Subspace Identification Methods

--- A Tutorial
S. Joe Qin

Texas-Wisconsin Modeling and Control Consortium
Department of Chemical Engineering University of Wisconsin-Madison On leave from
Department of Chemical Engineering
The University of Texas at Austin
Austin, Texas 78712
February 9, 2004

Outline of This Talk

- Why Subspace Identification Methods (SIM)
- Basic State Space Concepts
- Deterministic SIMs
- Stochastic SIMs
- Additional SIM Issues

History of SIMs

- Deterministic SIMs (Ho and Kalman, 1966)
- Stochastic Realization (Akaike, 1974)
- Canonical Variate Analysis (CVA, Larimore, 1983, 1990)
- Multivariable Output-Error State Space (MOESP, Verhaegen \& Dewilde, 1992)
- Numerical algorithms for Subspace State Space System Identification (N4SID, Van Overschee \& De Moor, 1994; Viberg, 1994)

Why Subspace Methods?

- Simple in parameterization
- No need for canonical forms for MIMO process models
- Subspace first, parameterization later
- Compact models in minimal realization
- Numerical property
- No nonlinear optimization techniques required
- Statistical property
- Simple Kalman filter framework

SIM Problem

From input-output measurements, estimate a state space model of a MIMO process given that there might be output noise, state noise, and input noise

Basic Concepts

- Linear Regression and Least Squares
- Orthogonal Projections
- Least Squares of more than One Regressor
- State Space Models
- Observability Matrix
- Extended State Space Representation

Linear Regression and Least Squares

- Given input vector $x(k)$ and output vector $y(k)$, build a linear relation between them

$$
y(k)=\Theta x(k)+v(k)
$$

- Collect data for input and output varaibles and fill the data matrices

$$
\underbrace{\left[\begin{array}{llll}
y(1) & y(2) & \ldots & y(N)
\end{array}\right]}_{Y}=\Theta \underbrace{\left[\begin{array}{llll}
x(1) & x(2) & \ldots & x(N)
\end{array}\right]}_{X}+V
$$

- The least squares solution is

$$
\hat{\Theta}=Y X^{T}\left(X X^{T}\right)^{-1}
$$

- The model prediction is

$$
\hat{Y}=\hat{\Theta} X=Y X^{T}\left(X X^{T}\right)^{-1} X
$$

Orthogonal Projections

- Define

$$
\Pi_{X}=X^{T}\left(X X^{T}\right)^{-1} X
$$

as the projection matrix to the row space of X, then

$$
\hat{Y}=Y X^{T}\left(X X^{T}\right)^{-1} X=Y \Pi_{X}
$$

is a projection of Y on X

- The least square residual is

$$
\tilde{Y}=Y-\hat{Y}=Y-Y \Pi_{X}=Y\left(I-\Pi_{X}\right)
$$

where $\Pi_{X}^{\perp}=I-\Pi_{X}=I-X^{T}\left(X X^{T}\right)^{-1} X$
is the projection to the orthogonal complement of X

- The model \hat{Y} and resiual \tilde{Y} are orthogonal

Orthogonal Projection - Alternative Notation

- Sometimes we denote Y project on X as

$$
Y / X=Y \Pi_{X}
$$

and

$$
Y / X^{\perp}=Y \Pi_{X}^{\perp}
$$

which is a projection on the orthogonal complement of X

- It is easy to verify that

$$
\begin{aligned}
& X / X=X \Pi_{X}=X X^{T}\left(X X^{T}\right)^{-1} X=X \\
& X / X^{\perp}=X \Pi_{X}^{\perp}=X\left(I-X^{T}\left(X X^{T}\right)^{-1} X\right)=X-X=0
\end{aligned}
$$

Least Squares of more than One Regressor

- For a model with two sets of input X and U with noise V

$$
Y=\Gamma X+H U+V=\left[\begin{array}{ll}
\Gamma & H
\end{array}\right]\left[\begin{array}{l}
X \\
U
\end{array}\right]+V
$$

we can find $\left[\begin{array}{ll}\Gamma & H\end{array}\right]$ by least squares.

- What if we are only interested in Γ ?

First of all, since V is independent of U ,

$$
\begin{aligned}
& \frac{1}{N} V U^{T}=\frac{1}{N}[v(1), \ldots, v(N)][u(1), \ldots, u(N)]^{T} \xrightarrow{N \rightarrow \infty} 0 \\
& V \Pi_{U}^{\perp}=V\left(I-U^{T}\left(U U^{T}\right)^{-1} U\right)=V-V U^{T}\left(U U^{T}\right)^{-1} U=V
\end{aligned}
$$

Then, by 'projecting out' U

$$
Y \Pi_{U}^{\perp}=(\Gamma X+H U+V) \Pi_{U}^{\perp}=\Gamma X \Pi_{U}^{\perp}+V
$$

Γ can be found by regress $Y \Pi_{U}^{\perp}$ on $X \Pi_{U}^{\perp}$

State Space Models

- A determinist state space model is

$$
\left\{\begin{array}{c}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

- Extending the state space model into the future:

$$
\begin{aligned}
& y(k+1)=C x(k+1)+D u(k+1)=C A x(k)+C B u(k)+D u(k+1) \\
& y(k+2)=C x(k+2)+D u(k+2)=C A x(k+1)+C B u(k+1)+D u(k+2) \\
& =C A^{2} x(k)+C A B u(k)+C B u(k+1)+D u(k+2) \\
& y(k+j)=C A^{j} x(k)+\left[\begin{array}{llll}
C A^{j-1} B & \cdots & C B & D
\end{array}\right]\left[\begin{array}{c}
u(k) \\
u(k+1) \\
\vdots \\
u(k+j)
\end{array}\right]
\end{aligned}
$$

Observability Matrix

- Collect the future outputs into a vector,

$$
\left[\begin{array}{c}
y(k) \\
y(k+1) \\
\vdots \\
y(k+j)
\end{array}\right]=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{j}
\end{array}\right]}_{\Gamma_{j+1}} x(k)+\underbrace{\left[\begin{array}{cccc}
D & & & \\
C B & D & & \\
\vdots & C B & \ddots & \\
C A^{j-1} B & \cdots & C B & D
\end{array}\right]}_{H_{j+1}}\left[\begin{array}{c}
u(k) \\
u(k+1) \\
\vdots \\
u(k+j)
\end{array}\right]
$$

- Γ_{j+1} is known as the observability matrix: if (C,A) is observable,
Γ_{j+1} has full column rank for $j \geq n-1$, where n is the order of the system.
- H_{j+1} is known as a Toeplitz matrix referring to the special structure.
H_{j+1} contains the impulse response coefficients of the model, also known as the Markov parameters
- Note that Γ_{j+1} and H_{j+1} contain all model parameters (A, B, C, D)

Define Data Matrices

Extended State Space Model

- From

$$
\left[\begin{array}{c}
y(k) \\
y(k+1) \\
\vdots \\
y(k+f-1)
\end{array}\right]=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{f-1}
\end{array}\right]}_{\Gamma_{f}} x(k)+\underbrace{\left[\begin{array}{cccc}
D & & & \\
C B & D & & \\
\vdots & C B & \ddots & \\
C A^{f-2} B & \cdots & C B & D
\end{array}\right]}_{H_{f}}\left[\begin{array}{c}
u(k) \\
u(k+1) \\
\vdots \\
u(k+f-1)
\end{array}\right]
$$

Populate the data vectors with multiple columns

$$
Y_{f}=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{f-1}
\end{array}\right]}_{\Gamma_{f}} \underbrace{\left[\begin{array}{llll}
x(1) & x(2) & \cdots & x(N)
\end{array}\right]}_{X(k)}+\underbrace{\left[\begin{array}{cccc}
D & & & \\
C B & D & & \\
\vdots & C B & \ddots & \\
C A^{f-2} B & \cdots & C B & D
\end{array}\right]}_{H_{f}} U_{f}
$$

or

$$
Y_{f}=\Gamma_{f} X(k)+H_{f} U_{f}
$$

which is known as the extended state space model.

Deterministic SIM

- We want to estimate Γ_{f} and H_{f} from input and output data

$$
Y_{f}=\Gamma_{f} X(k)+H_{f} U_{f}
$$

If only $\mathrm{X}(\mathrm{k})$ is known, this is a least squares problem.

- However, we know Γ_{f} is full rank (n) if we choose $f \geq n$

This is a problem of more than one regressor. Project out U_{f} by $\Pi_{U_{f}}^{\perp}$:

$$
Y_{f} \Pi_{U_{f}}^{\perp}=\Gamma_{f} X(k) \Pi_{U_{f}}^{\perp}+H_{f} U_{f} \Pi_{U_{f}}^{\perp}=\Gamma_{f} X(k) \Pi_{U_{f}}^{\perp}
$$

- From the right hand side, Γ_{f} has at most rank n if $f \geq n$. Therefore, the data matrix on the left hand side is also rank n .
- Perform singular value decomposition on $Y_{f} \Pi_{U_{f}}^{\perp}$,

$$
Y_{f} \Pi_{U_{f}}^{\perp}=U S V^{T}=U S^{1 / 2} S^{1 / 2} V^{T}
$$

A balanced choice for Γ_{f} is: $\Gamma_{f}=U S^{1 / 2}$

Estimate A and C

- To be 'smart' choose $f=n+1$

$$
\underbrace{\left.\Gamma_{2}=\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right]}_{\Gamma_{n+1}}=\Gamma_{1}
$$

we have $\quad \Gamma_{2}=\Gamma_{1} A$
C is the first row and A can be calculated using least squares

$$
A=\left(\Gamma_{1}^{T} \Gamma_{1}\right)^{-1} \Gamma_{1}^{T} \Gamma_{2}
$$

(A,B,C,D) and Similarity Transform

- Let $x=T x^{\prime}$ and T is invertable

$$
\left\{\begin{array}{c}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

we have
$\left\{\begin{array}{c}T x^{\prime}(k+1)=A T x^{\prime}(k)+B u(k) \\ y(k)=C T x^{\prime}(k)+D u(k)\end{array} \Leftrightarrow\left\{\begin{array}{c}x^{\prime}(k+1)=T^{-1} A T x^{\prime}(k)+T^{-1} B u(k) \\ y(k)=C T x^{\prime}(k)+D u(k)\end{array}\right.\right.$
then

$$
\Gamma_{f}^{\prime}=\left[\begin{array}{c}
C T \\
C T\left(T^{-1} A T\right) \\
\vdots \\
C T\left(T^{-1} A T\right)^{f-1}
\end{array}\right]=\left[\begin{array}{c}
C T \\
C A T \\
\vdots \\
C A^{f-1} T
\end{array}\right]=\Gamma_{f} T
$$

Therefore, (A,B,C,D) from SIM are not unique, but are unique up to a similarity transform. The transfer function is unique.

UT/ TWMCC 17
© S. Joe Qin

Representing a Stochastic System

- Process data contain state and measurement noise:

$$
\left\{\begin{array}{c}
x(k+1)=A x(k)+B u(k)+v(k) \\
y(k)=C x(k)+D u(k)+w(k)
\end{array}\right.
$$

where the noise terms $v(k)$ and $w(k)$ are independent white noise

- This process has also a Kalman filter representation

$$
\left\{\begin{array}{c}
\hat{x}(k+1)=A \hat{x}(k)+B u(k)+K(y(k)-C \hat{x}(k)+D u(k)) \\
\text { define innovation: } e(k)=y(k)-C \hat{x}(k)-D u(k)
\end{array}\right.
$$

or equivalently we have the innovation form Kalman filter:

$$
\left\{\begin{array}{c}
\hat{x}(k+1)=A \hat{x}(k)+B u(k)+K e(k) \\
y(k)=C \hat{x}(k)+D u(k)+e(k)
\end{array}\right.
$$

- If we look carefully, both the innovation form Kalman filter and the orignal process represent the input and output data $u(k)$ and $y(k)$ exactly Therefore, both models can represent the input and output data, and both have the same A, B, C, D matrices

Innovation Form State Space Model

- Similar to the deterministic model, we have

$$
\begin{gathered}
\quad Y_{f}=\Gamma_{f} X(k)+H_{f} U_{f}+G_{f} E_{f} \\
\text { where } G_{f}=\left[\begin{array}{cccc}
I & & & \\
C K & I & & \\
\vdots & C K & \ddots & \\
C A^{f-2} K & \cdots & C K & I
\end{array}\right]
\end{gathered}
$$

- The Kalman state $X(k)$ is unknown, but we know that any Kalman state is estimated from past input and output data, i.e.,

$$
X(k)=\left[\begin{array}{ll}
L_{u} & L_{y}
\end{array}\right]\left[\begin{array}{c}
U_{p} \\
Y_{p}
\end{array}\right]=L_{z} Z_{p}
$$

which is a finite impulse response (FIR) for the state. Hence,

$$
Y_{f}=\Gamma_{f} L_{z} Z_{p}+H_{f} U_{f}+G_{f} E_{f}
$$

System Identification: Battle Against Noise

- Under open loop tests, E_{f} is uncorrelated to U_{f},

$$
E_{f} U_{f}^{T}=0
$$

or $\quad E_{f} \Pi_{U_{f}}^{\perp}=E_{f}\left(I-U_{f}{ }^{T}\left(U_{f} U_{f}{ }^{T}\right)^{-1} U_{f}\right)=E_{f}$

- Under open loop tests, E_{f} is uncorrelated to $Z_{p}=\left[\begin{array}{c}U_{p} \\ Y_{p}\end{array}\right]$,

$$
E_{f} Z_{p}^{T}=0
$$

The above two relations are very useful in SIMs.

SIM: An SVD Approach (N4SID, etc)

Step 0. Collect data under open loop test, Y_{f}, U_{f}, Z_{p}.
Step 1. Projecting out U_{f} by multiplying $\Pi_{U_{f}}^{\perp}$

$$
\begin{aligned}
Y_{f} \Pi_{U_{f}}^{\perp} & =\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp}+H_{f} U_{f} \Pi_{U_{f}}^{\perp}+G_{f} E_{f} \Pi_{U_{f}}^{\perp} \\
& =\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp}+G_{f} E_{f}
\end{aligned}
$$

Step 2. Remove the noise term by multiplying $Z_{p}{ }^{T}$,

$$
\begin{aligned}
Y_{f} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T} & =\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}+G_{f} E_{f} Z_{p}{ }^{T} \\
& =\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}
\end{aligned}
$$

We have data on the left hand side and unknowns on the RHS Step 3. Perform SVD,

$$
Y_{f} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}=U S V^{T}
$$

and choose $\Gamma_{f}=U S^{1 / 2}$ as a balanced realization.

SIM: A Regression Approach

Step 0. Collect data under open loop test, Y_{f}, U_{f}, Z_{p}.
Step 1. Projecting out U_{f} by multiplying $\Pi_{U_{f}}^{\perp}$

$$
Y_{f} \Pi_{U_{f}}^{\perp}=\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp}+G_{f} E_{f}
$$

Step 2. Perform least squares to find $\Gamma_{f} L_{z}$,

$$
\begin{aligned}
\hat{\Gamma}_{f} L_{z}= & Y_{f} \Pi_{U_{f}}^{\perp}\left(\Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}\right)\left(Z_{p} \Pi_{U_{f}}^{\perp} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}\right)^{-1} \\
& =Y_{f} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}\left(Z_{p} \Pi_{U_{f}}^{\perp} Z_{p}{ }^{T}\right)^{-1}
\end{aligned}
$$

Step 3. Perform SVD,

$$
\hat{\Gamma}_{f} L_{z}=U S V^{T}
$$

and choose $\hat{\Gamma}_{f}=U S^{1 / 2}$ as a balanced realization.

SIM: Reduced Rank Regression (CVA)

Step 0. Collect data under open loop test, Y_{f}, U_{f}, Z_{p}.
Step 1. Projecting out U_{f} by multiplying $\Pi_{U_{f}}^{\perp}$

$$
Y_{f} \Pi_{U_{f}}^{\perp}=\Gamma_{f} L_{z} Z_{p} \Pi_{U_{f}}^{\perp}+G_{f} E_{f}
$$

Observation: Notice that $\Gamma_{f} L_{z}$ is not full rank!
Therefore, the two step regression approach is not a good idea.
Canonical correlation analysis (CCA) is optimal for reduced rank.
Step 2. Perform CCA between $Y_{f} \Pi_{U_{f}}^{\perp}$ and $Z_{p} \Pi_{U_{f}}^{\perp}$.
The non-zero canonical correlations give the best estimate of Γ_{f}
Note: CCA between Y and X is an SVD of

$$
\left(X^{T} X\right)^{-1 / 2}\left(X^{T} Y\right)\left(Y^{T} Y\right)^{-1 / 2}
$$

It is, in fact, three SVDs

Additional Issues in SIMs

- SIM can estimate the optimal Kalman gain from data!
- With (C,A,K) estimates, B,D can be estimated similar to maximum likelihood
- QR factorization for numerical efficiency
- What about input noise? (See Jin Wang's talk)
- What about closed-loop data? (J. Wang and W. Lin)
- SIM Model formulation is actually not causal! And has extra terms. See W. Lin's talk on how to make it causal and parsimonious.

