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Outline of This Talk

♦ Why Subspace Identification Methods (SIM)

♦ Basic State Space Concepts

♦ Deterministic SIMs

♦ Stochastic SIMs

♦ Additional SIM Issues



2

© S. Joe QinUT/ TWMCC  3

History of SIMs

♦ Deterministic SIMs (Ho and Kalman, 1966)

♦ Stochastic Realization (Akaike, 1974)

♦ Canonical Variate Analysis  (CVA, Larimore, 
1983, 1990)

♦ Multivariable Output-Error State Space (MOESP, 
Verhaegen & Dewilde, 1992) 

♦ Numerical algorithms for Subspace State Space 
System Identification (N4SID, Van Overschee& 
De Moor, 1994; Viberg, 1994)

♦ … 
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Why Subspace Methods?

♦ Simple in parameterization
• No need for canonical forms for MIMO process 

models

• Subspace first, parameterization later

• Compact models in minimal realization

♦ Numerical property
• No nonlinear optimization techniques required

• Statistical property
• Simple Kalman filter framework



3

© S. Joe QinUT/ TWMCC  5

SIM Problem
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From input-output measurements, estimate a state space 
model of a MIMO process given that there might be 
output noise, state noise, and input noise
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Basic Concepts

♦ Linear Regression and Least Squares

♦ Orthogonal Projections

♦ Least Squares of more than One Regressor

♦ State Space Models

♦ Observability Matrix

♦ Extended State Space Representation
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Linear Regression and Least Squares

[ ]

  Given input vector x(k) and output vector y(k), build a linear relation 

between them
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  Collect data for input and output varaibles and fill the data matrices
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Orthogonal Projections
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   Define 
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as the projection matrix to the row space of X, then
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 is a projection of Y on X

   The least square residual is
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Orthogonal Projection – Alternative Notation
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   Sometimes we denote Y project on X as

/

and

/

which is a projection on the orthogonal complement of X

   It is easy to verify that
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Least Squares of more than One Regressor

[ ]

[ ]

   For a model with two sets of input X and U with noise V

we can find  by least squares. 

   What if we are only interested in ?

First of all, since V is independent of U, 
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Then, by 'projecting out' U
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State Space Models

  A determinist state space model is

( 1) ( ) ( )

( ) ( ) ( )

  Extending the state space model into the future:

( 1) ( 1) ( 1) ( ) ( ) ( 1)

( 2) ( 2) ( 2) ( 1)
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Observability Matrix

1 1
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  Collect the future outputs into a vector,

( ) ( )

( 1) ( 1)
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   is known as t
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he observability matrix: if (C,A) is observable, 

    has full column rank for -1, where n is the order of the system.

   is known as a Toeplitz matrix referring to the special structure.
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 contains the impulse response coefficients of the model, also known

           as the Markov parameters

  Note that  and  contain all model parameters ( ,  ,  ,  )
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Define Data Matrices
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Extended State Space Model

1 2

  From 

( ) ( )

( 1) ( 1)
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Populate the data vectors with multiple columns
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Deterministic SIM
   We want to estimate  and  from input and output data

( )

If only X(k) is known, this is a least squares problem. 

   However, we know  is full rank (n) if we choose 

    This is a

f f

f f f f

f

H

Y X k H U

f n

• Γ

= Γ +

• Γ ≥

 problem of more than one regressor. Project out  by :

( ) ( )

   From the right hand side,  has at most rank n if . Therefore, 

the data matrix on the left hand

f
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f U
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f n
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Π
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1/ 2 1/ 2
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 side is also rank n. 

  Perform singular value decomposition on ,

A balanced choice for  is:  

f
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Estimate A and C

1

2

2
1

2 1

1
1 1 1 2

  To be 'smart' choose 1

we have

 is the first row and  can be calculated using least squares
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(A,B,C,D) and Similarity Transform

1 1

1
'

1

  Let '  and  is invertable

( 1) ( ) ( )

( ) ( ) ( )

we have 

'( 1) '( ) ( ) '( 1) '( ) ( )

( ) '( ) ( ) ( ) '( ) ( )

then

( )
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Therefore, (A,B,C,D) from SIM are not unique, but are unique up to

a similarity transform. The transfer function is unique.
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Representing a Stochastic System
  Process data contain state and measurement noise:

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

where the noise terms ( ) and ( ) are independent white noise

  This process has also a Kalman filt

x k Ax k Bu k v k

y k Cx k Du k w k

v k w k
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= + +
�
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ˆdefine innovation: ( ) ( ) ( ) ( )

or equivalently we have the innovation form Kalman filter:
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  If we look carefully, both the innovation form Kalman filter and

the orignal process represent the input and output data ( ) and ( ) exactly

Therefore, both models can represent the inpu

k e k

u k y k

�


+
�

•

t and output data, and

both have the same ,  , ,  matricesA B C D



10

© S. Joe QinUT/ TWMCC  19

Innovation Form State Space Model

2

  Similar to the deterministic model, we have

( )

where 

  The Kalman state ( )  is unknown, but we know that any Kalman state is

estimated from past in

f f f f f f

f
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put and output data, i.e.,

( )

which is a finite impulse response (FIR) for the state. Hence,

p

u y z p
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f f z p f f f f
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System Identification: Battle Against Noise

1

  Under open loop tests,  is uncorrelated to ,

0

( ( ) )

  Under open loop tests,  is uncorrelated to ,

0

The above two relations are very useful i
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n SIMs. 
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SIM: An SVD Approach (N4SID, etc)

Step 0. Collect data under open loop test, , , .

Step 1. Projecting out  by multiplying 

Step 2. Remove the noise term by multiplying ,

f

f f f f

f

f f p

f U

f U f z p U f f U f f U

f z p U f f

T
p

f

Y U Z

U

Y L Z H U G E

L Z G E

Z

Y

⊥

⊥ ⊥ ⊥ ⊥

⊥

Π

Π = Γ Π + Π + Π

= Γ Π +

Π

1/ 2

We have data on the left hand side and unknowns on the RHS

Step 3. Perform SVD,

and choose      as a balanced realization.

f f

f

f

T T T
U p f z p U p f f p

T
f z p U p

T T
f U p

f

Z L Z Z G E Z

L Z Z

Y Z USV
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⊥ ⊥
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⊥
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= Γ Π
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SIM: A Regression Approach 

1

Step 0. Collect data under open loop test, , , .

Step 1. Projecting out  by multiplying 

Step 2. Perform least squares to find ,

ˆ ( )( )

f

f f

f f f f

f f p

f U

f U f z p U f f

f z

T T
f z f U U p p U U p

Y U Z

U

Y L Z G E

L

L Y Z Z Z

⊥

⊥ ⊥

⊥ ⊥ ⊥ ⊥ −

Π
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Γ

Γ = Π Π Π Π
1

1/ 2

( )

Step 3. Perform SVD,

ˆ

ˆand choose      as a balanced realization.

f f

T T
f U p p U p

T
f z

f

Y Z Z Z

L USV
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⊥ ⊥ −= Π Π
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SIM: Reduced Rank Regression (CVA) 
Step 0. Collect data under open loop test, , , .

Step 1. Projecting out  by multiplying 

Observation: Notice that   is not full rank! 

Therefore, the two step regressi

f

f f

f f p

f U

f U f z p U f f

f z

Y U Z

U

Y L Z G E

L

⊥

⊥ ⊥

Π

Π = Γ Π +

Γ

on approach is not a good idea. 

Canonical correlation analysis (CCA) is optimal for reduced rank.

Step 2. Perform CCA between  and .

The non-zero canonical correlations give the best estimat
f ff U p UY Z⊥ ⊥Π Π

1/ 2 1/ 2

e of 

Note: CCA between Y and X is an SVD of

( ) ( )( )

It is, in fact, three SVDs

f

T T TX X X Y Y Y− −

Γ

© S. Joe QinUT/ TWMCC  24

Additional Issues in SIMs

♦ SIM can estimate the optimal Kalman gain from data!

♦ With (C,A,K) estimates, B,D can be estimated similar 
to maximum likelihood

♦ QR factorization for numerical efficiency

♦ What about input noise? (See Jin Wang’s talk)

♦ What about closed-loop data? (J. Wang and W. Lin)

♦ SIM Model formulation is actually not causal! And 
has extra terms. See W. Lin’s talk on how to make it 
causal and parsimonious. 


