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Abstract This paper presents a first-principles structured identification approach for thermal environments equipped with Heating, 
Ventilation and Air Conditioning (HVAC) systems. Linear data-driven identification and first-principles modeling are combined to 
produce an accurate and computationally efficient model. The objective is to find out which model is best suited for energy-saving 
and comfort control strategies. A proportional integral (PI) controller running a conference room at the University of Kaiserslautern, 
using PMV (Predicted Mean Vote) comfort index, is quite satisfactory as regulator, but it is not anticipatory, wasting energy and lasts 
long to reach the comfort zone when room utilization changes. A model-based predictive controller is anticipatory and can cope with 
actuator saturations. The first-principles structured model allows the separation of the different heat flow contributions simplifying the 
parameter identification. The theoretical foundations and experimental results are presented considered heating, cooling, outside 
temperature, neighboring rooms and solar radiation. 
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1    Introduction 

The climatisation of rooms in buildings can be quite 
a complex control problem if high degrees of 
comfort and energy saving are required. There are 
many factors influencing an environment: humidity, 
outdoor temperature, solar radiation, neighbouring 
rooms, people presence, furniture in the room, heat 
sources (as computers), windows, heaters, coolers 
etc. All these factors have a complex interaction 
with the comfort and the energy demand. 

From the automation point of view, the 
objective of modeling a building is not to precisely 
calculate the temperature in every point of a room, 
but to have information that can lead to a successful 
controller design. This means that the distributed, 
continuous, and eventually non-linear process 
should, with sufficient precision, be described by a 
lumped LTI parameters model. If the room is 
architecturally well designed and the actuators well 
placed, comfort and energy-saving can be obtained.  

A predictive HVAC controller can potentially 
obtain the best compromise between comfort and 
energy saving. The scheduled room occupation can 
be prepared with the just needed in-advance 
acclimatization, a quite unique characteristic of 
predictive controllers.  

Model-based Predictive Control (MPC), as the 
name suggests, needs a model of the process to 
generate the control sequence that minimizes the 
predicted error. One great advantage of this 
technique is that saturations are accounted 
automatically. That means that driving the process 

at its limits can potentially give the best energy-
saving results (Maximum Principle of Pontryagin).  

In this work, we join physical first-principles 
comprehension and data-driven identification to get 
a practical model aiming at predictive HVAC 
control.  

2 Model-Based HVAC Identification 

Most controllers used in buildings are very simple. 
The on-off controller with hystheresis is perhaps the 
most widely used building controller due to its 
simplicity. The also very popular PI controller is 
often designed empirically. In both cases no process 
model is used. To really enhance the control with 
respect to energy-saving and comfort, some kind of 
model-based approach is needed. With this 
objective, different approaches have been proposed. 

Virk et al., 1995, presents a practical 
methodology to identify buildings as linear MIMO 
ARMAX models. Heating, cooling and 
humidification are used as inputs. Climatic variables 
and occupants are considered disturbances. The 
output variables are the temperature and the relative 
humidity of an office zone. For the test room 
considered, with 5min sampling, a 3rd order model 
was obtained. The authors point out the need for 
excitation rich input signals over long periods of 
time. They carried out 3 days of data acquisition.  

The latter approach is known as black-box 
identification because no information about the 
inner process is used to guide the identification. 
Only the input-output dynamic behavior is. The 
underlying assumption is that the excitation signals 
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are almost white noise (indeed approximated by 
PRBS) so that no frequency band is benefited by the 
identification routine. When dealing with climate 
signals as outside temperature, solar radiation and 
wind, it is virtually impossible to guarantee a good 
excitation. 

In (Souza, 1997), a Takagi-Sugeno fuzzy system 
is employed to model and control the non-linear 
HVAC process. A combination of predictive and 
inverse control is implemented. The fuzzy model is 
used to predict the future moves of the process and 
also to inversely compensate the non-linear system 
dynamics. The heating valve is used as the control 
input. The supply temperature (measured after the 
coil) and the mixed-air temperature (measured just 
before the fan) are the only variables considered. 
The Takagi-Sugeno fuzzy model used is a kind of 
interpolation of dynamic linear systems that makes 
feasible the analytical inversion of the assumed non-
linear HVAC system. While the linear MIMO 3rd 
model used by (Virk, 1995) uses 8 input signals and 
one disturbance to predict the temperature and the 
humidity, the non-linear fuzzy model proposed by 
(Souza, 1997) is a SISO system. 

Sitompul, 2004, uses neural networks with 
online parameter adjustment to identify the 
nonlinear dynamics of the conference room 12-478 
at the University of Kaiserslautern. The room 
temperature dynamics is modeled as a function of 
the outside temperature and the solar radiation. Two 
delayed samples of the room temperature, the 
outside temperature and the solar radiation are used 
to estimate the actual room temperature.  

When each element in the room and the 
surrounding environment is physically modeled 
using thermodynamics energy conservation laws, we 
can expect a qualitatively good approximation of the 
reality. This kind of modeling is employed in 
commercial buildings simulation tools like TRNSYS 
and TAS. Felgner et al., 2003, developed an open 
building and HVAC library in the object-oriented 
language Modelica. The air volume in the room, the 
furniture are considered as lumped capacitors. The 
walls are modeled by networks of heat capacitors 
and thermal resistors. The outdoor temperature as 
well as solar radiation can be included using 
measured data. 

Similarly, Spasokukotskiy et al., 2003, proposes 
to use a simplified lumped-parameters thermo-
dynamic model of the building to access the PMV 
comfort index (see section 4).  The weather is 
assumed to be a disturbance.  

Argüello-Serrano and Vélez-Reyes, 1999, 
present a work on the non-linear control of HVAC 
with thermal load estimation. Starting with energy 
conservation principles relating temperatures, 
humidity and volumetric air flow, they give a 
nonlinear differential equation system of the 
conditioned room. The controller with disturbance 

rejection is projected using the Lyapunov stability 
theory. Only simulation results are presented. 

The most important practical difficulty of such 
first-principles modeling is the great quantity of 
parameters defining the thermal behavior of the 
building materials and their interaction with the 
room air and the outer climate. This kind of 
modeling is, therefore, quite cumbersome for a 
practical application in predictive control. 

In the next sections, we will present a modeling 
approach joining data-driven identification and first-
principle structure. 

3 The Testing Environment 

The conference room in building 12 of the 
University of Kaiserslautern (~102 m3) was used as 
our test environment, see figures 1 and 2. The room 
is equipped with a Building Automation System 
(BAS), where meetings can be scheduled. An EIB 
network accesses the sensors and actuators, Table 1. 

Table 1. Thermal modeling - relevant sensors and actuators. 

To Room temperature - inner east wall 
Ts Building outside south temperature 
Gs Solar radiation on south wall 
h Heating: 3 radiators  
c Cooling: Air-conditioner  
 

 
Figure 1 South view of the conference room. 

 

 
Figure 2. Localization of the conference room in building 12.  

Typical vicinity temperatures are shown (9:30 March 23, 2006).  

43 of 47



The room is equipped with three heaters and 
one air-conditioning cooler. Since the heaters and 
the cooler can only be turned on or off, a pulse width 
modulation (PWM) is applied. 

The location of the conference room in building 
12 is shown in Figure 2. It is relevant to note that an 
open roof shaft connects all rooms of the same floor. 
This connection and the walls will be further 
referred to as the room’s vicinity. 

4 PMV PI-Control of the Test Room 

The Predicted Mean Vote (PMV) index was 
proposed by Fanger (Fanger, 1974) as a thermal 
comfort measure. Actually more than 30 different 
norms for themal comfort are available. PMV is 
academically one of the most accepted norms (ISO 
7730), due to its phyical-based reasoning. The 
building automation praxis, hovewer, still uses 
almost exclusively temperature-based controllers.  

A proportional-integral control of the PMV-
index for the conference room was implemented. An 
http interface allows scheduling of meetings, 
specifying the expected number of persons and the 
activity level of each activity. When the system clock 
coincides with a scheduled meeting the corres-
ponding PMV controller is started. Figure 3 shows 
the result of the PMV control when scheduling a 
standing meeting (88W/m2-activity) every 2 hours 
with two hours vacancy in between. After midnight 
a sitting 81W/m2-activity was assumed.  

During a meeting the control objective was 
established to maintain: 01.001.0 +≤≤− PMV . 
This avoids the chattering between heating and 
cooling when PMV = 0 is targeted by the 
PI controller. When the no occupation is scheduled, 

22 +≤≤− PMV  was used, so that the room 
temperature would not drift arbitrarily. Without this 
bound we would have no energy cost during 
unoccupied periods, but it would last too long to 
make the room operative again. 
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Figure 3 PI-control of PMV index, March 28-29, 2006. 

In figure 3 we can clearly see that the PI-PMV 
controller can lead the system to the ±0.01 target 
band, however it takes almost 40 min until that 
objective is reached. The experiment was carried out 
in the night hours so to avoid the solar radiation and 
the spurious presence of people in the room during a 
normal working day. 

The employed PI-Controller with anti-windup 
was designed empirically. No dynamical model was 
used, only the successive approximation of Kp and 
Ki until satisfactory response was obtained. 

To obtain better comfort and energy-saving 
results a predictive controller seems to be a natural 
choice. The process is slow and acting in advance 
could considerably improve a meeting’s comfort. 

5 Identification of the Test Room 

Different techniques can be used to produce a 
dynamical model that can be used to predict the 
room’s thermal behavior. Figure 4 shows a typical 
data acquisition set of the conference room. 
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Figure 4. A typical identification data set. 

Heating and Cooling were generated by a 
pseudo-random binary signal. The solar radiation 
influence on the external and internal temperature is 
quite obvious. We choose the following variables to 
thermally characterize the conference room: 

Cooling (c) – One 3kW air conditioner delivers 
4°C cold air flux. (Settings: max. ventilation, min. 
temperature). On-Off. 

Heating (h) – Three parallel radiators supplied 
with 50°C hot water. On-Off. 

Outside Temperature (Tw) – Windows of the 
room exposed to the south side of the building. 

Vicinity (Tv) – Medium temperature of the 
inner building vicinity of the conference room. 

Solar Radiation (Gs) – Solar radiance 
measured at the top of the building, converted to 
direction of the room’s outside wall. 

To obtain a suitable prediction model, two 
approaches will be examined: a) The modeling 
based on linear multi-input identification of 
experimental data (black box) and b) The first-
principles structured identification. 
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a) Linear MISO approach 

The linear MISO approach will adjust state-space 
matrices (A, B, C, D, E) to best fit the training data 
using the Least Mean Squared Error sense. 
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x – State vector, 
u – Input vector plus measurable disturbance signal, 
e – Immeasurable disturbance signal, 
y – Output signal (room temperature). 
 

If we use a 6th order model with u=[h c Tw] we 
have relatively good approximation results, but the 
step responses of such a system, figure 5, show that 
the common sense physical intuition is violated. In 
steady state, heating can reach maximally 22°C. 
Continuously cooling would reach -250°C. As the 
outside temperature gain is greater than one, in the 
steady state the room would get warmer than the 
heat source. Obviously, in the real life, all these 
factors act together onto the plant. 
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Figure 5. Step responses of a 3 inputs, 6th order linear MISO. 

Using five inputs, u = [Th Tc Tw Tv Gs], where 
Th and Tc are the effective temperature differences 
applied to the heating and cooling elements (see 
figure 10), we obtain the results in figures 6 and 7. 
Obviously, complex poles and non minimal-phase 
zeros are not compatible with a thermal process. 
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Figure 6. Response of the 4 inputs, 6th order linear MISO. 
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Figure 7. Three pole-zero maps of the 5 inputs MISO. 

b) First-Principles Structured Identification 

In this work, we propose a first-principles structured 
identification. The basic idea is to add the thermal 
energy flow in the conference room. Depending on 
the modeling effort employed, different physical 
phenomena can be included. 

To model the heat transfer from the vicinity, the 
wall should be investigated. Fraisse, 2002, analyzed 
different wall models, e.g. 2R1C, 1R2C, 3R4C, 
3R2C. In the simplest 2R1C conduction model, 
(Fraisse, 2002), we consider a wall internal thermal 
capacitance and two thermal conductivity elements 
(figure 8). The heat flow q between rooms depends 
on the difference To – Ti v. The temperature Ti v 
relates to a fictitious point in the middle of the wall.  

 

 

Figure 8. 2R1C analogy of the vicinity heat transfer.  

Every neighboring room has, most often, a 
different temperature. The walls constitution can 
also differ. Ceiling and floor have very different 
thermal characteristics. In the present work we will 
assume that the dominant vicinity dynamics can be 
approximated by the simple 2R1C model, figure 9.  

The weather contribution is similar, considering 
a fictitious temperature inside the windows glass. 
The sun radiance produces a heat transfer that could 
be delayed (first order assumed), but is not 
dependent on the room temperature. In the complete 
thermal model, figure 10, to simplify the notation, 
we considered for all heat generating elements RiCi 
= ai, and 1/Ri=Ki, for  i=h,c,v,w,r. The parallel 
association 1/Rp = 1/Rv + 1/Rw, is used when no heat 
or cooling is active.   Otherwise, 1/Rp = 1/Rv + 
1/Rw+1/Rh + 1/Rc. The associated time constant is 
RpC = a. 

 

 

Figure 9. 2R1C-based disturbance model. 
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The air volume in the room is modeled as a 

concentrated thermal capacity C. cT
�

 is the predicted 
room temperature.  In the first-principle model we 
sum the heat flows (qc, qh, qw, qr, and qv) allowing a 
separate identification of each model component. A 
positive heat flow to C is accumulated and enhances 
the room temperature. A negative heat flow reduces 
the room temperature. See figure 10. 

The cooler and the heater can be modeled as 
devices that have (55-To) or, respectively (4-To) as 
inputs. 55°C is the hot water entry temperature in 
the radiator and 4°C is the chilled air from the air 
conditioner. When “off”  these devices internal 
temperatures (Tih and Ti c) tend to reach To. 

The value of C in our model is redundant, 
because it every time appears multiplied by a gain. 
We chose, C= 1, assuming its real value 
incorporated in each of the five model gains.  

If heat (on/off) and cooling (on/off) are selected 
as inputs, we have a non-linear, operating point 
dependent system. To avoid this and to have a linear 
identification of heat and cooling, we considered 
(55°C − To) and (4°C − To) as inputs when “on” . 
When “off”  these inputs are To. 

One interesting feature of the structured 
identification is that we can add the individual heat 
flow contributions. This allows the separated 
parameter identification of individual modules. 
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Figure 10 First-principles structured thermal model. 

For example, if we have a disturbance model 
and wish heating and cooling parameters. The 
modeled disturbance heat flow is given by: 
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The total heat flow is )(/ oTdtdq = , and the 

heating and cooling flow is du qqq −= . We use 

dtqT uu �= , the temperature variation caused by 

heating and cooling to identify the corresponding 
parameters. To avoid numerical errors the 
differentiation and integration should be carried out 
in the discrete domain. Initial condition should not 
be neglected in the procedure. 

6 Results 

If we use a first order approximation of the step 
responses obtained with the 5 input MISO model, 
we get the results in table 2. These parameters, 
however, are not compatible with our structured 
model. The simulation results are bad. 

Table 2. Black-box identification, 5 inputs 6th order. 

i = r v w h c 
ai 2.500 2,220 3,060 2,780 2,360 
Ki 2.8e-3 0.497 4.02e-2 1.93e-2 0.407 

 
Using the first-principles structured approach 

the parameters associated with the sun radiation, 
weather, vicinity, heating and cooling have been 
obtained using the identification toolbox of MatLab. 
The parameters for the conference room in building 
12, University of Kaiserslautern can be seen in 
Table 2. Using these parameters in the model we 
obtained the results shown in figures 11 and 12.  

The first-principles structured model gives an 
RMSE error of 0.54°C with 0.67°C standard 
deviation for the validation data.  

 

Table 3. First-principles structured model parameters. 

i = r v w h c 
ai 221.6 2,104 4,287 4,315 500 
Ki 4e-6 1.2e-3 3.33e-4 1e-4 4e-4 
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Figure 11. Heat flow obtained with the  
first-principles structured identification. 
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Figure 12. Results of the first-principles structured identification.  

It is worthwhile to note that here we have an 
open-loop prediction of the thermal behavior over 
more than 20 hours while a predictive building 
controller seldom uses more than 2 hours as 
prediction horizon. The receding horizon approach 
even only uses the first calculated control signal and 
then update all signals. 

7 Conclusion 

Buildings as very complex dynamical systems can be 
more reasonably modeled using first-principles 
structures. If one aspect of the environment is 
changed, e.g., the use of blinds, we can easily adjust 
the corresponding Kw and aw parameters. If we have 
another room with similar walls the Kv and av can be 
calculated. With the conventional black-box 
identification every time the whole model has to be 
identified. And worse, no physical meaning is 
associated to the internal states of the model. 

More complex wall models, as the 3R2C, or 
separated vicinity could be used in the proposed 
methodology if higher accuracy is demanded. 

The separation of the heat flow components 
allowed by the first-principles structured approach is 
thus a powerful modeling tool. The resulting 
analytical dynamic model is well suited for 
predictive HVAC control, which is, in principle, 
much better with respect to comfort and energy-
saving than conventional controllers. 
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