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Outline of This Tak

¢+ Why Subspace Identification Methods (SIM)
+ Basic State Space Concepts

¢ Deterministic SIMs

¢ Stochastic SIMs

¢ Additional SIM Issues
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History of SIMs

Deterministic SIMs (Ho and Kal man, 1966)
Stochastic Realization (Akaike, 1974)

Canonical Variate Analysis (CVA, Larimore,
1983, 1990)

Multivariable Output-Error State Space (MOESP,
Verhaegen & Dewilde, 1992)

Numerical algorithms for Subspace State Space
System Identification (N4SID, Van Overschee &
De Moor, 1994; Viberg, 1994)

UT/ TWMCC 3 © S JoeQin

Why Subspace Methods?

¢ Simplein parameterization

* No need for canonical formsfor MIMO process
models

» Subspacefirst, parameterization later

» Compact modelsin minimal realization
¢ Numerical property

* No nonlinear optimization techniques required
« Statistical property

» Simple Kaman filter framework
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SIM Problem

From input-output measurements, estimate a state space
model of aMIMO process given that there might be
output noise, state noise, and input noise
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Basic Concepts
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Linear Regression and Least Squares
Orthogona Projections

Least Squares of more than One Regressor
State Space Models

Observability Matrix

Extended State Space Representation
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Linear Regression and Least Squares

* Giveninput vector x(k) and output vector y(k), build alinear relation
between them
y(K) = Ox(k) +v(k)
» Collect datafor input and output varaibles and fill the data matrices
[y y@ .. y(N)l =0[x(D) X2 .. x(N)l +V

Y X
» Theleast squares solutionis

é:YxT(XXT)—l
* Themode predictionis
Y =0X=YXT(XX")*X
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Orthogonal Projections

» Define
M, =X"(XX")™*X

as the projection matrix to the row space of X, then
Y =YXT(XXT)*X =Y,

isaprojection of Y on X \/]IYHQ
« Theleast squareresidual is 4\7275’»

Y=Y-Y=Y-YN,=Y(-0N,)
where 5 =1 -M, =1 = XT(XXT)™*X
is the projection to the orthogonal complement of X
« Themodel Y and resiua Y are orthogonal
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Orthogonal Projection — Alternative Notation

» Sometimes we denote Y project on X as \/’Y/XD
Y/ X=YM, |

and %
Y/ X" =Y

which is a projection on the orthogona complement of X
* Itiseasyto verify that
XX =X, =XXT(XXT)*X =X
XIX"=XNE =X = XT(XX")*X)=X-X=0
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L east Squares of more than One Regressor
» For amodel with two sets of input X and U with noise V
X
Y=IX+HU +V =[T H][U}v
wecanfind [ H] by least squares.
* What if we are only interested in I"?
First of al, sinceV isindependent of U,
%VUT :%[v(l),...,v(N)][u(l),...,u(N)]T 0¥TL 0
v, =v(-uTuuH)'u)=v-vwuTuun'u=v
Then, by 'projecting out’ U
YN =(FX+HU +V)N] =rxnj +v
[ can be found by regress YN, on X,
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State Space Models

e A determinist state space model is
X(k +1) = Ax(k) + Bu(k)
{ y(K) = Cx(k) + Du(k)
» Extending the state space model into the future:
y(k+1) =Cx(k +1) + Du(k +1) = CAx(k) + CBu(k) + Du(k +1)
y(k+2) =Cx(k +2) + Du(k + 2) = CAx(k +1) + CBu(k +1) + Du(k + 2)
=CA*x(k) + CABu(k) + CBu(k +1) + Du(k + 2)

u(k)
_ . k+1
y(k+j)=CAx(k)+[CA'B .- CB D] u(: )
u(k +j)
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Observability Matrix
¢ Collect the future outputs into a vector,
y(K) C D u(k)
k+1 CA CB D k+1
y(_ ) | _ A+ © _ U(.+)
: : : cB . :
y(k+j)| |CA CA™'B ... CB Dl uk+]j)
r‘+1 | HT+1 ’

e [',,, isknown as the observability matrix: if (C,A) is observable,
I, hasfull column rank for j = n-1, where nisthe order of the system.
* H
H ., contains the impulse response coefficients of the model, also known

i+1 Isknown as a Toeplitz matrix referring to the special structure.
asthe Markov parameters
e Notethat I .., and H .., contain al modd parameters (A, B, C, D)

i1 i1
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Define Data M atrices

Past data
yk-p) |+ [vD v(©2) y(N)
5 @ ye 35 YN +1) =Y,; p block rows

k-2 || P N
y(k=1) |4 | ¥(5) y(©6)  Y(N+4)
y(k) o= [ y(6) y(7) y(N +5)

y(k+1) Y0 y®) . YIN*O ¢ ook rows

y(e+ f -1 j | ¥10) ydD)  y(N+9)]

Future data N columns
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Extended State Space M odel
e From
y(K) C D u(k)
y(k.+ Dy | C.A XK+ C-B D . u(k.+ 1)
: : : CB . :
y(k+f-1)| |CA™ CA'™2B ... CB D|luk+f-1)
r; ' H, '

Populate the data vectors with multiple columns

c D
CA CB D
Yo=| X x(2) - x(N)]+ . U,
: < - ’ : CB .
CA' * CA'™B ... CB D
T/ \ '-T )

or

Y, = X(kK)+H,U,
which is known as the extended state space model.
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Deterministic SIM
* Wewant to estimate ", and H, from input and output data
Yo =T X(k)+H,U,
If only X(K) is known, thisis aleast squares problem.
» However, weknow I"; isfull rank (n) if we choosef =n

Thisisaproblem of more than one regressor. Project out U, by I'ILDJ :
YiMy, =0 XM, +HU N, =T XN,
* Fromtheright hand side, I' ; hasat most rank nif f > n. Therefore,

the data matrix on the left hand sideis also rank n.
* Perform singular value decomposition on Y, HS, ,

Y,y =USVT =us’?s'AT
A balanced choicefor I, is: ', =US"?
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Estimate A and C

* Tobe'smart' choosef =n+1
c o
[ CA
CA* |=T,

C An—l |
car

| S
r n+l

wehave [,=IA
C isthefirst row and A can be calculated using least squares
A= (rlTrl)_lrlTrz
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(A,B,C,D) and Similarity Transform

e Letx=Tx"'and T isinvertable
X(k +1) = Ax(k) + Bu(k)
{ y(k) = Cx(K) + Du(k)

we have

Tx'(k+1) = ATX'(K) +Bu(k) [ x'(k+1) =T *ATx'(k) + T *Bu(k)
{ y(k) =CTx'(k) +Du(k) { y(k) = CTx'(k) + Du(K)
then

CT CT

CT(TT'AT) CAT

r, = = 7 |=r,T

CT(TAT)*| |CA™T
Therefore, (A,B,C,D) from SIM are not unique, but are unique up to
asimilarity transform. The transfer function is unique.
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Representing a Stochastic System
* Process data contain state and measurement noise:
x(k+1) = Ax(k) + Bu(k) +v(k)
{ y(k) = Cx(k) + Du(k) +w(k)
where the noise terms v(k) and w(k) are independent white noise
* This process has also a Kaman filter representation
X(k +1) = AX(k) + Bu(k) + K(y(k) = Cx(k) + Du(k))
{ define innovation: e(k) = y(k) —Cx(k) — Du(k)
or equivaently we have the innovation form Kalman filter:
X(k +1) = Ax(k) + Bu(k) + Ke(k)
{ y(k) = CX(k) + Du(k) + e(k)
« If welook carefully, both the innovation form Kalman filter and
the orignal process represent the input and output data u(k) and y(k) exactly
Therefore, both models can represent the input and output data, and
both have the same A, B,C, D matrices
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Innovation Form State Space Model

» Similar to the deterministic model, we have
Y, =, X(K)+H,U, +G,E,

I

CK I

: CK .
CA™K - CK |
e The Kaman state X (k) is unknown, but we know that any Kalman stateis
estimated from past input and output data, i.e.,

U
X(k) =L, LJ[YP} =L,Z,

which isafiniteimpulse response (FIR) for the state. Hence,
Y, =I;L,Z,+H,U, +G,E,

f=z%p

where G, =
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System Identification: Battle Against Noise

 Under open loop tests, E, isuncorrelatedto U,
E.U,"=0
or Efngf =Ef(| _UfT(UfoT)_lUf)zEf

U
* Under open loop tests, E; isuncorrelatedto Z | :{Yp}’

p

E,Z, =0

The above two relations are very useful in SIMs.
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SIM: An SVD Approach (N4SID, etc)
Step 0. Collect data under open loop test, Y; U, Z .
Step 1. Projecting out U, by multiplying M,

YfI'IEf =MLz I'ISf +HfoI'I5f +G; EfI'IEf

=MLz I'ISf +G, E;

z<p

p

Step 2. Remove the noise term by multiplying ZpT ,
YfI‘IEYZpT =r.Lz I‘ILD,prT +G; EprT

f=z%p

=r,L,z,n5 2]

f=z%p
We have data on the left hand side and unknowns on the RHS
Step 3. Perform SVD,

YNy Z," =usv’

and choose ', =US"? asabaanced redization.
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SIM: A Regression Approach
Step 0. Collect data under open loop test, Y, ,U(,Z,.
Step 1. Projecting out U, by multiplying I'IEf
Y,Mg =1Lz, +G,E,
Step 2. Perform least squaresto find " L,
r.L=Y,ny N5z )z,n;ngzn"
:YfI'IEf ZpT(ZpI'IEf z,)*
Step 3. Perform SVD,
ML, =usv’

and choose I, =USY? asabaanced realization.
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SIM: Reduced Rank Regression (CVA)

Step 0. Collect data under open loop test, Y, ,U(,Z .
Step 1. Projecting out U ; by multiplying M,
YfI'IEf :FszZpI'IEf +G, E,

Observation: Noticethat I, L, isnot full rank!
Therefore, the two step regression approach is not agood idea.

Canonical correlation analysis (CCA) is optimal for reduced rank.

Step 2. Perform CCA between Y,M; and Z, M, .
The non-zero canonical correlations give the best estimate of I,
Note: CCA between Y and X isan SVD of
(XT X)—1/2(XTY)(YTY)—1/2
Itis, infact, three SVDs
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Additional Issuesin SIMs

¢ SIM can estimate the optimal Kalman gain from datal

¢+ With (C,A K) estimates, B,D can be estimated similar
to maximum likelihood

+ QR factorization for numerical efficiency

+ What about input noise? (See Jin Wang' s talk)
+ What about closed-loop data? (J. Wang and W. Lin)

¢+ SIM Model formulation is actually not causal! And
has extraterms. See W. Lin’stalk on how to make it
causal and parsimonious.
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