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Abstract This paper addresses the robust stability prob-
lem for nonlinear systems subjected to model uncertain-
ties and with time-delay and its derivative varying within
intervals. The nonlinear time-delay system is described by
a new Takagi-Sugeno fuzzy model consisted of local non-
linear time-delay systems. The new fuzzy model has fewer
fuzzy rules than conventional T–S fuzzy models with local
linear time-delay systems; therefore, can be more easily
derived in practical situations. To reduce conservatism con-
cerning both models, a stability analysis which incorporates
state-of-the-art stability techniques with an improved piece-
wise analysis method, amended with novel delay-interval-
dependent terms, is proposed. The proposed analysis, based
on a novel fuzzy weighting-dependent Lyapunov-Krasovskii
functional, considers that the delay-derivative is either upper
and lower bounded, bounded above only, or unbounded, i.e.,
when no restrictions are cast upon the derivative. Numeri-
cal examples are provided to enlighten the importance and
the conservatism reduction of the proposed method which
outperforms state-of-the-art criteria in time-delay systems
literature.
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1 Introduction

A fundamental issue in modern control theory, complex non-
linear systems modeling and stability analysis have been
extensively investigated with fuzzy control techniques, par-
ticularly within Takagi and Sugeno (1985) modeling frame-
work. In a T–S fuzzy model, local dynamics in different
state-space regions are represented by linear models that
are smoothly connected by fuzzy membership functions in
order to describe the global nonlinear system (Tognetti et al.
2011). It has been proved that the technique can effectively
approximate a wide class of nonlinear systems, thus differ-
ent stability and control methods for nonlinear systems have
been developed considering T–S fuzzy models, see (Tanaka
and Wang 2001; Teixeira et al. 2000; Arrifano and Oliveira
2004; Tanscheit et al. 2007; Teixeira and Assunção 2007;
Andrea et al. 2008, and the references therein). For the sta-
bility analysis, the standard quadratic Lyapunov function is
the most popular and general approach (Souza et al. 2009).
However, to reduce the conservatism, an interesting alterna-
tive is to consider fuzzy weighting-dependent strategies that
parameterize Lyapunov terms by the same membership func-
tions used to construct the T–S fuzzy model (Mozelli et al.
2008; Tanaka et al. 2007). Recently, T–S fuzzy techniques
have been extended to the analysis of nonlinear time-delay
systems. Time-delays are often found in practical dynamic
systems, and the existence of such phenomena can degrade
a system performance and even cause instability. Therefore,
the modeling and stability analysis of time-delay systems
have emerged as a topic of significant interest in the control
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community, which is highlighted in several surveys, see, e.g.,
(Dugard and Verriest 1998; Gu et al. 2003).

During the last decade, considerable attention has been
devoted to T–S fuzzy time-delay systems stability and control
problems, see, e.g., (Chen et al. 2007; Tian and Peng 2006),
and the references therein. From existing results in time-
delay literature, the works from (Zhao et al. 2011; Yoneyama
2007) must be acknowledged for regarding the member-
ship functions in the stability conditions. Also, (Liu et al.
2010; Peng et al. 2009a; Peng and Han 2011) must be high-
lighted for their contributions, in the sense of conservatism
reduction. Nevertheless, none of the previous results on
T–S fuzzy time-delay systems have taken into consideration
recent advances from linear delayed systems stability litera-
ture. Among recent criteria for linear time-delay systems, two
Lyapunov-based strategies must be acknowledged for their
significant contributions to delay-dependent stability analy-
sis: the convex analysis technique from (Park and Ko 2007),
which amends the widely employed Jensen’s inequality; and
the piecewise analysis method (PAM), based on concepts
similar to the discretized Lyapunov functionals (DLF) tech-
nique (Gu et al. 2003), albeit applied to time-varying delays.
The PAM relies on the partitioning of the delay range, and
has been successfully employed in recent literature. Particu-
larly, (Fridman et al. 2009; Figueredo et al. 2011) also explore
the delay derivative lower bound information using specific
delay-interval-dependent terms. However, we believe there
is still significant room for improvements, for its potential
has not yet been fully exploited. Therefore, we propose an
improved piecewise analysis method which amends conven-
tional PAM techniques with novel and less-restricted delay-
interval-dependent terms, ignored in previous works.

Notwithstanding, in practical situations, it is very hard to
obtain treatable T–S fuzzy models with local linear systems
that effectively represent complex nonlinear systems. Indeed,
conventional T–S fuzzy models for very complex nonlinear
systems usually rely on a great set of fuzzy rules, which, apart
from being unsuitable for practical implementation, might
impose unfeasible conditions to stability and control analy-
ses (Delmotte et al. 2007). A naive solution is to simplify the
original nonlinear system to obtain a more convenient T–S
fuzzy model, but the obtained conditions might not be valid
for the original system (Tanaka and Wang 2001). Recently,
Dong et al. (2009) proposed a new class of T–S fuzzy models
consisted of local nonlinear systems. The new model is eas-
ier to be derived compared to conventional T–S fuzzy model,
and has been proved to effectively represent complex nonlin-
ear systems with fewer fuzzy rules (Dong et al. 2009, 2011).
According to (Klug and Castelan 2011), the resulting model
can also be regarded as a special class of LPV systems with
feedback nonlinearities, and whose state-space matrices are
assumed to depend on a time-varying parameter (Choi and
Park 2003). However, to the best of the authors’ knowledge,

the advances of considering a more general class of T–S fuzzy
local systems have been restricted to delay-free systems, and
the analysis for complex nonlinear systems with time-delays
still remains challenging. This scenario is the major motiva-
tion of the present study.

The present paper brings an important contribution to
nonlinear time-delay systems analysis. First, by developing
a novel fuzzy weighting-dependent Lyapunov-Krasovskii
functional (FWD-LKF) and applying state-of-the-art stabil-
ity techniques with an improved piecewise analysis method,
we are able to derive robust stability conditions for complex
T–S fuzzy models with local uncertain nonlinear time-delay
systems. Complex time-varying and delay-dependent non-
linearities are assumed to be norm-bounded, satisfying given
quadratic constraints. Furthermore, the proposed method if
adapted to the stability analysis of conventional T–S fuzzy
models with local linear time-delay systems, or even to the
analysis of linear time-delay systems, also yields less con-
servative results than previous criteria in time-delay systems
literature. The advantages of the proposed technique is fur-
ther enlightened with numerical examples that illustrate the
conservativeness reduction compared to state-of-the-art cri-
teria, and the effectiveness of the stability analysis for T–S
fuzzy models with local nonlinear time-delay systems.

This paper is organized as follows. Section 2 presents the
problem formulation, and the new T–S fuzzy model with local
nonlinear time-delay systems. In Sect. 3, an LMI-based sta-
bility criterion for the novel time-delay T–S fuzzy system is
proposed. Numerical examples are given in Sect. 4, followed
by the conclusions, which are presented in Sect. 5.

Notations Throughout the paper the superscript ‘T’ stands
for matrix transposition, R

n denotes the n-dimensional
Euclidean space, and R

n×p defines the set of all n×p real
matrices. The notation diag{· · ·} stands for a block-diagonal
matrix, P > 0 means that P is symmetric and positive defi-
nite, and the symmetric term in a matrix is denoted by ∗. The
notation A |s→b stands for the limit of a s-dependent matrix
A as s→b. Matrices, if not explicitly stated, are assumed to
have compatible dimensions.

2 Problem Formulation and Preliminaries

Consider the following nonlinear time-delay system

ẋ(t) = f (t, x(t), x(t − d(t))) (1)

where x(t) ∈ R
rx denote the state vector, and f :R+× R

rx ×
R

rx →R
rx is a sufficiently smooth nonlinear function. In

many situations, the nonlinear system (1) may be locally
linguistically described by experts using IF–THEN rules.
In this context, Takagi and Sugeno (1985) and Sugeno and
Kang (1988) proposed an approach to effectively represent
the nonlinear process using a class of fuzzy models, referred
to as Takagi-Sugeno (T–S) fuzzy models, which are described
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by a set of IF–THEN rules representing local input-output
relations of the nonlinear system. In conventional T–S fuzzy
models, the dynamics of each implication are described by
a local linear system model. In practice, however, T–S fuzzy
models with exclusively local linear systems may require a
large set of subsystems and fuzzy rules, which make them
hard to analyze and sometimes unsuitable for practical imple-
mentation. In this context and in an analogous manner to the
work from (Dong et al. 2009) for delay-free systems, we
will consider a class of T–S fuzzy models with local nonlin-
ear systems subjected to model uncertainties and with time-
varying delay. The idea is to make the description of the
nonlinear time-delay system (1) easier, and with fewer fuzzy
rules compared to conventional T–S fuzzy model, whereas
ensuring conditions for the stability analysis of the nonlinear
time-delay system.

From the new T–S fuzzy model, the nonlinear time-delay
system (1) can be represented by local uncertain nonlinear
time-delay systems with their linguistic descriptions as

Rulei : IF θ1(t) isμi
1, θ2(t) isμi

2, . . . and θp(t) isμi
p,THEN

ẋ(t) = (Ai +�Ai )x(t)+ (Adi +�Adi )x(t − d(t))

+ gi (t, x(t), x(t − d(t))), (2)

where i = 1, 2, . . . , r , r is the number of fuzzy IF–THEN
rules; μi

j (i = 1, 2, ..., r; j = 1, 2, ..., p) are the fuzzy
sets corresponding to the premise variables θ j (t) and the
fuzzy rules; Ai and Adi are known real constant matri-
ces with appropriate dimension; and gi (t, x(t), x(t − d(t)))
denotes a class of piecewise-continuous nonlinear functions
in t, x(t), x(t − d(t)),

gi (t, x(t), x(t − d(t))) : R+× R
rx × R

rx �→ R
rx ,

which are assumed to satisfy the quadratic condition:

‖gi (t, x(t), x(t − d(t)))‖2
2 ≤α2

1i xT (t)H T
1i H1i x(t)

+α2
2i xT (t − d(t))H T

2i H2i x(t − d(t)), (3)

where i = 1, .., r , α1i , and α2i are known bounding para-
meters of gi (t, x(t), x(t − d(t))), and H1i , H2i are constant
matrices with appropriate dimensions.

The systems’ uncertainties are assumed time-varying
matrices,
[
�Ai �Adi

] = Ξxi�(t)
[
ΞAi ΞAdi

]
, (4)

whereΞxi , ΞAi , andΞAdi are known constant matrices, and
�(t) is an unknown time-varying matrix, which is Lebesgue
measurable in t and satisfies �(t)T�(t)≤ I .

The continuous function d(t) denotes the time-varying
delay which satisfies

τmin ≤ d(t)≤ τmax , (5a)

dmin ≤ ḋ(t)≤ dmax , (5b)

where the constants 0 ≤ τmin ≤ τmax and dmin ≤ dmax denote
the bounding parameters of d(t) and ḋ(t), respectively. In this
paper, we also consider the case when dmin is unknown, and
when no restrictions are cast upon the delay derivative, i.e.,
when it is assumed to be fast-varying.

By fuzzy blending, the global dynamics of the T–S fuzzy
system (1) can be inferred as follow:

ẋ(t) = 1
∑r

i=1 wi (θ(t))

r∑

i=1

wi (θ(t))[(Ai +�Ai)x(t)

+ (Adi +�Adi)x(t−d(t))+gi (t, x(t), x(t − d(t)))],
= (

A +�A
)
x(t)+ (

Ad +�Ad
)
x(t − d(t))

+ g(t, x(t), x(t − d(t))), t > 0,

x(t) = ϕ(t), t ∈ [−τmax , 0], (6)

where ϕ(t) describes the state’s initial condition,

A:=
r∑

i=1

ρi (θ(t))Ai , �A:=
r∑

i=1

ρi (θ(t))�Ai ,

Ad :=
r∑

i=1

ρi (θ(t))Adi , �Ad:=
r∑

i=1

ρi (θ(t))�Adi ,

g(t, x(t), x(t − d(t))):=
r∑

i=1

ρi (θ(t))gi (t, x(t), x(t − d(t))).

and θ = [
θ1, θ2, . . . , θp

]
; wi (θ(t)) ≥ 0 is the member-

ship function with respect to the rule i , i = 1, 2, . . . , r ; and
ρi (θ(t)) = wi∑r

i=1 wi (θ(t))
is the normalized fuzzy weighting

functions satisfying

ρi (θ(t)) ≥ 0,
r∑

i=1

ρi (θ(t)) = 1,
r∑

i=1

ρ̇i (θ(t)) = 0. (7)

To make the reading easier, ρi (t) denotes ρi (θ(t)).
Throughout the next section, the following result will

be useful to derive conditions for the establishment of new
delay-dependent stability criterion for system (6).

Lemma 1 (Jensen’s inequality) For given scalars r1, r2 and
matrix M∈R

m×m such that (r2 − r1) ≥ 0 and M > 0, and
any vectorial function x : [r1, r2]−→ R

m, we have:

(r2 − r1)

∫ r2

r1

xT (β)Mx(β)dβ

≥
(∫ r2

r1

x(β)dβ

)T

M

(∫ r2

r1

x(β)dβ

)
.

3 Stability Analysis

This section presents the main result of this paper. We derive
conditions under which the T–S fuzzy time-delay system sub-
jected to model uncertainties and with local uncertain non-
linear systems (6) achieves robust asymptotic stability.
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First, we shall, similar to (Fridman et al. 2009; Figueredo
et al. 2010), divide the delay range [τmin, τmax ]. Here, we
will consider two equally spaced subintervals: [τ1, τ2] and
[τ2, τ3], where τ1 = τmin , τ3 = τmax , and τ2 = 1

2

(
τmax −

τmin
) + τmin . Note that one can consider different partition-

ing strategies (e.g., Orihuela et al. (2010) allow τ2 to be any-
where between τmin and τmax ). Still, choosing equally subin-
tervals, τ3 − τ2 = τ2 − τ1, adds more information which is
used to obtain less conservative criteria. In this context, we
define δτ :=τ2 − τ1, and the delay-interval-dependent indica-
tor function χ[τ1,τ2]:R+→{0, 1}, which is assumed to be 1,
if d(t)∈ [τ1, τ2], and χ[τ1,τ2] = 0, otherwise. The indicator
function enlightens the piecewise analysis method’s main
contribution: the establishment of different linear matrix
inequalities (LMIs) for each subinterval, reducing the con-
servatism which arises from the analysis of the delay range
[τmin, τmax ]. In this context, the following fuzzy weighting-
dependent Lyapunov-Krasovskii candidate is proposed to
ensure the robust asymptotic stability of the T–S fuzzy model
with local uncertain nonlinear time-delay systems.

V (t) =
∑5

j=1
Vj (t), (8)

where

V1(t) = χ[τ1,τ2]x
T (t)

(
d(t)− τ1

τ2 − τ1
Pm(t)+ τ2 − d(t)

τ2 − τ1
P1(t)

)
x(t)

+ (
1 − χ[τ1,τ2]

)
xT (t)

(
d(t)− τ2

τ3 − τ2
P2(t)+ τ3 − d(t)

τ3 − τ2
Pm(t)

)
x(t),

V2(t) =
∫ t−τ1

t−d(t)
xT (s)Qx(s)ds,

V3(t) =
∫ t−τ1

t−τ2

[
xT (s) xT (s − δτ )

]
N

[
xT (s) xT (s − δτ )

]T
ds

+
∫ t

t− τ1
2

[
xT (s) xT (s − τ1

2 )
]

M
[

xT (s) xT (s − τ1
2 )

]T
ds,

V4(t) =
2∑

k=1

(
τ1

2

∫ − k−1
2 τ1

− k
2 τ1

∫ t

t+β
ẋ T (s)Sk ẋ(s)dsdβ

+ δτ
∫ −τk

−τk+1

∫ t

t+β
ẋ T (s)Zk ẋ(s)dsdβ

)

V5(t) =
∫ 0

−d(t)

∫ t

t+β
ẋ T(s)(R1 + R2)ẋ(s)dsdβ +

∫ −d(t)

−τ3

∫ t

t+β
ẋ T(s)

×(R3 + R4)ẋ(s)dsdβ + χ[τ1,τ2]

∫ −d(t)

−τ2

∫ t

t+β
ẋ T(s)(R1 − R3)ẋ(s)

× dsdβ + (
1 − χ[τ1,τ2]

) ∫ −τ2

−d(t)

∫ t

t+β
ẋ T (s)(R3 − R1)ẋ(s)dsdβ,

where V1(t) introduces the concept of a delay-interval and
fuzzy weighting-dependent LKF term, and it is defined with
the function matrices

P1(t) =
∑r

j=1
ρ j (t)P1 j , P2(t) =

∑r

j=1
ρ j (t)P2 j , (9)

and Pm(t) = 1
2 (P2(t)+ P1(t)).

Recently, fuzzy weighting-dependent function matrices
have been successfully employed for delay-free traditional
T–S fuzzy systems in order to reduce the analysis con-
servatism. Nonetheless, results on time-delay fuzzy sys-
tems mostly regard quadratic fuzzy weighting-independent
Lyapunov-Krasovskii functionals. Note that it is not triv-
ial to consider FWD-LKF terms, since its derivative relies
on the time-derivative information regarding the member-
ship functions, i.e., ρ̇i (t). In this case, we must consider the
following

Assumption 1 The function ρi (θ(t)), i = {1, . . . , r}, is con-
tinuously differentiable in t with ρ̇i (θ(t))≤ σi , where σi ≥ 0
are constant known bounding parameters.

Remark that, in practice, the bounds σi largely depend
on the information of the membership functions, and their
estimation may be somewhat difficult, (Souza et al. 2009). In
(Tanaka et al. 2007), the authors provide some strategies to
regard and estimate these upper bounds. However, in the case
of intense variation of the fuzzy weighting functions, where
σi is either very large or difficult to estimate, Pk(t) may be
regarded as parameter-independent constant matrices, i.e.,
Pk(t) = Pk , k = {1, 2}, such that (8) yields a Lyapunov-
Krasovskii functional.

Concerning (8), it is interesting to highlight that the instan-
taneous energy-like function xT (t)Px(t) would not be suit-
able for investigating the nonlinear system (1), since the
time-delay system belongs to the infinite-dimensional sys-
tem class (Gu et al. 2003). In this context, the notion of a
delay-dependent Lyapunov functional seems like an inter-
esting choice (Dugard and Verriest 1998). In the absence
of the time-delay-interval size, we could only consider
terms similar to V3(t), e.g.,

∫ t
t−τ xT (s)Mx(s)ds, which

yields delay-independent stability conditions (Gu et al.
2003). Notwithstanding, taking the time-delay informa-
tion (5), we are able to consider the LKFs, V4(t) and
V2(t), which yield delay-dependent and delay-derivative-
dependent stability conditions, respectively. A further contri-
bution of the present criterion regards the introduction of the
delay-interval-dependent terms V1(t) and V5(t) which lead
to delay-interval-dependent stability conditions. Note that
V1(t) also regards the fuzzy membership functions, being a
delay-interval fuzzy weighting-dependent functional. There-
fore, V (t) is also a fuzzy weighting-dependent Lyapunov-
Krasovskii functional.

The positiveness of the FWD-LKF (8) is assured for any
x(t), if the following conditions hold, k = {1, 2},

Pkj > 0, j ={1, ..., r}, Sk > 0, Zk > 0, Q ≥ 0, N ≥ 0,

M ≥ 0, (R1 + R2 + Sk) > 0, (R1 + R2 + Zk) > 0,

(R3 + R4 + Zk) > 0, Z2 >
1

δτ
(R1 − R3) > −Z1. (10)
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Also, the Lyapunov candidate (8) is continuous in t , since

lim
d(t)→τ+

2

V1(t) = lim
d(t)→τ−

2

V1(t) = xT (t)Pm(t)x(t), and,

lim
d(t)→τ+

2

V5(t) = lim
d(t)→τ−

2

V5(t) =
∫ 0

−τ2

∫ t

t+β
ẋ T (s)(R1 + R2)

× ẋ(s)dsdβ +
∫ −τ2

−τ3

∫ t

t+β
ẋ T (s)(R3 + R4)ẋ(s)dsdβ.

The following result based on (8) states a novel robust delay-
dependent criterion which, if satisfied, guarantees the asymp-
totic stability of the T–S fuzzy model described by local
uncertain nonlinear time-delay systems, (6).

Theorem 1 Given scalars τmin, τmax , dmin, and dmax such
that 0 ≤ τmin ≤ τmax and dmin< dmax , and under the Assump-
tion 1, the T–S fuzzy time-delay system (6) described by local
systems with time-varying delay satisfying (5), and subjected
to model uncertainties and nonlinearities, respectively, sat-
isfying (4) and (3) is robustly asymptotically stable if there
exist positive scalars ε1, ε2, φ1, φ2, and matrices Pkj , Sk, Zk,

k = {1, 2}, j = {1, ..., r}, Q, N ,M, R1, R2, R3, and R4 sat-
isfying (10) and free-weighting matrices F11,F12∈R

7rx ×rx ,

F21,F22∈R
7rx ×2rx , and Xη∈R

rx ×rx , η = {1, 2, 3, 4}, such
that the following LMIs

Pmi + X1 ≥ 0, P1i + X2 ≥ 0,
P2i + X3 ≥ 0, Pmi + X4 ≥ 0,

i = {1, . . . , r}, (11)

S1 + U1|ḋ(t)→dmin
>0, S2 + U1|ḋ(t)→dmin

>0, (12a)

S1 + U1|ḋ(t)→dmax
>0, S2 + U1|ḋ(t)→dmax

>0, (12b)

and

�
[i]
1k |ḋ(t)→dmin

<0, �
[i]
2k |ḋ(t)→dmin

<0, (13a)

�
[i]
1k |ḋ(t)→dmax

<0, �
[i]
2k |ḋ(t)→dmax

<0, (13b)

hold for Pmi = 1
2 (P2i + P1i ), and�[i]

�k defined in (14), �, k =
{1, 2}, i = {1, 2, ..., r}.

Moreover, if the above conditions are satisfied with Xη =
0, η = {1, 2, 3, 4}, and Pki = Pk> 0, k = {1, 2}, i =
{1, 2, ..., r}, then (8) loses the fuzzy weighting-dependence
and (6) is robustly asymptotically stable regardless from
Assumption 1.

�
[i]
�k =

[
�

[i]
� +�

[i]
� |d(t)→τ(�+k−1)

[
δτF2� Jk F1�Ξxi �

[i]
Ξ F1�

]

∗ −diag{(δτ��k), ε� I, ε� I, φ� I}

]

, for �, k = {1, 2}, (14)

where J1 = [
0 I

]T
, J2 = [

I 0
]T
, and

UR = R1 + ḋ(t)R4 + (
1 − ḋ(t)

)
R2, U1 = 2

τ1
UR, ifτ1 > 0, or U1 = 0 otherwise;

�1 = J2(I2 − I5)+ J1(I6 − I2), �2 = J2(I2 − I6)+ J1(I7 − I2),

P̃ [i]
1 = d(t)− τ1

δτ
Pmi + τ2 − d(t)

δτ
P1i , P̃ [i]

2 = d(t)− τ2

δτ
P2i + τ3 − d(t)

δτ
Pmi ,

R̃ = (τ3 − d(t))R4 + d(t)R2, �
[i]
Ξ = ε�

(
I1Ξ

T
Ai + I2Ξ

T
Adi

)
,

�11 = δτ Z1 + R1 + R4, �12 = δτ Z1 + UR,

�21 = δτ Z2 + R3 + R4, �22 = δτ Z2 + UR + (R3 − R1),

�
[i]
1 = �̃[i] − (I6 − I7)

1

δτ
�21(I6 − I7)

T + I3 R̃I
T
3 + I1 P̃ [i]

1 I
T
3 + I3 P̃ [i]

1 I
T
1 + I1

(∑r

j=1
σ j

(
d(t)− τ1

δτ

(
Pmj + X1

) + τ2 − d(t)

δτ

(
P1 j + X2

)
))

I
T
1,

�
[i]
2 = �̃[i] − (I5 − I6)

1

δτ
�12(I5 − I6)

T + I3 R̃I
T
3 + I1 P̃ [i]

2 I
T
3 + I3 P̃ [i]

2 I
T
1 + I1

(∑r

j=1
σ j

(
d(t)− τ2

δτ

(
P2 j + X3

) + τ3 − d(t)

δτ

(
Pmj + X4

)
))

I
T
1,

�̃[i] = diag

{
1

δτ
ḋ(t)(Pmi − P1i ); −(1 − ḋ(t))Q;

( τ1

2

)2
(S1 + S2)+ δ2

τ (Z1 + Z2)+ δτ R3 + τ2 R1; 0; Q; 0; 0

}
+ [I5 I6]N [I5 I6]

T

− [I6 I7]N [I6 I7]
T + [I1 I4]M[I1 I4]

T − [I4 I5]M[I4 I5]
T − (I1 − I4)(S1 + U1)(I1 − I4)

T − (I4 − I5)(S2 + U1)(I4 − I5)
T ,

�
[i]
� = F1�

(
Ai I

T
1 + Adi I

T
2 − I

T
3

)
+

(
I1 AT

i + I2 AT
di − I3

)
FT

1� + F2��
T
� + ��FT

2� + φ�α
2
1i I1 H T

1i H1i I
T
1 + φ�α

2
2i I2 H T

2i H2i I
T
2 . (15)

The matricesI j , j = {1, 2, ..., 7}, are block entry matrices with seven elements, e.g., I
T
4 = [0 0 0 I 0 0 0].
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Proof First, we shall take the time derivative of (8) with
respect to t along the trajectory of x(t) which yields

V̇1(t) =
r∑

i=1

[
ρi (t)2ẋ T(t)

(
χ P̃[i]

1 + (1 − χ)P̃[i]
2

)
x(t)+ xT(t)ρ̇i (t)

×
(
χ P̃[i]

1 + (1 − χ)P̃[i]
2

)
x(t)+ ρi (t)ḋ(t)x

T(t)
1

δτ
(Pmi − P1i)x(t)

]
,

V̇2(t) = xT(t − τ1)Qx(t − τ1)− (
1 − ḋ(t)

)
xT(t − d(t))Qx(t − d(t))

V̇3(t) =
[

x(t − τ1)

x(t − τ2)

]T
N

[
x(t − τ1)

x(t − τ2)

]
−

[
x(t − τ2)

x(t − τ3)

]T
N

[
x(t − τ2)

x(t − τ3)

]

+
[

x(t)
x
(
t − τ1

2

)
]T

M

[
x(t)

x
(
t − τ1

2

)
]

−
[

x
(
t − τ1

2

)

x(t − τ1)

]T
M

[
x
(
t − τ1

2

)

x(t − τ1)

]
,

V̇4(t) = ẋ T (t)
(
(
τ1

2
)2(S1 + S2)+ δ2

τ (Z1 + Z2)
)

+
∑2

k=1

τ1

2

×
∫ t− k−1

2 τ1

t− k
2 τ1

ẋ T (s)Sk ẋ(s)ds − δτ

∫ t−τk

t−τk+1

ẋ T (s)Zk ẋ(s)ds,

V̇5(t) = ẋ T (t)(τ2 R1 + d(t)R2 + δτ R3 + (τ3 − d(t))R4)ẋ(t)

−
∫ t

t−d(t)
ẋ T (s)UR ẋ(s)ds −

∫ t−d(t)

t−τ3

ẋ T (s)(R3 + R4)ẋ(s)ds,

− χ[τ1,τ2]

∫ t−d(t)

t−τ2

ẋ T (s)(R1 − R3)ẋ(s)ds

− (1 − χ[τ1,τ2])

∫ t−τ2

t−d(t)
ẋ T (s)(R3 − R1)ẋ(s)ds, (16)

where P̃ [i]
1 , P̃ [i]

2 ,UR are defined in (15). Considering (7), we
introduce the symmetric matrices Xη, η = {1, 2, 3, 4},

χ[τ1,τ2]

∑r

i=1
ρ̇i (t)

(
d(t)− τ1

δτ
X1 + τ2 − d(t)

δτ
X2

)
= 0,

(
1 − χ[τ1,τ2]

)∑r

i=1
ρ̇i (t)

(
d(t)− τ2

δτ
X3+ τ3−d(t)

δτ
X4

)
=0.

(17)

Combining (17) with the second term in V̇1(t), and assuming
that the conditions in Assumption 1 hold, we have

V̇1(t)=
r∑

i=1

ρi (t)2ẋ T(t)
(
χ P̃ [i]

1 +(1 − χ)P̃ [i]
2

)
x(t)+ρi (t)ḋ(t)x

T(t)

× 1

δτ
(Pmi −P1i)x(t)+

r∑

j=1

σ j xT(t)

[
χ[τ1,τ2]

(
d(t)−τ1

δτ

(
Pmj +X1

)

+ τ2 − d(t)

δτ

(
P1 j + X2

))+(
1 − χ[τ1,τ2]

)(d(t)− τ2

δτ

(
P2 j +X3

)

+ τ3−d(t)

δτ

(
Pmj +X4

))
x(t). (18)

Moreover, considering free-weighting matrices, F11,F12,

F21,F22, and denoting ξid(t) := 1
d(t)−τi

∫ t−τi
t−d(t)ẋ(s)ds, i =

{1, 2} and ξd j (t):= 1
τ j −d(t)

∫ t−d(t)
t−τ j

ẋ(s)ds, j = {2, 3}, we

introduce the following null expressions1

χ[τ1,τ2]2ζ
T
x (F21(J1(x(t−τ2)−x(t−d(t))+(τ2−d(t))ξd2)

+J2(x(t−d(t))−x(t−τ1)+(d(t)−τ1)ξ1d))) = 0,
[
1−χ[τ1,τ2]

]
2ζ T

x (F22(J1(x(t−τ3)−x(t−d(t)) + (τ3−d(t))ξd3)

+J2(x(t−d(t))−x(t−τ2) + (d(t)−τ2)ξ2d))) = 0,

2ζ T
x

(
χ[τ1,τ2]F11+

[
1−χ[τ1,τ2]

]F12
)(−ẋ(t)+(

A+�A
)
x(t)

+(
Ad +�Ad

)
x(t−d(t))+g(t, x(t), x(t − d(t)))

)=0,

(19)

where J1, J2 are defined in (15), and ζ T
x (t) := [xT (t)xT

(t − d(t)) ẋ T (t) x(t − τ1
2 ) x(t − τ1) x(t − τ2) x(t − τ3)]

Furthermore, applying the widely known Park-Moon’s in-
equality,

2ζ T
x F1�g(t) ≤ φ−1

� ζ T
x F1�FT

1�ζx +φ�gT (t)g(t), �={1, 2}
with the quadratic constraint (3), we have

2ζ T
x (t)F1�g(t, x(t), x(t − d(t))) ≤ φ−1

� ζ T
x F1�FT

1�ζx

+φ�xT (t)H1x(t)+ φ�x
T (t − d(t))H2x(t − d(t)), (20)

for � = {1, 2}, where H1 = ∑r
i=1 ρi (t)α2

1i H T
1i H1i , and

H2 = ∑r
i=1 ρi (t)α2

2i H T
2i H2i .

At this point, we shall consider only the first subinterval
d(t)∈[τ1,τ2], i.e., χ[τ1,τ2] = 1. Expanding the integral terms
and using Jensen’s inequality (Lemma 1), yields

−
∑2

k=1

∫ t− k−1
2 τ1

t− k
2 τ1

ẋ T (s)
(τ1

2
Sk + UR

)
ẋ(s)ds ≤

−
∑2

k=1

∫ t− k−1
2 τ1

t− k
2 τ1

ẋ T (s)ds(Sk + U1)

∫ t− k−1
2 τ1

t− k
2 τ1

ẋ(s)ds,

−
∫ t−τ2

t−τ3

δτ ẋ T (s)Z2 ẋ(s)ds ≤ −
∫ t−τ2

t−τ3

ẋ T (s)ds Z2

∫ t−τ2

t−τ3

ẋ(s)ds

−
∫ t−τ1

t−d(t)
ẋ T (s)�12 ẋ(s)ds−

∫ t−d(t)

t−τ2

ẋ T (s)�11 ẋ(s)ds ≤

−(d(t)− τ1)ξ
T
1d�12ξ1d − (τ2 − d(t))ξ T

d2�11ξd2, (21)

where �11,�12 are defined in (15).
Now, combining the results from (16–21) and defining

��:=
[
�� +��

[
(d(t)− τ�)F2�

(
τ(�+1) − d(t)

)F2�
]

∗ −diag{(d(t)− τ�)��2;
(
τ(�+1) − d(t)

)
��1}

]
,

(22)

where �1, �2,�11,�12,�21,�22 are defined in (15), and
�� = 2F1�

(
AI

T
1 + AdI

T
2 − I

T
3

) + 2F2��
T
� + φ�I1 H1I

T
1 +

φ�I2 H2

I
T
2 + 2F1�(�AI

T
1 + �AdI

T
2 ) + φ−1

� F1�FT
1�, we have the

following LMI

V̇ (t)|d(t)<τ2≤ ζ T
1 (t)(�1)ζ1(t), (23)

1 As in (Figueredo et al. 2011), similar results may be achieved applying
Finsler’s Lemma (Oliveira and Skelton 2001).
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with ζ T
1 (t):=

[
ζ T

x ξ T
1d ξ

T
d2

]
, and now, we shall consider the

terms �11,�12 that arise from �1 for d(t) → τ1 and d(t) →
τ2, respectively. It is straightforward to conclude that the term
on the right-hand side of the inequality (23) may be written
as

τ2 − d(t)

τ2 − τ1
ζ T

11(t)�11ζ11(t)+ d(t)− τ1

τ2 − τ1
ζ T

12(t)�12ζ12(t), (24)

where ζ T
11(t):=

[
ζ T

x ξ T
d2

]
and ζ T

12(t):=
[
ζ T

x ξ T
1d

]
. The analy-

sis in (24) further enlightens the convex properties of �1

regarding the time-varying delay (5). Therefore, it is easy to
conclude that �1 is negative definite if the vertices, �11 and
�12, are also negative. Additionally, considering the proper-
ties of the time-varying matrix�(t), we employ the inequal-

ity
(

2αT
� �(t)β ≤ ε�α

T
� α� + ε−1

� β
T
β
)

, � = 1, where α� =
[F1�Ξ x 0

]
, β = [(

Ξ AI
T
1 +Ξ AdI

T
2

)
0
]
. Using Schur

Lemma, it can be shown that the resulting LMIs are equiva-
lent to

∑r
i=1 ρi�

[i]
11< 0 and

∑r
i=1 ρi�

[i]
12< 0, where�[i]

1k , k =
{1, 2} are defined in (13). Also, given (5b), we have that the
matrices are convex in ḋ(t)∈[dmin, dmax ]. Therefore, if the
conditions in Theorem 1 are satisfied, then the inequality
V̇ (t)|d(t)<τ2 < 0 holds.

Consider the case where τ2<d(t)≤ τ3, i.e., χ[τ1,τ2] = 0.
Taking the results from (16–20), and applying Jensen’s
inequality (Lemma 1), similar to (21) but considering
τ2<d(t) ≤ τ3, we have

V̇ (t)|d(t)>τ2 ≤ ζ T
2 (t)(�2)ζ2(t),

where ζ T
2 (t):=

[
ζ T

x ξ T
2d ξ

T
d3

]
, and �2 is defined in (22).

Using analogous arguments from the former case, consid-
ering χ[τ1,τ2] = 0, we can conclude that �2 is negative def-
inite if

(
�2|d(t)→τ2 < 0

)
and

(
�2|d(t)→τ3 < 0

)
hold. More-

over, given (5b), we have that the matrices are convex in
ḋ(t)∈[dmin, dmax ]. Therefore, if the conditions in Theorem
1 hold, then the above conditions are satisfied and �2<0.

We are now ready to complete the proof by establishing
conditions that guarantee the negativeness of the Lyapunov
functional’s derivative. Note that the conditions in (12–13)
implies

∑r
i=1 ρi (t)�

[i]
�k < 0, �, k = {1, 2}, and, thus we

must have V̇ (t)|d(t)<τ2< 0 and V̇ (t)|d(t)>τ2< 0. Further-
more, similar to (Fridman et al. 2009; Figueredo et al. 2010),
it is easy to conclude that V̇ (t)|d(t)=τ2< 0 holds. Therefore,
if the conditions in Theorem 1 are satisfied, then the T–S
fuzzy time-delay system with local uncertain nonlinear sys-
tems is robustly asymptotically stable, which concludes the
proof. 	

Remark 1 It is also important to consider two particular cases
regarding the information on the delay and it’s derivative: the
case when the time-varying delay derivative lower bound is
unknown, and the case when there exists no information con-
cerning the time-delay derivative, i.e., fast-varying delays.
Theorem 1 can be easily adapted to deal with both cases. For

the former, when the lower bound for the delay derivative
dmin is unknown, if we consider

R2>R4, P2i>P1i , i = {1, ..., r}, (25)

instead of the conditions (12a) and (13a), the results from
Theorem 1 shall be valid for unknown dmin . Note that, if
(25) holds, then the conditions (12b) and (13b), if satis-
fied, yield (12a) and (13a). An evident consequence is the
needlessness of the derivative lower bound information for
the resulting stability conditions. For the later case, i.e.,
when no restrictions are cast upon the derivative, assum-
ing Pmi = P1i = P2i , and null Q, R2, R4 matrices, all the
information concerning the delay derivative is removed from
Theorem 1 conditions, and thus one may apply the results for
fast-varying delays.

Remark 2 The fuzzy weighting-dependent Lyapunov-Kraso-
vskii functional as constructed in (8) yields conditions
dependent on the membership functions time-derivative. By
choosing constant matrices P1i = P1> 0 and P2i = P2> 0,
i = {1, . . . , r}, (8) loses the fuzzy weighting-dependence
and is regarded as a quadratic Lyapunov-Krasovskii func-
tional which does not depend on Assumption 1. The
conditions in Theorem 1 thus become independent of the
knowledge about the membership function.

Theorem 1 provides stability conditions for a new class of
T–S fuzzy models with local uncertain nonlinear time-delay
systems, and is the main result of the paper. The proposed sta-
bility analysis introduced a novel fuzzy weighting-dependent
Lyapunov-Krasovskii functional which incorporates state-
of-the-art stability techniques for linear time-delay sys-
tems with an improved piecewise analysis method, amended
with new delay-interval-dependent and fuzzy weighting-
dependent LKF terms. Compared to ordinary PAM-based
criteria, by deeper exploiting the PAM’s delay-intervals, we
have weakened the positiveness restrictions upon these new
terms, whereas maintaining the LKF positive. In this context,
the method further exploited the delay derivative informa-
tion, and relaxed conditions upon resulting LMIs, yielding
less conservative results.

Further improvements may be obtained by increasing the
number of delay range partitions. Nevertheless, the improve-
ments are relatively small in face to the increment on the num-
ber of variables and LMIs conditions, which in turn increases
substantially the solution complexity. Therefore, to increase
the number of partitions is only recommended for particular
cases with very large delay ranges (τmin→0 and τmax→∞).

Remark 3 The solution complexity from Theorem 1 depends
on the dimension of the system rx , the number of fuzzy rules
r , and on the functions k1 = k1(d(t)), k2 = k2(x(t)), and
k3 = k3(V (t)), where the latter are indicator functions which
are assumed to be 1, if there exists information regarding the
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delay derivative (5b) and the model uncertainties (4), and if
Assumption 1 holds, respectively. In this context, the number
of scalar variables K , apart from free-weighting matrices, and
LMI rows L used in the proposed criterion are calculated as
follow

K = 4k2(t)+ (9 + 2k1(t)+ (2 + r + (2 + r)k1(t))k3(t))rx

×rx + 1

2
;

L = 4rx + r(4 + 4k1(t))(8 + 3k2(t))rx + (7 + 2rk3(t))rx .

The complexity from the criterion is slightly higher than
traditional techniques, for the piecewise analysis technique
combined with the convex optimization yields additional
scalar variables from slack matrices (in our case, 42r2

x ), see
(Fridman et al. 2009; Orihuela et al. 2010; Figueredo et al.
2010).

4 Numerical Examples

In this section, different benchmark examples are exploited to
illustrate the effectiveness of the proposed criteria. First, we
present three examples that highlight the advantages and the
conservatism reduction of our method compared to state-of-
the-art criteria for conventional T–S fuzzy time-delay sys-
tems. In the fourth example, we investigate the possibility
and the improvements of applying Theorem 1 to the stability
analysis of linear time-delay systems. Finally, we illustrate
the effectiveness of the proposed method for the analysis of
T–S fuzzy models with local nonlinear time-delay systems.

Example 1 Consider the nominal T–S fuzzy time-delay sys-
tem

ẋ(t) =
∑2

i=1
ρi (θ(t)) [Ai x(t)+ Adi x(t − d(t))] (26)

withρ1(θ(t)) = (1 + exp(−2x1(t)))−1,ρ2(θ(t)) = (1 − ρ1),
and

A1 =
[−2.1 0.1

−0.2 −0.9

]
, Ad1 =

[−1.1 0.1
−0.8 −0.9

]
,

A2 =
[−1.9 0

−0.2 −1.1

]
, Ad2 =

[−0.9 0
−1.1 −1.2

]
.

Assuming τmin = 0 and unknown derivative lower bound,
dmin , the maximum τmax which maintain the T–S fuzzy sys-
tem asymptotic stability for various dmax are listed in Table
1. The Table 1 explicitly illustrates that the proposed stability
criterion when applied to conventional T–S fuzzy time-delay
systems yields considerably superior results compared to pre-
vious criteria in the literature. Particularly for fast-varying
delay, the improvements over results from (Liu et al. 2010)
are as high as 115 %.

Table 1 also shows the dependence relationship between
the maximum allowed delay and the maximum delay grow-
ing velocity (upper bound of the delay derivative). As it

Table 1 Admissible upper bound values of τmax for unknown dmin and
τmin = 0 (Example 1)

Methods �dmax 0 0.1 0.5 Unknown

Guan and Chen (2004) 1.25 − − −
Chen et al. (2007) 3.15 − − −
Liu et al. (2010) 3.30 2.65 1.50 0.79

Theorem 1 4.12 3.22 1.92 1.70

Table 2 Max. τmax for fast-varying delays, τmin = 0, and various
values for the bounding parameter σ (Example 1)

max σ : 0.1 0.2 0.5 1.0 2.0 unknown

τmax : 2.590 2.547 2.446 2.380 2.372 2.370

would be expected, τmax grows as dmax→0. This is high-
lighted in the difference between the results from Theorem
1 for dmax = 0 and for fast-varying delays. Note that fur-
ther improvements may be obtained when dmin is known
and dmin→0, e.g., for fixed dmax = 0.5 and τmin = 0, we
have τmax = 1.95 and 2.01 for dmin = −1.0 and −0.1,
respectively.

Moreover, suppose we replace the above membership
functions by ones satisfying (7) and Assumption 1 with
ρ̇i (θ(t))≤ σ , i = {1, 2}.

For fast-varying delay with τmin = 0, and different values
of σ , the results from Theorem 1 are shown in Table 2. It is
clear that τmax grows as we further decrease the bounds for σ ,
i.e., σ→0. This analysis reveals the benefits of considering
the fuzzy weighting-dependent LKF.

Example 2 Consider the T–S fuzzy time-delay system

ẋ(t) =
∑2

i=1
ρi (θ(t)) [Ai x(t)+ Adi x(t − d(t))] (27)

with

A1 =
[−2 0

0 −0.9

]
, Ad1 =

[−1 0
−1 −1

]
,

A2 =
[−1 0.5

0 −1

]
, Ad2 =

[−1 0
0.1 −1

]
, (28)

and membership functions ρi (θ(t)) satisfying (7) and Assu-
mption 1 with ρ̇i (θ(t))≤ σi = 0.5, i = {1, 2}. For fast-
varying delay and τmin = 0.4, the maximum delay upper
bound from Theorem 1 is 1.460, whereas the state-of-the-art
technique for time-delay fuzzy systems regarding Assump-
tion 1, (Zhao et al. 2011), yields 1.380.

Now, in order to allow fair comparison with different cri-
teria, throughout this example we shall only consider the
results from Theorem 1 disregarding Assumption 1. In this
context, for fast-varying delay and various values of τmin ,
the results from applying Theorem 1, with (8) regarded as a
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quadratic LKF, are presented in Table 3. The results enlighten
the importance and advantages of the proposed method com-
pared to state-of-the-art criteria for conventional T–S fuzzy
time-delay systems. The admissible τmax from Theorem 1 is
up to 25 % superior (for τmin = 0) compared to the state-of-
the-art criterion, (Peng and Han 2011).

Example 3 Suppose a T–S fuzzy time-delay system with
model uncertainties

ẋ(t)=
∑2

i=1
ρi [(Ai +�Ai)x(t)+(Adi +�Adi)x(t−d(t))],

where Ai , Adi , i = {1, 2} are defined in (28), and Ξxi =
I , ΞAi = diag{0.1; 0.1}, and ΞAdi = diag{0.1; 0.1}, for
i = {1, 2}. In order to compare with the previous results,
we set the system time-delay to be invariant, i.e., with zero
derivative (ḋ(t) = 0). In this particular case, the maximum
τmax value obtained from (Chen et al. 2007) and (Peng et
al. 2009b) are, respectively, 1.352, 1.447, whereas the result
from Theorem 1 is 1.570.

Example 4 Consider the following linear time-delay system
with no uncertainties

ẋ(t) =
[−2 0

0 −0.9

]
x(t)+

[−1 0
−1 −1

]
x(t − d(t)),

For various values of τmin and time-delay derivative vary-
ing within ḋ(t)∈ [−0.3, 0.3], the allowable τmax values that
maintain the asymptotic stability are presented in Table 4.

The method proposed in Theorem 1 when particularized
to linear time-delay systems, i.e., system (6) with only one

fuzzy rule and g1(t, x(t), x(t − d(t))) = 0, yields slightly
superior results compared to the state-of-the-art criterion in
linear time-delay systems literature (Figueredo et al. 2011).
Moreover, compared with the results from different authors
(Shao 2009; Fridman et al. 2009; Sun et al. 2010), the admis-
sible values for τmax from Theorem 1 are considerably less
conservative.

Example 5 We shall now consider a nonlinear time-delay
system that can be described using conventional T–S fuzzy
model, as in Example 2, but subjected to an additional highly
complex nonlinearity, e.g.,

ϑ(t, x(t)) = βsin(x1(t))cos3(x2(t))sgn(ψ(x))
√|ψ(x)|, (29)

where ψ(x(t)) = x2
1 (t) + 2x1(t)x2(t) + 1

2 x2
2 (t), and β is a

known bounding constant. If we take the new class of T–S
fuzzy models (6) with local time-delay systems subjected to
nonlinearities, the system can thus be easily described by

ẋ(t) =
∑2

i=1
ρi [Ai x(t)+ Adi x(t − d(t))+ gi (t, x(t))]

with similar membership functions and matrices, Ai and Adi ,

A1 =
[−2 0

0 −0.9

]
, Ad1 =

[−1 0
−1 −1

]
,

A2 =
[−1 0.5

0 −1

]
, Ad2 =

[−1 0
0.1 −1

]
;

and gi (t, x(t), x(t − d(t))) = ϑ(t, x(t)), i = {1, 2}. It can
be shown that the nonlinearities satisfy the quadratic con-
straint (3) with Hi = [

1 1
]

and α1i = β, α2i = 0.

Table 3 Max. τmax for
fast-varying delays (Example 2)

Note that ‘– ’means the authors
did not provide results for
prescribed conditions

Methods �τmin 0 0.4 0.8 1.0 1.2

Tian and Peng (2006) 0.721 0.884 1.094 1.211 1.337

Lien et al. (2007) 0.831 0.883 1.068 – 1.318

Li et al. (2009) 0.982 1.038 1.158 1.252 1.359

Peng et al. (2009a) 0.982 1.182 1.313 – 1.433

Peng and Han (2011) 1.078 1.162 1.281 – 1.429

Theorem 1 1.338 1.338 1.376 1.433 1.512

Table 4 Allowable τmax value
for |ḋ(t)| ≤ 0.3 (Example 4) Methods �τmin 0 1 2 3 4

Shao (2009) – – 2.697 3.259 4.074

Sun et al. (2010) – – 3.013 3.341 4.169

Fridman et al. (2009)

Thm 1 3.052 3.179 2.961 3.321 4.090

Thm 2 2.811 3.114 3.153 3.458 4.257

Figueredo et al. (2010) 3.052 3.185 3.190 3.464 4.257

Figueredo et al. (2011) 3.064 3.190 3.198 3.480 4.257

Theorem 1 3.065 3.191 3.203 3.488 4.260
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Table 5 Allowable values of
τmax for fast-varying delay and
various values for the bounding
parameter, β, (Example 5)

β2 = 0.1 β2 = 0.2 β2 = 0.3 β2 = 0.5 β2 = 1.0

τmin = 0 1.170 1.088 1.018 0.908 0.667

τmin = 0.4 1.161 1.067 0.995 0.882 0.525

τmin = 0.8 1.159 1.082 1.030 0.945 –

Assuming a scenario with fast-varying delay, our purpose
is to find the maximum value of τmax that maintains the
asymptotic stability of the new class of T–S fuzzy system
considering different values for the bounding parameter, β.
The results are listed in Table 5, and explicit the effectiveness
of the proposed analysis technique.

5 Conclusion

We developed a robust stability theorem for nonlinear time-
delay systems described by a new class of T–S fuzzy models
with local nonlinear systems subjected to model uncertain-
ties and time-varying delay. The new fuzzy model, for being
obviously more general than conventional T–S fuzzy models
with local linear systems, eases the T–S fuzzy description
whereas reducing the number of fuzzy rules, and, therefore,
is more suitable for practical implementations. Our stabil-
ity results were presented as LMIs and considered the delay
derivative upper and lower bounded. As special cases, we
also considered unknown derivative lower bound, and when
no restrictions are cast upon the derivative. To reduce con-
servatism concerning both the novel and the conventional
T–S fuzzy time-delay systems, we developed a new fuzzy
weighting-dependent Lyapunov-Krasovskii functional com-
bining state-of-the-art stability techniques for linear time-
delay systems with an improved piecewise analysis method,
which makes use of novel and less-restricted delay-interval-
dependent LKF terms. It should be likewise acknowledged
that the results particularized for the stability analysis of lin-
ear time-delay systems are also superior compared to pre-
vious criteria in time-delay literature. The advantages of
the proposed method were further enlightened with numer-
ical examples that illustrate the significant conservativeness
reduction compared to state-of-the-art criteria, and the analy-
sis effectiveness for the new class of T–S fuzzy models with
local nonlinear time-delay systems.
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