, Mean Square
Error (MSE), of 7, 01× 10−4.

2.1.2 Kautz Functions

The Kautz functions are parameterized by a com-
plex pole (CAMPELLO et al., 2007; LEMMA
et al., 2010). These functions can be expressed
by the equations (8) and (9).

K2m(z) =

√
(1− c2)(1− b2)

z2 + b(c− 1)z − c

×
[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]m−1
(8)

K2m−1(z) =
z(z − b)

√
1− c2

z2 + b(c− 1)z − c

×
[
−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]m−1
(9)

where K2m(z) and K2m−1(z) are the even and odd
Kautz functions, respectively. β and β are the po-
les that parameterize these functions. The terms
b and c can be expressed as (10) and (11).

b = (β + β)/(1 + β.β), (10)

c = −ββ. (11)

In this section the modeling using Kautz func-
tions will be made considering the following sta-
ble, discrete, LTI system:

H(z) =
2z − 1

z2 − 0.2z + 0.26
(12)

this system was also sampled at a period of
50 ms.

Figura 4: Step response of the system with com-
plex poles.
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The step response of the system (12), presen-
ted in figure 4, shows the underdamped nature of
this system, 0 < ξ < 1, being ξ the dumping ratio.
Such systems can be well represented by combi-
ning linear Kautz functions (ROSA et al., 2009).
In the same way as given for system (5), the sys-
tem (12) was fed with 128 samples of a PRBS
input.

Since the system is linear, we can easily obtain
a model, Mnk(z), that represents it, by a linear
combination of n Kautz functions:

Mnk(z) = c1K1(z) + c2K2(z) + ...+ cnKn(z)

=
n∑
i=1

cnKn(z), (13)

Through the application of the proposed GA,
the parameterizing pole and the coefficients of the
functions can be determined. The result provided
by the GA is shown in figure 5.

Figura 5: Model output (x markers) compared to
the simulated output (continuous line).

The resulting chromosomes was:

[1.393 2.059 0.089 − 0.490]

where the last 2 genes, 0.089 − 0.490i, represent
the real and the imaginary parts of the pole that
parameterized the 2 Kautz functions. The other
terms correspond to the Kautz function coeffici-
ents, as expressed by equation (14).

M2k(z) = 1.393.K1(z) + 2.059.K2(z), (14)

where M2k is the model, composed by 2 Kautz
functions, and K1(z) and K2(z) are the Kautz
functions of first and second order, respectively.
This model was approximated with fitness, Mean
Square Error (MSE), of 1.30× 10−3.

3 Identification of a Real Buck
Converter

Real systems usually present nonlinear compo-
nents and input/output signals perturbed by
noise. In this section, the identification of the
Buck circuit depicted in figure 6 is described.

Figura 6: DC-DC Buck converter.

The input of this circuit is applied at the
gate, G, of the MOSFET, Metal-Oxide Field Ef-
fect Transistor. The signal used as input is a Duty
Cycle, D, modulated in a square wave. The out-
put of this circuit, Vo, is defined as the voltage
over the resistor RL.

In order to obtain a continuous operation from
the conversor, a period of T = 30 ms was em-
ployed in the input signal. Thus, the current in
the inductor is never equal to zero and the conti-
nuous operation is achieved.

In the converter, when D → 1 the voltage at
the load, Vo, rises because the switch T1 is clo-
sed, allowing the source Vd to energize the path
given by the capacitor and the inductor. On the
other hand, when D → 0, the switch T1 opens
and Vo reduces according to a dynamic behavior
different from the previously described, pointing
out the nonlinear characteristic of this converter
(AGUIRRE, 2007).

The identification of a system requires the
acquisition of the input and output data of the
system. In this work, the data acquisition was
made with a microcontroller MBED, ARM R© fa-
mily Cortex M3, 32 bits architecture and Clock
frequency of 96 MHz.

All the procedures necessary to the identifi-
cation were executed in the software Matlab, ver-
sion 2013. The communication between the soft-
ware and the microcontroller was established th-
rough the RS-232 serial protocol, with a rate of
9600 kbps. An ADC, Analog-to-Digital Conver-
ter, with 16 bits, internal to the microcontroller
was used in order to read the analog signals from
the Buck converter.

The experimental setup used to acquire the
input/output data from the Buck converter can
be seen in figure 7.

In order to accomplish the identification of the
proposed systems, linear and nonlinear combina-
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Figura 7: Experimental setup used for the Buck
converter.

tions of Laguerre and Kautz functions were used.
These functions were implemented as digital fil-
ters on the frequency domain. For the purpose of
treating the system’ s nonlinearity a polynomial
block is applied on the output of the linear mo-
del. This structure is known as Wiener model, as
depicted in figure 8.

Figura 8: Wiener Model - nonlinearity at the out-
put.

Wiener models use a cascade composition of
dynamic linear models, M(k), followed by a static
nonlinear function, f(.), (AGUIRRE, 2007). It is
important to mention that the nonlinear degree of
each output of the orthonormal filter is indepen-
dent from each other.

3.1 Input Signals

Since the DC/DC system shown in figure 6 is
nonlinear, it is necessary that the excitation sig-
nal presents variations in frequency and ampli-
tude in order to provide a effective identification
(AGUIRRE, 2007). Thus, summation of PRBS
signals was used with different spectral composi-
tion, as it can be seen in figure 9.

The frequency band of the excitation signal
determines the range in which the system charac-
teristics could be found by the identification pro-
cedure (NEMETH and KOLLAR, 2002).

In this scenario, the input signal needs to be

Figura 9: Composition of PRBS signals to
generate a Pseudo Random Multi-Level Signal
(PRMLS).

persistently excitatory. A signal is said to be per-
sistently excitatory when its components are able
to sweep all the space of the parameters (NOWAC
and VAN VEEN, 1993). With this in mind, the
signal given in figure 9d was generated by sum-
ming the signals of figures 9a (low frequencies),
9b (medium frequencies) and 9c (high frequen-
cies). Hence, the resulting signal is called PRMLS,
Pseudo Random Multilevel Sequence and it is bet-
ter suited for the identification of nonlinear sys-
tems.

3.2 Genetic Algorithms

In this section, the main aspects of the proposed
Genetic Algorithm, GA, employed to identify the
Buck converter, of figure 6, are detailed.

3.2.1 Coding of the Genetic Algorithm

The gene codification applied in this work can be
represented as follows:

c1 c2 · · · cn a b

where c1, c2, · · · , cn are the orthonormal function
coefficients and a + bi is the parameterizing pole
of this functions.

For each of the n orthonormal functions, we
have n genes representing the nonlinearity of the
output filters. These genes are given by:

g1 g2 · · · gn

each of these genes can assume one of the following
values: 0, 1 or 2. The effect that the genes produce
is described in table (1).

The outputs of the orthonormal filters, shown
in table 1 and expressed by ľ1(k), ľ2(k), · · · , ľn(k),
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Tabela 1: Gene coding for the OBF structure.
Value of gn Output of n-th orthonormal filter

0 (.)0 - (OBF not present)
1 (.)1 -(standard OBF)
2 (.)2 -(OBF squared)

can be seen in figure 1. In this figure, Laguerre
functions are the components of the orthonormal
basis function.

It is worth to point out that the chosen model
does not apply the nonlinearity on the input vec-
tor, u(k) (Hammerstein Model). It applies the
nonlinearity on the orthonormal filtered output
signals (Wiener Model), as it can be seen in fi-
gure 8.

Assuming, for example, that it would be con-
venient for the data fitting to consider a 2nd de-
gree of nonlinearity on the Laguerre filter output
(see figure 1), then the vector ľ1(k) would have
their elements squared by the mapping H. The
same procedure is applied to the other orthonor-
mal filter outputs. For instance, when identifying
a linear system, the genes gn tend to converge to
0 or 1.

3.2.2 GA Parameters

The GA parameters employed to find the pole and
the coefficients of the orthonormal functions are
given in table 2.

Tabela 2: Genetic Algorithm Parameters
Parameter Value
Population 200 Chromosomes
Selection Met. Tournament and Recombination
Mutation Rate Variate (20 to 60 %)
Crossover Rate Variate (80 to 20 %)
Nelder Mead after each 9 generations
LMQ after each 7 generations

The fitness employed here is the Mean Squa-
red Error (MSE) between the measured circuit
output and the output estimated by the appro-
ximate model. In the GA, the mutation and cros-
sover ratios varies with respect to the given gene-
ration. The crossover rate starts with 80% focu-
sing on local searches, and then it is progressively
reduced during the optimization process. On the
other hand, the mutation starts at 20%, and it is
increased as the generation number increases, fo-
cusing on global searches. It is worth to mention
that the mutation rate usually found in the lite-
rature seldom are greater than 10%. In this work,
much higher rates were applied due to the use of
a mutation operator based on the disturbance of
the gene. This disturbance consists on adding a
small random constant to a given gene. Thus, the
result is the reduction of the random search ef-

fect normally produced by the mutation operator
(KOZA, 1998).

In the proposed GA, two local search opera-
tors have been introduced: the NM algorithm and
the LMS method. A detailed description of NM
can be found in (NELDER and MEAD, 1965).
The LMS is described in the next subsection.

3.2.3 Least Squares Operator

The Least Mean Squares (LMS) is one of the pi-
oneers and most used methods in systems iden-
tification, (LJUNG, 1999). In this paper, this
method is applied as an operator of a Genetic Al-
gorithm. In other words, this operator applies the
LMS, given by equation (15), to randomly chosen
chromosomes.

θ = (ΨTΨ)−1ΨTY, (15)

where θ is the vector of the parameters and Ψ is
the regression matrix (composed by input signals
filtered by the orthonormal functions). It is im-
portant to mention that, despite the name, the
matrix Ψ, in this work, has no regressive versi-
ons of the input signal, u(k), it has only filtered
versions of u(k) .

For instance, if the Laguerre basis were used,
the genes related to the poles, in a chromosome,
would generate the Laguerre’s functions and the
matrix Ψ would be composed of filtered versions
of the input vector u(k), as is exposed in equation
(16).

ľn(k) =

N−1∑
τ=0

ln(τ).u(k − τ). (16)

where ľn(k) represents the filtered version of u(k)
by the filter ln(k).

The structure of Ψ matrix is given by the
equation (17).

Ψ =


...

...
...

...

ľ1(k) ľ2(k) · · · ľn(k)
...

...
...

...

 . (17)

Using the equation (15) one can obtain the
coefficients, θ, for the ortonormal functions. It is
worth to mention that the pole that parameterize
the orthonormal function is not changed by this
operator.

After using the LMS operator, some genes of
the chosen chromosomes will be replaced by the
elements of the vector θ.

This operator will be used by the GA after
each 7 generations in order to avoid the premature
convergence to a local minimum.

Anais do XX Congresso Brasileiro de Automática 
Belo Horizonte, MG, 20 a 24 de Setembro de 2014

809



4 Results

The models were obtained using vectors with the
128 samples of the input/output of the system.
The approximated Buck converter models, using
Laguerre and Kauts basis, can be seen in the ta-
bles 3 and 4, respectively.

Tabela 3: MSE and Laguerre components.
NF pole Ord. NLD MSE
1 -0.020 1 2 4.52.10−2

2 -0.084 [1 2] [2 1] 4.36.10−2

3 -0.085 [1 2 4] [2 1 2] 4.36.10−2

4 -0.017 [ 1 3 4 5] [2 2 2 1] 4.32.10−2

5 -0.050 [ 1 2 3 4 5] [2 1 2 1 2] 4.32.10−2

where: NF is the number of functions used in the
model, Ord. represents the order of the functi-
ons employed, NLD is the nonlinearity degree and
MSE is the Mean Square Error of the model with
respect to the measured signals.

Tabela 4: MSE and Kautz functions.
NF pole Ord. NLD MSE
1 0.073 - 2 2 4.42.10−2

-0.123i
2 -0.121- [1 2] [1 2] 4.36.10−2

0.230i
3 0.058+ [1 2 3] [1 2 1] 4.35.10−2

0.322i
4 -0.349+ [1 2 3 4] [1 2 2 1] 4.33.10−2

0.100i
5 -0.008+ [1 2 3 5 6] [1 2 1 1 2] 4.29.10−2

0.299i

These results were obtained after running 200
generations of the GA, using NM and LMS ope-
rators. The simulation of the model given in line
3 of the table 3 can be seen in figure 10.

Figura 10: Example (3) of table 3 - Buck model
using 3 functions of Laguerre.

This identification procedure resulted in the
following chromosomes, with all genes grouped in
the vectors c and g:

c : [−5.174,−0.550, 0.085, 4.521,−0.103]

g : [2 1 1 0]

where the first genes of c are associated to the La-
guerre function coefficients. The last gene of c,
−0.103, corresponds to the pole that parameteri-
zed the functions. The genes expressed by g cor-
respond to the exponents of each function. The
complete model, M3L, can be seen in (18), and
the obtained fitness was (MSE ) = 0,0436.

M3L(z) = −5.174.[L1(z)]2 − 0.550.L2(z) +

+0.085.L3(z) + 4.521. (18)

For the Kautz basis, the model expressed by
line 3 of table 4 can be seen in figure 11.

Figura 11: Buck model, example (3) of table 4,
using 3 functions of Kautz.

This identification procedure resulted in the
following chromosomes:

c : [4.522− 5.265− 0.326− 0.155 0.058 0.322]

g : [1 2 1 0]

where the first genes of c are associated to the
Kautz function coefficients. The last two genes,
0.058 + 0.322i, correspond to the pole that para-
meterized the functions. Moreover, the genes ex-
pressed by g correspond to the exponents in each
function. The complete model, M3L, can be seen
in (19), and the obtained fitness was (MSE ) =
0,0435.
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M3K(z) = 4.522K1(z)− 5.265K2
2 (z)

−0.326K3(z)− 0.155. (19)

The convergence curves of the GA, with and
without the local search operators, for the model
in line 3 of table 3 can be seen in figure 12. It can
be seen that the local search operator not only
accelerated the search, but also made it possible
to find more accurate results.

Figura 12: Convergence process of classic GA
(blue dashed line) and with NM and LMS ope-
rators (continuous red lines with ‘x’ markers).

5 Conclusion

In this paper, the identification of nonlinear sys-
tems based on Laguerre and Kautz functions was
discussed. In order to pursue this identification,
the model and structure parameters were evalua-
ted by minimizing the MSE between the measured
output of the circuit and the output estimated by
the approximated model. The main contribution
of this paper was the proposal of a new GA with
two local search operators: the NM algorithm and
the LMS method. Based on the results, presented
in section 5, it can be concluded that the Laguerre
and Kautz functions provided very similar results
for the case studied, with sensitive better perfor-
mance for function of Kautz. More importantly,
the GA with NM and LMS operators not only
converged much faster than the classical GA, but
also was able to provide a much more accurate
approximated model.

As future work, the use of Genetic Program-
ming can be seen as a good option to determine
the degree of nonlinearity of the system and also
to obtain the parameters of the nonlinear system.
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