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Abstract In this paper, a new control scheme aiming at a stable sampling period adaptation for energy saving in Ambient 
Intelligence (AmI) Wireless Networked Control Systems (WNCS) is proposed. We introduce a new device to generate the 
control output, the “Smart Actuator”, which is based on the explicit use of a system model in the controller-actuator unit. The 
model is updated with the plant state via an AmI wireless network. We show that even with a simple heuristic adaptation law for 
the sampling period, significant enhancement in energy saving is obtained. Also, it opens the possibility of a systematic AmI 
system design concerning a trade-off between sensor energy saving and control performance. The new control framework was 
tested in simulations to show its effectiveness. 
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1   Introduction 

In recent years, the field of networked control 
systems (NCS) has seen vivid research activities, see, 
e.g., Hespanha et al. (2007) for a survey. A natural 
extension of NCS are wireless NCS (WNCS), which 
are given some attention, e.g., by Song et al. (2009). 
In WNCS several additional limitations may increase 
the complexity of the control problem. Among them 
are limited energy resources, limited computational 
power, the lack of powerful protocols (which result 
in, e.g., a lack of time synchronization). These limita-
tions appear especially in the so called Ambient Intel-
ligence (AmI) systems, see Litz et al. (2005). 

AmI systems interact with humans and are thus 
sensitive and usually adaptive. Typical AmI systems 
consist of several cheap wireless nodes, which are 
very small, have low computational capabilities and 
limited transmission range. They either run on battery 
or harvest energy from their environment. Therefore, 
energy saving has a high priority in these systems. 
Low power transmitters, as well as simple protocols 
contribute to this goal. Furthermore, AmI nodes fea-
ture a so called sleeping mode in which no packets 
can be sent or received and no computations can be 
carried out. In sleeping mode extremely few energy is 
being consumed, thus it should be used as often as 
possible. For the use in control this implies that sam-
pling periods should be maximized under the con-
straint of an acceptable QoC and inter-sampling 
computations must be avoided. 

An approach to overcome some of the AmI-
WNCS problems is the incorporation of a system 
model in the control scheme, such as model-based 

NCS (MB-NCS), which was first proposed by Mon-
testruque and Antsaklis (2003). 

Model uncertainties and disturbances are the 
main reasons why feedback control is used instead of 
feed-forward control. However, both model uncer-
tainties and disturbances are of varying impact on the 
control performance depending on the state of the 
system. This insight gives rise to the idea, that the 
control loop is only closed when necessary to avoid 
large differences between real system and model. 
This idea is followed by Lunze and Lehmann (2010), 
where asynchronous sampling is triggered by the de-
viation between the system and the model. One 
drawback of this event-based control scheme is the 
necessity of an additional system model in the sensor, 
which has to be synchronized with the model in the 
actuator. Furthermore, the discrete event character 
prevents the sensor from using the energy efficient 
sleeping mode, because the system state must be 
tracked continuously.  

Event-based control results in varying sampling 
times. But also other control schemes with varying 
sampling times were studied in the literature. Zhiwen 
et al. (2007) use the framework of MB-NCS, how-
ever they assume that the sensor sends measurements 
at a constant rate, whereas the inputs are applied to 
the plant with different sampling periods. Colandairaj 
et al. (2007) adjust the sampling period according to 
the latest round trip time in order to achieve a maxi-
mal usage of the network. They give a system de-
scription by means of Markov Jump Linear Systems 
and prove stability in a probability sense. 

 
 Our approach aims at a minimal use of sensor 

energy and uses the framework of model-based con-
trol. So far, we combine AmI-like low cost, low per-



formance sensors which may sleep most of the time 
during the sampling period with smart actuators per-
forming model-based control and producing the ad-
aptation command. By using an adaptive sampling 
period, our approach can be more effective than MB-
NCS in the sense that it implements a dynamic trade-
off between QoC and network occupation. Achieving 
the same QoC with fewer sampling instances directly 
translates into less energy usage in the AmI sensor 
and thus longer runtime of sensors. 

 Compared to the work of Lunze and Lehmann 
(2010) our scheme omits the model in the sensor for 
the reasons given above. It adapts the sampling pe-
riod by a heuristic adaptation law in order to save 
electrical sensor energy and network bandwidth and 
at the same time, which makes it applicable in AmI-
WNCS systems. 

As a main result, a stability proof for arbitrary 
switching within a set of sampling periods is given. 
Although our proof uses a different technique, it re-
sembles the result of Montestruque and Antsaklis 
(2003) for constant sampling period.  

 
The paper is structured as follows: Section 2 de-

scribes the system structure and the goal of the con-
trol scheme. An adaptation policy for linear SISO 
systems is described. In Section 3 a stability proof for 
these systems is given. In Section 4 the adaptation 
policy is studied. A design methodology based on 
pareto optimization is presented in an example. Fi-
nally the effectiveness of our approach in the exam-
ple is tested. Section 5 summarizes the results and 
gives an outlook on future work. 

2   Problem Formulation 

In this section, the overall system structure will 
be described. The functionality of the “Smart Actua-
tor” and the AmI Sensor are explained in detail. A 
mathematical formulation of the control scheme is 
given for arbitrary adaptation policies. Finally an 
adaptation policy for linear SISO systems is pro-
posed. 

2.1   Control System Architecture 

The system structure is shown in Figure 1. It 
contains the plant, which is subject to a disturbance, a 
so called “Smart Actuator”, which is described in 
details later and an AmI sensor, which sends a meas-
urement of the plant state periodically. The sampling 
period of the sensor can be adjusted by a notification 
of the Smart Actuator. This possibility is the major 
difference compared to the control scheme of Mon-
testruque and Antsaklis (2003), as it allows the sam-
pling period to be adapted to the current system state. 
Besides from receiving a message and adjusting the 
sampling period accordingly, the sensor is quite sim-

ple. Particularly, it does not simulate a system model, 
which saves computational effort and allows the AmI 
sensor to go to sleep mode between sampling in-
stances. Consequently energy can be saved, which is 
of special interest if the sensor runs on batteries or 
uses energy harvesting.  

The Smart Actuator consists of a plant model 
which is controlled by a state-feedback controller. Its 
control input is applied to both, the model and the 
plant. The Smart Actuator embodies the controller 
and the actuator, as well as the adaptation unit, which 
executes the adaptation policy. As the actuator is 
usually connected to a power supply, energy saving 
or computational complexity concerning the actuator 
were not given further attention throughout this pa-
per. Whenever a new measurement is received, the 
model is updated with the state measurement. Be-
tween two sampling instances, the system runs 
model-driven open loop. This method is similar to 
the one used by Montestruque and Antsaklis (2003), 
as well as by Lunze and Lehmann (2010) and can be 
considered as a reasonable compromise between 
feedback and feed-forward control. 

 

Figure 1: Structure of the system 

The adaptation unit incorporated in the Smart 
Actuator notifies the sensor in case the sampling pe-
riod should be adjusted. This is done directly after 
the new sensor values have been received, to allow 
the sensor to sleep until just before the end of the 
sampling period for transmitting the next sensor val-
ues. The adaptation unit executes the adaptive sam-
pling policy, which is subject to the design proce-
dure. The policy described in Section 2.3 is just one 
possible solution to show the effectiveness in the 
example of Section 4. 

It is important to note that the stability proof 
given in Section 3 holds for arbitrary adaptation poli-
cies. This gives the control designer the great flexibil-
ity to customize the adaptation policy due to the 
characteristics of a specific plant and a specific net-
work.  

2.2   Mathematical Description 

In this section, we set the basic description for gen-
eral set of sampling times without concern about any 
particular adaptation policy. 



The plant is described by  
= +ɺ Sx Ax Bu , (1)

where nx∈ℜ  is the plant state and mu∈ℜ  is the 
system input vector. A model of the plant is assumed 
to be available and described by  

ˆ ˆ
S S Sx Ax Bu= +ɺ , (2)

where n
Sx ∈ ℜ  is the model state and m

Su ∈ℜ  is the 

model input vector. 
An appropriate stable state-feedback controller is 
designed and applied to both the model and the plant  
( Su u= ). The control law is 

S Su Kx= , (3)

where mxnK ∈ℜ . Combining equations (1) - (3) leads 
to 

Sx Ax BKx= +ɺ , (4)

ˆ ˆ( )S Sx A BK x= +ɺ  (5)

Introducing the state error  

Se x x= − , (6)

the modeling error matrices 
ˆA A A= −ɶ  (7)

and 
ˆB B B= −ɶ  (8)

the system behavior between the updates can be de-
scribed by: 

( ) ( )
ˆ( ) ( )

A BK BKx t x t

e t e tA BK A BK

+ −    =      + −    

ɺ

ɶ ɶ ɶɺ
 (9)

The update scheme can be expressed by the follow-
ing equation 

( ) ( )

( ) 0
k k

k

x t x t

e t

−  
=   

   
, (10) 

where kt  are the sampling instances. Introducing the 

variables ( )z t  and Λ  defined as 

( )
( )

( )

x t
z t

e t

 
=  
 

 (11)

ˆ

A BK BK

A BK A BK
Λ

+ − 
=   + − 
ɶ ɶ ɶ

 (12)

simplifies equation (9) to  
( ) ( )z t z tΛ=ɺ . (13)

The trajectory ( )z t  of this system is of the form 
( )( ) ( )kt t

kz t e z tΛ −= , (14)

where kt is the last sampling instant. 

According to equation (10), ( )kz t  is known to be 

0
( ) ( )

0 0k k

I
z t z t−

 
=  
 

. (15)

( )kz t −

 can be described by 

1( )
1( ) ( )k kt t

k kz t e z tΛ −
−−−

−= . (16) 

Combining equations (15) and (16) the trajectory 
( )z t  can be expressed by 

1( ) ( )
1

0
( ) ( )

0 0
k k kt t t t

k

I
z t e e z tΛ Λ −

−− −
−

 
=  

 
. (17)

1k kt t−
−−  is the time interval between the kth and (k-1)th 

update and is abbreviated by kh  from now on. 

The sampling period kh  is chosen from a set 

{ }min max,...,kh h h∈  by the adaptation unit. 

Because 1 1

0
( ) ( )

0 0k k

I
z t z t− −

 
=  
 

 holds, equation (17) 

can be rewritten as 

( )
1

0 0
( ) ( )

0 0 0 0
k kt t h

k

I I
z t e e z tΛ Λ−

−
   

=    
   

. (18)

From equation (18) it is easy to see that 

1

0 0
( ) ( )

0 0 0 0
k kh

k k

I I
z t e z tΛ

−
   

=    
   

. (19)

Iterating the recursive equation (19) leads to 

( )
0

1

0 0
( ) ( )

0 0 0 0
Λ Λ −−

=

     =     
     

∏k k i

k
t t h

i

I I
z t e e z t , (20)

which describes the controlled system for all times.  

0

(0)
( )

0

x
z t

 
=  
 

 (21)

denotes the initial condition of the system. 
 
Note 1: 
If kh h k= ∀ , equation (18) becomes: 

 ( )
0

0 0
( ) ( )

0 0 0 0
k

k

t t hI I
z t e e z tΛ Λ−      =     

     
 and thus 

resembles the result of Montestruque and Antsaklis 
(2003). 
 
So far, a common controller S Su Kx=  is assumed to 

be used for all sampling periods. This assumption can 
be given up though, in order to make the control 
scheme more general and give more flexibility to the 
control designer. Therefore, it is assumed that an 
individual controller is assigned to every sampling 
period: 

( )S k Su K h x= , (22)

where { }min max( ) : ,..., mxn
kK h h h → ℜ   

So equation (19) becomes 

1

0 0
( ) ( )

0 0 0 0
k kh

k k

I I
z t e z tΛ

−
   

=    
   

. (23)

Let  

0 0

0 0 0 0
k kh

k

I I
eΛΦ    

=    
   

, (24)

where 

( ) ( )

ˆ( ) ( )

k k

k

k k

A BK h BK h

A BK h A BK h
Λ

+ − 
=   + − 
ɶ ɶ ɶ

. (25) 



 

A system described by equations (1), (2), (6) - (8), 
(11), (21) and (22) - (25) will be called adaptive 
sampling period model-based controller (AS-MB-
NCS) from now on. 

2.3   The Proposed Adaptation Policy 

Aim of the AS-MB-NCS is to reduce the 
communication of the sensor, while maintaining an 
acceptable QoC. The Integral of Absolute Error 

(IAE) defined as ( ) ( )IAE r t y t dt= −∫ , where ( )r t  

is the reference value and ( )y t  is the system output, 

serves as QoC measure. The sensor communication 
cost will be measured by the number of packets sent 
in a certain time period. A trade-off between IAE and 
sampling rate to characterize the quality of a control 
scheme was seen in the literature before, e.g., Peng et 
al. (2009). 

Although the stability proof holds for arbitrary 
adaptation policies, the choice of adaptation rules 
largely influences the performance of the AS-MB-
NCS. Therefore, the adaptation policy should be cho-
sen wisely. In general, an analysis of the system is 
necessary either by theoretically derived properties or 
simulations in order to identify the critical situations, 
that should be addressed by the adaptation policy. In 
this paper, we present a simple but effective adapta-
tion policy which is expected to perform well for 
many linear SISO systems. It makes use of two sam-
pling periods slowh  and fasth  and is based on the fact 

that in AmI WNCS sending measurements by the 
sensor is a costly process.  

Whenever a plant measurement is received, the 
Smart Actuator gets information about how well its 
model fits reality. In case of full state feedback, the 
deviation between every state variable of model and 
plant is available. A threshold for the absolute error 
between model and system state can serve to decide 
whether fast or slow sampling is carried out. As the 
deviation relies on the length of the sampling inter-
val, it might be appropriate to use individual thresh-
olds for fast and slow sampling. By this adaptation 
policy the efficient use of network bandwidth is ex-
pected as well as energy saving aspects from the sen-
sor point of view. Another adaptation rule forces the 
sampling rate to fasth  whenever the reference value 

changes. In other words, slow sampling is only car-
ried out during stationary inputs. A similar rules has 
shown to be effective in Litz et al. (2005). The adap-
tation rules are given below: 

1. If 
( )

0
dr t

dt
≠ , then fasth h=  (26) 

2. If 1slow Mh h x x c= ∧ − > , then fasth h=  (27) 

3. If 2fast Mh h x x c= ∧ − < , then slowh h=  (28) 

3   Stability 

Stability of the AS-MB-NCS can be shown by show-
ing that trajectory (20) converges. However, showing 
convergence of a product of matrices is not easy, 
because in general, matrices do not commute. There-
fore, a different approach was taken. An energy func-
tion like in Laypunov theory measures the system 
energy. If it can be shown that this energy decreases 
between any two consecutive sampling instances, the 
system is stable. This could be shown for AS-MB-
NCS. 
 
Lemma: 

Suppose q matrices nxn
iΦ ∈ℜ  { }1,...,i q∈ , were 

given. If there exists a matrix , 0nxnP P∈ℜ >  such 

that { }0 1,...,i iP P i qΦ Φ− > ∀ ∈ , then the system 

1k k kz zΦ+ = is stable for any { }1,...,k qΦ Φ Φ∈ . 

 
Proof: 

Choose a positive definite energy function 
( ) , 0TV z z Pz P= > . The system given by 

1k k kz zΦ+ =  is stable if inequality 

1( ) ( )k kV z V z k+ < ∀  (29)

holds, that is the system energy decreases between 
every two consecutive sampling instances. 
With the chosen energy function, the inequality be-
comes 

1 1
T T

k k k kz Pz z Pz+ + <  (30)
T T T

k k k k k kz P z z PzΦ Φ <  (31)
T

k kP PΦ Φ <  (32)

0T
k kP PΦ Φ− >  (33)

 
From this Lemma a stability criterion for the adaptive 
sampling period model-based control scheme can be 
derived. 
 
Stability criterion: 

An AS-MB-NCS, described by equations (1), (2), (6) 
- (8), (11), (21) and (22) - (25)  is stable if a positive 
definite matrix P can be found, such that the follow-
ing inequality holds: 

0 0 0 0
0

0 0 0 0 0 0 0 0
k k k k

T

h hI I I I
P e P eΛ Λ        

− >        
        

(34)
, where 

( ) ( )
( )

ˆ( ) ( )

k k

k k

k k

A BK h BK h
h

A BK h A BK h
Λ Λ

+ − 
= =   + − 

ɶ ɶ ɶ
 (35)

for all { }min max,...,kh h h∈ , that is, for all sampling 

periods used in the AS-MB-NCS controller. 
 



Note 2: 

Stability of every matrix 
0 0

0 0 0 0
k kh

k

I I
eΛΦ    

=    
   

 is 

a necessary condition for overall stability. 
 
Note 3: 
If no adaptation policy is carried out and only one 
sampling time being used, equation (34) simplifies to 

0TP PΦ Φ− > , which is known to be fulfilled if and 
only if the eigenvalues of Φ  lie within the unit cir-
cle. This shows that our result contains the result of 
Montestruque and Antsaklis (2003) as a special case. 
 
Note 4: 
The stability criterion ensures that the system energy 
decreases between any two consecutive sampling 
instances independent of the particular matrix 

0 0

0 0 0 0
k kh

k

I I
eΛΦ    

=    
   

, as long as kh is chosen 

from the set of allowed sampling periods, that is 

{ }min max,...,kh h h∈ . This means, that stability is inde-

pendent of the choice of the adaptation policy. 

4   Simulation 

In order to show the effectiveness of the proposed 
control scheme, consider the following second order 

system 2 2

1
( )

(1 )PTG s
Ts

=
+

, where 0.2T = , that can 

be represented in the following state-space form: 

0 1

25 10
A

 
=  − − 

, 
0

25
B

 
=  
 

, ( )1 0C = , 0D = . 

The model of the system has a dynamic error but 

correct gain: 2 2

1ˆ ( )
ˆ(1 )

PTG s
Ts

=
+

, where ˆ 0.4T = . 

The corresponding state space representation is: 

0 1ˆ
6.25 5

A
 

=  − − 
, 

0ˆ
6.25

B
 

=  
 

, ( )1 0C = , 0D = . 

In this example, a controller independent of the sam-
pling period is used for simplicity. ( )3 0.4K = − −  

is the controller law, which moves the poles of the 
system from 5−  to 10− . Both systems together are 
described by the system matrix 

0 1 0 0

100 20 75 10

0 0 0 1

75 12.5 50 2.5

Λ

 
 − − =
 
 

− − 

. h
h Se SΛΦ = , where 

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

S

 
 
 =
 
 
 

 and h is the sampling period. 

According to the stability criterion presented in Sec-
tion 3, for stability of an AS-MB-NCS system, the 
existence of an energy function 0P > must be shown, 

such that 0 0T T
slow slow fast fastP P P PΦ Φ Φ Φ− > ∧ − > . 

Let 

1 0.13 0 0

0.13 0.04 0 0
0

0 0 1 0

0 0 0 1

P

 
 
 = >
 
 
 

. 

For the chosen P, Figure 2 shows the real part of the 
smallest eigenvalue of the matrix T

h hP PΦ Φ−  for 

sampling periods h  between 0 and 500 ms. It reveals 

that T
h hP PΦ Φ−  is positive definite for all sampling 

periods, thus the AS-MB-NCS in this example is sta-
ble for any choice of slowh  and fasth  within this range. 

 

Figure 2: Real part of the smallest eigenvalue of T
h hP PΦ Φ−  

In order to find suitable sampling periods slowh  and 

fasth , an optimization setup was used. First, a refer-

ence trajectory was defined. In practice, such a trajec-
tory should be as realistic as possible. The reference 
trajectory used throughout this example incorporates 
10 steps of different heights. An important feature of 
this trajectory is, that the time between the steps is 
varying. This ensures that no sampling period is fa-
voured, in the sense that it always sends a measure-
ment of the plant right after a change in the reference 
trajectory, when a measurement is most valuable. 
Note that both MB-NCS and AS-MB-NCS are time-
varying systems. 
Using the reference trajectory, MB-NCS was simu-
lated with different constant sampling periods. Meas-
urement noise was not incorporated. The IAE was 
calculated from the simulation of length 60 s. As ex-
pected, the QoC decreases with rising sampling peri-
ods, see the blue dots in Figure 3.  
In the next step, AS-MB-NCS was simulated with 
different combinations of slowh , fasth , 1c , and 2c . The 

results are depicted as red diamond shapes in Figure 
3. Sampling period in this case means the average 
sampling period during simulation, which is 

avg
sim

p
h

T
= , where p  is the number of sampling in-

stances during the simulation and simT  is the simula-

tion time. 



Figure 3: MB-NCS (blue dots) vs. AS-MB-NCS (green diamond 
shapes) for different adaptation policy parameters 

Several pareto-optimal combinations of the design 
parameters could be found. Pareto optimality means, 
that an increase in QoC can only be achieved by ac-
cepting a higher number of sampling instances. 
Pareto optimization is a method to do multi-objective 
optimization, see, e.g., Zitzler et al. (2001). The con-
trol designer has to pick one of those combination, 
depending on the importance of the opposing goals. 
In this example the following pareto-optimal parame-
ters were chosen: fasth  = 160 ms, slowh  = 240 ms, 

1c = 2c  = 
0.05

0

 
 
 

 

This AS-MB-NCS controller works with an average 
sampling period avgh  of 229 ms. Therefore, it was 

tested against a MB-NCS controller with a fixed 
sampling rate of 230 ms. A detail of the result is 
shown in Figure 4. 

 
Figure 4: comparison between MB-NCS and AS-MB-NCS (detail) 

In Table 1, the IAE and number of packets is com-
pared for AS-MB-NCS and MB-NCS. Not very sur-
prisingly MB-NCS with 160 ms sampling period has 
the best IAE, but worst number of packets and MB-
NCS with 240 ms has the worst IAE, but best number 
of packets. AS-MB-NCS shows a pretty good IAE, 
while sending a number of packets which is equiva-
lent to MB-NCS with 230 ms. Compared to MB-NCS 
with 230 ms, AS-MB-NCS shows a much better IAE, 
which supports the impression of Figure 4. 
In MB-NCS a sampling period of 185 ms would be 
necessary to achieve the same IAE, resulting in 324 
sensor packets, which is an 23% increase in sensor 
packets, compared to AS-MB-NCS. 

Table 1. Comparison of QoC and network usage for AS-MB-NCS 
and MB-NCS 

controller 
type 

MB-NCS AS-MB-
NCS 

sampling 
period 

160 
ms 

185 
ms 

230 
ms 

240 
ms 

229 ms 
(average) 

IAE 1,166 1,212 1,672 1,936 1,213 
packets  375 324 260 250 263 
 
In Table 1, the number of packets sent using AS-MB-
NCS is 263. In contrast to MB-NCS, the AmI sensor 
in AS-MB-NCS also receives packets, namely the 
notifications from the Smart Actuator to change the 
sampling period. Counting these packets as well, the 
number of packets rises by 21 to 284. However, these 
additional packets can be omitted, as the sensor is 
awake while receiving notifications anyways. In prac-
tice, the Smart Sensor sends its notifications at the 
time a new measurement is expected according to the 
current sampling period. 
 

5   Conclusion and outlook 
 
In this paper a novel adaptive sampling period con-
trol scheme was presented, which is suitable for AmI 
systems. A stability proof for AS-MB-NCS was pre-
sented. An example of an adaptation policy for linear 
SISO systems was given. A pareto optimization was 
carried out to determine the design parameters of the 
proposed adaptation policy. The resulting AS-MB-
NCS was tested against MB-NCS in a simulation 
example. It was shown that AS-MB-NCS can be 
more effective than MB-NCS. A similar QoC can be 
achieved with fewer sensor packets. Therefore, sen-
sor energy is being saved. 
In the future, the control scheme will be extended to 
output feedback control systems, as well as for de-
layed measurements. Both extensions should be eas-
ily incorporated as they are already handled in the 
non-adaptive case in Montestruque and Antsaklis 
(2003). Whenever a model has a gain error, a con-
stant control error will remain no matter how fast 
sampling is carried out. Therefore, the control 
scheme should be extended by an integral action, in 
order to improve applicability of the proposed con-
trol scheme. Also typical network induced effects like 
packet losses and jitter need to be addressed. The 
effects of disturbances on the control scheme is an-
other field of interest. Further investigations on adap-
tation policies will be done, particularly considering 
the needs in AmI systems and cooperative control. 
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