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Abstract: There is a growing concern about excessive electricity consumption and buildings
take an important share on electricity demand. To face the variable thermal dynamics of
buildings we propose a self-tuning adaptive controller that provides energy saving while
maintaining similar thermal comfort as the conventional On-Off or PI controllers. The study was
supported by experiments conducted on a 15m2 meeting room. The surrounding temperature,
humidity, radiant energy, air velocity, among others, were considered disturbances in a first-
principles based reference model. The split air conditioning was operated with a modified PWM
(Pulse-Width Modulation) signal in order to obtain smooth behavior, respecting the recovery
time of the compressor. The automation was implemented with XBee (IEEE 802.15.4) wireless
modules. The recursive identification and the self-tuning of the polynomial pole assignment
controller (RST) were implemented in MatLab. Considering variable thermal load (typically
occupancy variations and outdoor climatic changes), the energy used by the adaptive RST
controller was 45.2% lower than the conventional On-Off controller.
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1. INTRODUCTION

Building automation is one aspect of modernity where
technology use has strongly increased in recent years.
Research also has been very fruitful. See, for example,
Shaikh et al. (2014), for an extensive review on building
energy and comfort management. The building can be
seen as an intelligent ambient, where different services are
provided, almost invisible for the users, considering control
and communication aspects. The aim is to provide services
such as intrusion avoidance, fire contention, biometric ac-
cess, door and window automation, smart elevators, HVAC
(Heating, Ventilation, and Air Conditioning) automation,
and energy saving, among others. Thermal comfort affects
the productivity of the occupants and energy saving is
considered very important in any Buiding Management
Systems, Nguyen and Aiello (2013). As buildings represent
a large parcel of the current electricity demand, Melo et al.
(2014), they have also great economic relevance.

In this paper we show advantages of using adaptive self-
tuning controllers compared to conventional On-Off or PI
control. A modified PWM actuation scheme was used for
the split air-conditioner to allow continuous change of the
manipulated variable while taking care of the recovery
time of the compressor. The methodology was applied
to a meeting room at LARA (Laboratory of Automation
and Robotics), University of Braśılia, Brazil. The model
used to design PI and a self-tuning adaptive controller is
structured by a first-principles reasoning allowing physical
insight on the buildings thermal issues.

Adaptive control of thermal processes in buildings can
be tracked back as far as the early 80’s. In Nesler (Aug

1986) a first-order adaptive algorithm with RLS (Recursive
Least Squares) estimation of the parameters was shown for
a multizone air-handling unit. Many adaptation schemes
use a model of the process. Very different models like,
e.g., artificial neural networks, fuzzy logic, and many
different nonlinear schemes were adopted. Adolph et al.
(2014) investigate adaptive control strategies for single
room heating. PMV (Predictive Mean Vote) and PPD
(Predicted Percentage of Dissatisfied), see Fanger (1973),
are used in closed loop. The recent review presented
by Shaikh et al. (2014) shows that the tendency of the
academy for HVAC automation is today more in direction
Model Based Predictive Control. The algorithms involved
in MBPC are sophisticated and the realization demands a
very good process model (which is not easy to obtain).

This paper is organized as follows: Section 2 details the
test environment as well as the PWM modification used
for split air conditioners. This section also presents the
first-principles model used to structure the reference model
of the adaptive controller. The adaptive pole-placement
self-tuning controller is described in section 3. Section 4
presents the main obtained results, comparing On-Off, PI,
and adaptive with respect to control quality and energy
saving. Main conclusions are summarized in Section 5.

2. TEST ENVIRONMENT: THE MEETING ROOM

The meeting room used to test the proposed controllers
can be seen in Fig. 1. The floor plan of LARA can be
seen in Fig. 2. Dashed, the meeting room. The neighboring
rooms share strong thermal coupling with the meeting
room (mostly glass partitions). The particular building
orientation leads to strong direct solar incidence in the



Fig. 1. LARA’s meeting room with hybrid split air condi-
tioner.

Fig. 2. Floor plan of LARA. Meeting room area is 15m2.

afternoon. The meeting room is equipped with a hybrid
air conditioner. Evaporative operating mode and standard
compressor based mode can be alternated in order to
save energy. Different experiments have been conducted
to dynamically identify the room and to save energy with
different approaches, see e.g., Bauchspiess et al. (2013).
We can, for example, compensate some measurable dis-
turbances (e.g., solar radiation, outside temperature), pro-
vided adequate instrumentation, but many disturbances
still remain and must be attenuated by the closed loop.
In the present work, therefore, we consider only the tem-
perature as the main comfort factor, thus, simplifying the
design and evaluation of the adaptive controller.

2.1 PWM Actuated Split Air Conditioners

In regions of moderate climate, like the central-western
Brazil, it is most likely that only cooling is sufficient to
provide thermal comfort. The most efficient air conditioner
for non-residential applications is the chiller based central
air conditioner. Window air conditioners and split air con-
ditioners, see Fig. 3, (with the noisy compressor mounted
outside) are most common for buildings where HVAC
was not originally planned. In general it is a retrofitting
solution because the destination of the building was not
defined from the start. About 50% of Braslia’s climatized
public buildings use central air conditioning whereas the
others use window, split, evaporative or mixed schemes.

The On-Off controller is a simple and reduced cost solution
when the cooling equipment is acquired. But it is not a
good solution when we consider the energy waste. Shaikh
et al. (2014) point out that the wastage is usually huge due
to the substantial instabilities and frequent overshoot of
the set points. “These control systems have been employed
in various applications and disturbed environmental condi-
tions, and have been poorly performing and generally have
not been offered optimal control strategy.” The On-Off
controller often overcools the room. The switching strategy
has some serious drawbacks:

• The dynamics of the system is not taken into account;
• The mean value of the controlled variable is not, in

general, the set point;
• No adaptation of the switching, regarding room oc-

cupancy or the external conditions, takes place.

PWM has been used for a long time in control applications
as a simple and cheap substitute for D/A converters. The
high frequent switching of the power delivers the low-
pass process with the mean value of the PWM signal. We
mention here some previous work from the literature on
PWM modifications for air conditioners. Salsbury (2002)
used adaptive modulation for HVAC systems. A 1st order
model was used. Gwerder et al. (2009) used PWM for ther-
mally activated building systems (TABS), which means
that the structure of the building is considered as energy
storage. The switching is between heating and cooling.
More recently Tianyi et al. (2011) used a fuzzy approach
to control the ratio of fan-coil units. The authors claim
that 30% energy could be saved.

PWM actuation: The compressor is the most energy
consuming part in an air conditioner and is typically
controlled by an On-Off thermostat with hysteresis, see
Fig.3. The compressor should avoid to be started while
the gas pressure is high. After switching off, the switch
on procedure has to wait, typically, 4 minutes, in order
to preserve the compressor life-cycle (the refrigerant gas
pressure has to come down - this reduces the peak starting
current of the compressor). In this work a modified PWM
scheme will be used, which takes into account the typical
recovery time of the compressor. Fig. 4 shows the response
of our PWM (out) for a ramp input signal (in). The output
state is changed each 250secs. considering the mean value
over the past 250s. Considering the thermal time constant
of the meeting room is around 240s, we still have the
desired low pass effect. The temperature will show some
ripple (not to avoid with this kind of air-conditioner), but
without noticeable comfort impairment, see for example
Figs. 10, 11, and 12 . Thus, we can feed the controller
with continuous signals and also preserve the compressor.
As can be seen in Fig. 4, higher duty cycles reduce the
time between turning the compressor off and then on again
(critic for the compressor). That occurs, however, less
frequently if the air conditioner is well sized. The normal
situation is a small error leading to a small duty cycle and,
therefore, large recovery time for the compressor.

2.2 Sensor and Actuator Wireless Network

The instrumentation used in the temperature controllers
will be described in this subsection. The Wireless Sensor-
Actuator Network (WSAN) uses Arduinos and XBee



Fig. 3. Split air conditioner. (adapted airintelligence.co)

Fig. 4. Modified PWM for air conditioners, Tcicle = 250sec.

Fig. 5. Wireless Sensor-Actuator Network.

transceivers (from Digi, a member of the ZigBee Alliance).
XBee complies to IEEE 802.15.4 and has vendor specific
features. Following modules were build, Fig. 5:

• Sensor: Arduino connects an XBee and sensor SHT71;
• Coordinator: an XBee connected to a PC (MatLab);
• Actuator: Arduino connects XBee and a solid state

relay, Teletronic T2405Z-M.

The temperature and humidity sensor SHT71 (Sensirion R©)
uses digital communication, reducing noise significantly.
Here only temperature was used. The A/D resolution was
set to 14 bits. The connection to a host Arduino module
was made over a serial interface. The sensor module is
battery driven, the coordinator module is driven by a US-
BCON interface (from rogercom.com) , while the actuator
module uses the 220 V power supply at the air conditioner.

2.3 Dynamic model of the meeting room

To design a self-tuning controller, a reference model of the
process is necessary. As buildings are MIMO distributed
time-varying processes with some nonlinear components,

Fig. 6. First-Principles based model of the meeting room.
Temperatures: r - reference, y - controlled, te - exter-
nal, tv -vicinity, tc - cooler. Time constants: Te, Tv,
Tc. Gains: Ke, Kv, Kc, K. Heat flows: qe, qc, qv, qd.

it is not so easy to choose a suitable model. A grey-box
identification, and in particular a first-principles model,
has as main advantage over black-box models (input-
output identification) that the physical parameters of the
system can be associated to constructive parameters of
the building. This could be useful for retrofitting. For
example, the heat flow obtained by the model can show
that some wall is a heat leak. A thermal process is by
nature a distributed system. For practical reasons we
will consider only a few measurement points. Normally
one temperature sensor per thermal zone. Also a reduced
number of actuators are normally available for thermal
comfort in buildings.

The meeting room, see Figs. 1 and 2, is 3 × 5 m2 with
a height of approx. 3.5 m. The external wall is mostly of
glass. One internal partition has good isolation. The two
other internal partitions are composed, partially, of glass.
Due to good isolation, thermal flow trough the floor and
ceiling will not be considered. The meeting room reference
model, thus, uses four heat flows to explain the output
temperature to: qc - from the air conditioner, qv - from the
vicinity (neighboring rooms), qe - from outside, and qd -
resulting heat flow from all other disturbances not modeled
by the previous terms (e.g., solar radiation, mean thermal
radiation, humidity, change of occupancy, etc.).

We will consider a simplified first-principles structured
model of the meeting room, (adapted from Bauchspiess
et al. (2006)), Fig. 6. The temperature of the meeting
room is modeled as a function of external temperature
and neighboring rooms. The air conditioner is modeled as
a switch and a first order dynamics, Gc. With the switch
on the temperature of the serpentine (ts, typically around
16◦C) is given as input to the process. With the switch off
the room temperature will move towards a value between
te and tv, see the switch in Fig. 4. The approach is to
consider lumped transfer functions that model the process
with sufficient precision to allow a controller to provide
thermal comfort. The distributed heat flow through the
walls is simplified as a 1st order process. The room tem-
perature is modeled by an integrator, Intg, in Fig. 6.
The constant K is inversely proportional to the room vol-
ume. The gains Ke, Kv, and Kc characterize the thermal
boundary between to and the respective domain. The heat



Fig. 7. Block diagram of a self-tuning regulator, Aström
and Wittenmark (1995).

flows qc, qv, qe, and qd can be positive or negative, rising
or reducing the room temperature. The first-principle for
heat conduction or convection between region x and y is
that the flow is given by qx = Kx(tx− ty). In Fig.6 we can
recognize that the flows qc, qv, and qe depend explicitly on
temperature differences. The access to internal heat flows
is a bonus of the first-principle modeling, making clear
where the energy is being wasted more. For the linear part
in Fig. 6 we apply Mason’s rule to obtain the following
equation, (1), relating the room temperature (to) to the
other considered temperatures of the model. (The qd signal
will not be considered for the nominal model).

to(s) =
Ke

Tes+1
K
s te(s) + Kv

Tvs+1
K
s tv(s) + Kc

Tcs+1
K
s tc(s)

1 + KeK
s + KvK

s + KcK
s

. (1)

If we consider only to(s)/tc(s), we have 2nd order model.
One pole comes from the straightforward path (which
includes the thermal room capacitance, Intg). The second
pole comes from the combined gains of the neighborhood
and the external environment. More sophisticated models
could be used but the 2nd order has proven to be sufficient.

3. ADAPTIVE CONTROL

Some adaptive control techniques applicable for thermal
processes have been proposed, see, e.g., Aström and Wit-
tenmark (1995). Among them:

• MRAC - Model Reference Adaptive Control
• RST Self-Tuning Regulator
• Gain Scheduling

Gain scheduling is normally not sufficient. The self-tuning
regulator, used here, is in some aspects simpler to design
than the MRAC controller. In essence, with RST, we are
dealing with well-known pole placement design. One way
to implement an adaptive controller is making the process
follow a reference model, see Fig. 7. We have two main
loops: one composed by the controller and the process, and
the second composed by the controller and the parameter
adaptation. The parameter change is based on the error
feedback between the output of the system and the output
of the reference model, Aström and Wittenmark (1995).

3.1 Recursive identification

A recursive estimation algorithm can parallelize data ac-
quisition and processing while taking into account the

Fig. 8. Two degrees of freedom linear controller used in the
pole placement design of the self-tuning controller.

changing nature of the thermal process. Here we will use a
recursive version of the least squares identification proce-
dure. The forgetting factor λ gives older samples smaller
weights (wi) than newer ones. It is a tuning parameter
that affects stability and plasticity of the adaptation. The
weigthts are given by{

wi(k) = 1, i = k,
wi(k) = λwi(k − 1), i < k.

(2)

The prediction model is y(k) = ψT
k (k− 1)θk + ξ(k), where

ξ(k) is the given modelling error. Considering a minimum
variance solution without bias, the Least Squares Estima-
tor with forgetting factor, following the development in
Aguirre (2007), is given by

Kk =
Pk−1ψk

ψT
k Pk−1ψk + λ

,

θk = θk−1 +Kk

[
y(k)− ψT

k θk−1
]
,

Pk =
1

λ

(
Pk−1 −

Pk−1ψkψ
T
k Pk−1

ψT
k Pk−1ψT

k + λ

)
,

(3)

where

ψk is the regressor vector with information until (k − 1);
Kk is the adaptation gain, also referred as Kalman gain;
Pk is the covariance matrix of the process, and
θk is the estimated parameter vector.

3.2 Adaptive control

In this work the RST pole assignment technique was used,
Aström and Wittenmark (1995), as depicted in Fig. 8. We
will consider a SISO model of the process with input noise

A(k)y(k) = B(u(k) + ν(k)). (4)

A generic pole assignment controller can be written as

Ru(k) = Tr(k)− Sy(k), (5)

where R, S and T are polynomials to be designed. This
control law represents a negative feedback by the factor
S/R and a feedforward by T/R. The closed loop charac-
teristic equation results in

y(k) =
BT

AR+BS
r(k) +

BR

AR+BS
ν(k),

u(k) =
AT

AR+BS
r(k) +

BS

AR+BS
ν(k).

The closed loop characteristic equation is thus

Ac = AR+BS. (6)

Where Ac is the desired closed loop characteristic equa-
tion. Equation (6) is a so called diophantine equation, i.e.,
we always have a solution if the polynomials A and B have



no common factors. However, we got here only R and S.
To obtain T , additional information needs to be calculated.
Choosing a reference model to follow Amym(k) = Bmr(k)
we have

BT

AR+BS
=
BT

Ac
=
Bm

Am
. (7)

This leads to the possibility that BT and Ac have common
factors that can be cancelled. FactoringB as B+B−, where
B+ is monic, stable, and well conditioned so that it can be
cancelled in the controller. On the other hand, B− cannot
be cancelled and is part of Bm, hence

Bm = B−B′m. (8)

As B+ is cancelled, it must be a factor of Ac. So, from
equation (7), Am is also a factor of Ac. The closed loop
characteristic polynom has the form

Ac = A0AmB
+. (9)

The polynom R can also be factored, leading to

R = R′B+ (10)

leading to a reduced diophantine equation

AR′ +B−S = A0Am = A′c (11)

and we obtain T = A0B
′
m. The polynomials R,S, and T

are calculated in real-time using the identified parameters
A and B of the system and, then, equation (5) gives the
actual adaptive control signal u(k).

4. RESULTS

Two conventional controllers will be compared to the
adaptive controller: an On-Off and a PI controller. The
On-Off controller uses as design parameter only the switch-
ing hysteresis; in our experiments we used of 1◦C. The PI
controller uses the error (E(s) = R(s) − Y (s)) as input.
The parameters were here tuned using the Chien-Hrones-
Reswick method, as described in Xue et al. (2009), leading
to

DPI(z) =
U(z)

E(z)
=
−0.41424(z − 0.9975)

z − 1
. (12)

Considering that thermal processes are slow, the data
for the model identification was acquired over 3 days.
Sampling rate was 1 sec (not necessary for the thermal
process, but convenient for the analysis). The identifica-
tion was carried out using MatLab R© ident toolbox. The
identification of the thermal process using a proper PRBS
(Pseudo Random Binary Signal) input gave the following
discrete transfer function (with 91% fitting):

Y (z)

U(z)
=
−0.0219z + 0.0154

z2 − 1.918z + 0.9191
z−3. (13)

The structure of this transfer function will be used to iden-
tify A and B polynomials used in the adaptive controller.
The corresponding regressor is thus

ψT (k) = [y(k − 1) y(k − 2) u(k − 5) u(k − 4)], (14)

with the parameter vector given by θ(k) = [θ1 θ2 θ3 θ4]T .
A typical estimation of the parameters can be seen in Fig.
9.b. A 2nd order low pass Butterworth filter, with 1Hz cut

Fig. 9. Estimated model parameters: a) smooth filtered
parameters, b) raw estimated model parameters.

Fig. 10. Typical results for On-Off controller,variable ther-
mal load.

frequency, was used to smooth the measured signals and to
reduce noise, Fig. 9.a The parameters were estimated using
a recursive algorithm with forgetting factor, Equation
3. To smooth the adaptive signals used, in spite of the
PWM switching, a weighted moving average version of the
measured temperature was used (s in Figs. 10, 11 and 12),

sk = a3yk−3 + a2(1− a)yk−2 + a(1− a)yk−1 + (1− a)yk,(15)

where a = 0.995 is a weighting factor. The reference model
for the RST self-tuning controller to follow was chosen to
be approx. 5 times faster than the identified open loop
dynamics, Eq. 13, as{

Am = q2 − 1.0099q + 0.08738,
Bm = 0.0925q.

(16)

People entering and leaving the meeting room caused a
considerable disturbance with great loss of cooled air. Due
to the noise nature of the thermal system, the use of a low
pass filter simplified the design of the adaptive controller,
see Eq. 15. It makes no sense, for thermal comfort (con-
sidering the predicted 5% of dissatisfied, Fanger (1973),
to reject the small fluctuations of the temperature caused
by switching the compressor on and off. The temperatures
obtained by the implemented On-Off and PI controllers
can be seen in Fig. 11 and 12. Experiments run 8 hours, in
figure, 4 hours are shown to enhance the transitions. More
figures are not included due to space limitations.

Table 1 compares the three different controllers used
for the meeting room. Two conditions were investigated:



Fig. 11. Typical results for PI control. Experiment with
variable thermal load.

Fig. 12. Actuator and temperatures signal in meeting room
with RST controller, variable thermal load.

Table 1. Controllers RMS error and energy
(En.) [KWh], under different thermal loads.

Thermal On-Off PI Adaptive
Load Error En. Error En. Error En.

Constant 0.14 6.69 1.55 3.12 0.53 3.42

Variable 0.12 7.89 1.18 4.85 0.43 4.63

constant thermal load, where the empty meeting room’s
door was kept closed and variable thermal Load, were
occupancy changed with typical meetings, studying, and
vacancy periods. Opening the door always favored large
heat flow (the process parameters change). The On-Off
controller always needs more energy. With constant ther-
mal load the PI could maintain comfort with slightly
less energy. Considering variable thermal load, the PWM
actuated PI controller could spare 42.6% energy, compared
to the conventional On-Off controller. The more sophisti-
cated RST adaptive controller reached up to 45.2% saving.

5. CONCLUSION

The objective of this work was to investigate the adaptive
control of a PWM actuated air conditioning system con-
sidering energy saving and thermal comfort. The starting
point for a self-tuning adaptive controller was to obtain a
recursive identification of the system, taking into account
the time-varying nature of buildings. The recursive least
squares identification of the meeting room with a 2nd

order first-principles based model reached mean quadratic
error of the order of 0.015. The adaptive controller was
compared with an On-Off and a PI controller. The PI and
the adaptive controller were used with a PWM actuation
scheme that considered the low-pass characteristic of the
process. The comparison shows that the On-Off controller
consumes the most energy. The PI has a better following of
the set point (thermal comfort), but is slow to reach the set
point. The adaptive controller seems to be the best solu-
tion for model based building climatization: lowest energy
consumption with good thermal comfort. The hardware
and software necessary are more expensive, but the quick
pay back by the energy saving makes it worth.
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