
Prof. Dr.-Ing. habil. Lothar Litz
Institute of Automatic Control
University of Kaiserslautern

Ambient Intelligence (AmI) Research 
in Kaiserslautern

Brasília, March 23, 2007 

PAUL

Assisted Training Assisted Working      Assisted Liv ing



2

Outline

• Introduction

• Ambient Intelligence Definition

• Kaiserslautern way of AmI-Research

• Bicycle Training Demonstrator

• AmI-based Networked Control Systems

• Outlook



3
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Mainframe
0.001 computer/person

PC
1

Post-PC Era
>100 µµµµC/ person

Ambient

Intelligence

extensive 
data processing

signal processing,
text processing,

multimedia, networks

scientific, 
commercial 
applications

personal 
applications

mobile 
applications

„There is no reason for any individual to have a co mputer in his 
home“                                       Ken Olsen, CEO DEC, 1977

Introduction
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'Ambient Intelligence' 
represents an 'intelligent 
environment', which reacts 
in a sensitive and adaptive way 
to the presence of humans and objects 
in order to provide various services to people.

Ambient Intelligence Definition
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Ambient Intelligence Definition

Technical attributes
• Distributed sensing, actuating and computing
• Unobtrusive and embedded components 
• Intelligent and user-friendly HCI 
• Seamless communication
• Pervasive computing

Butterfly Node:
(Microwatt Node)
Particle, Mica, etc.

Hummingbird Node:
(Milliwatt Node)
PDA, Handy, DSP, etc.

Peripheral Device:
Headset, Micro, Touch-
screens etc.

Workhorse Node:
(Watt Node) 
PC, Laptop, etc.
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Disciplines involved

human computer interaction

communications

microelectronics / sensors

software engineering

cognition science

automatic control
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Ambient Intelligence Definition
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Kaiserslautern way of AmI-Research

AmI Research Center (TU KL)  founded 2003
http://www.eit.uni-kl.de/AmI/frame.html?en

BelAmI-Project – German Ungarian Cooperation founded 2004
http://www.belami-project.org/

Pilot Project „AL “ (Bau AG, TU KL, Fed.state) founded 2005
http://www.assistedliving.de/

Initiative „SmartFactoryKL“ (DFKI, TU KL) founded 2005
http://www.dfki.uni-kl.de/smartfactory/

The Players

about 130 researchers in Kaiserslautern, 40 in Hungar y



9

Kaiserslautern way of AmI-Research

AmI Research Center (TU KL)  founded 2003
http://www.eit.uni-kl.de/AmI/frame.html?en

BelAmI-Project – German Ungarian Cooperation founded 2004
http://www.belami-project.org/

Pilot Project „AL “ (Bau AG, TU KL, Fed.state) founded 2005
http://www.assistedliving.de/

Initiative „SmartFactoryKL“ (DFKI, TU KL) founded 2005
http://www.dfki.uni-kl.de/smartfactory/

The Players

about 130 researchers in Kaiserslautern, 40 in Hungar y



10

Kaiserslautern way of AmI-Research

Interdisciplinary Members of the AmI Research Center

– Prof. Dr. Berns Computer Science
– Prof. Dr. Dutke Social Sciences
– Jun. Prof. Dr. Frey Electrical and Computer Engineering
– Prof. Dr. Gotzhein Computer Science
– Jun. Prof. Dr. Jaitner Social Sciences
– Prof. Dr. Kunz Electrical and Computer Engineering
– Prof. Dr. Litz      Electrical and Computer Engineering
– Jun. Prof. Dr. Rausch Computer Science
– Prof. Dr. Rombach Computer Science
– Prof. Dr. Tielert Electrical and Computer Engineering
– Prof. Dr. Urbansky Electrical and Computer Engineering
– Prof. Dr. Wehn (Chair) Electrical and Computer Engineering
– Prof. Dr. Zühlke Mechanical and Process Engineering
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Kaiserslautern way of AmI-Research

Research Projects, 130 Researcher
at TU, IESE, DFKI

Product Development

Demonstrators at TU, IESE, DFKI

Real
Projects

Theory

Application
Application

Theory
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Kaiserslautern way of AmI-Research

Product Development

Real
Projects

Theory

Application
Application

Theory

Prof. Litz
Example 1

Networked Control Systems

Bicycle Training

Assisted Training 
Scenario

Demonstrators at TU, IESE, DFKI

Research Projects, 130 Researcher
at TU, IESE, DFKI
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Product Development

Real
Projects

Theory

Application
Application

Theory

Kaiserslautern way of AmI-Research

Prof. Litz
Example 2

Home Sensor Data Mining, HCI

Elderly 
Apartment

Assisted Living 
Scenario

Conference Room 476

CIBEK, Mobotix

Demonstrators at TU, IESE, DFKI

Research Projects, 130 Researcher
at TU, IESE, DFKI
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Kaiserslautern way of AmI-Research

Assisted Training Bicycle Training Assistance (TU)

Scenarios Demonstrators

Assisted Living Demonstration Apartment (IESE)
Conference Room (TU)

Assisted Working Smart Factory (DFKI, TU)
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Kaiserslautern way of AmI-Research

Assisted Training Bicycle Training Assistance (TU)

Scenarios Demonstrators

Assisted Living Demonstration Apartment (IESE)
Conference Room (TU)

Assisted Working Smart Factory (DFKI, TU)
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Bicycle Training Demonstrator

Assisted Training Scenario

� Training group of (racing) cyclists

� Given track profile
� Out-door and In-door

� Cyclists have different qualities regarding the track sections
� Each cyclist has a given overall physical condition and 

an individual training plan 

� Training effect depends on the speed of the group, the position of the 
cyclist within the group formation and the time period in head position

Track Section
Uphill
Even
Downhill
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Bicycle Training Demonstrator

Research Topics

Common for Both

� New sensors, e.g. power pedal meter, simplified ECG

� Efficient communication (UWB) for body area networks

� Control algorithms and training strategies for In-Door, Out-Door

Bicyle Training Demonstrator

� Low power sensors, signal processing 
and communication

� Ad-hoc communication

Out-door In-door

� Dynamic integration of devices

� Virtual races

� Coconi tests

� Experiments to evaluate the perceptibility of 
different speech generation methods
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Bicycle Training Demonstrator

• Heartbeat

• Electrocardiogram

• Speed
• Cadence

• Slope

• Headwind speed

• Torques on right 
and left pedal

• Mechanical Power

• GPS
• Borg’s scale

• Environment Simulation
• Demonstrator Steering

Demonstrator Structure
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Bicycle Training Demonstrator

� Sensor integrated in crank set: 
measures total power

� Sensor integrated in bottom bracket: 
measures difference power 

� Measuring pedal power for left and 
right pedal in 30° degrees sectors

� Inductive air gap coupling (8 MHz) for 
data transmission and energy supply

� Sub-milliwatt energy consumption of 
the electronics

� Combined with magnetic pedal 
cadence meter

In-house Development:   Sensors by Prof. Dr. Tieler t
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Bicycle Training Demonstrator

In-house Development:   HW-Concept by Profs Dr. Weh n, Tielert

MasterZ = Masterboard + MicaZ

Antenna
of MicaZ

Windsensor LCD-Display

Control Keys

Removeable attachment

Interfaces :

Bottom-Bracket, 
Crankset

WindsensorHeartbeat-
Sensor

Free for
Extension
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Bicycle Training Demonstrator

DISPLAY

Masterboard

Data-
logger

DCF77           
Receiver

Control Keys

Wind

HeartbeatµC

MicaZ
MicaZ

PDA

optional

Bottom Bracket
and

Crank Set

Spead

Cadence

Total torque (Crank Set)

Difference Torque of Cranks
(Bottom Bracket) – indoor only

Trainer-
Application

Radio Transmission

Seriell Interface

Seriell  Interface

MasterZ = Masterboard + MicaZ

In-house Development:   HW-Concept by Profs Dr. Weh n, Tielert
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• Control development to run the Indoor Demonstrator with „Human in 
the loop“

• Mathematical Modeling of Cyclist‘s Power-Heartbeat Behavior 

• Optimization by Predictive Control with two set values:
Reference-value of Group Speed
Time for changing the head position

Bicycle Training Demonstrator

In-house Development:   MPC  by Profs Dr. Litz, Jai tner

Psoll
Fahrrad

Leistung 
Regler

PWM
Bremse

MB
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MG PG
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Display
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Power 
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PWM
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Brake Info.(Slider)
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• Control development to run the Indoor Demonstrator with „Human in 
the loop“

Bicycle Training Demonstrator

In-house Development:   MPC  by Profs Dr. Litz, Jai tner
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• Control development to run the Indoor Demonstrator with „Human in 
the loop“

Bicycle Training Demonstrator

In-house Development:   MPC  by Profs Dr. Litz, Jai tner
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Bicycle Training Demonstrator

Sensor Systems

� Wind Senor : field test

� Encoded Heartbeat : Tested

� Torque, Power: field test

Crank Set / Bottom Bracket

� Tested in laboratory environment,

Communication
� System with multihop completed, 

up to 32 bicycles, field tests running

ECG

� in development

Master Board
� Tested and completed

Control Algorithms

� Model Predictive Controller: developed

in simulation environment, not tested

Outdoor training Tests

� Field tests with technical evaluation:

in preparation

Indoor training Tests

� Technical Evaluation planned for 7/2007

� First tests planned for 10/2007

Status of the development

Another In-house developments:    Profs Gotzhein, R ausch
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AmI-based NCS

General Structure

Actuator 
system

Control 
system

Sensor 
system

)(ty
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AmI-based NCS

NCS-specific constraints:

• Limited Bandwidth /Transmission Rate 
• Limited Range (⇒ Multihopping) 
• Moving Objects (⇒ Ad-Hoc-Structure)
• Variable frame transport times
• Stochastic frame losses
• Passing and corruption of frames
• Sleeping Mode
• Limited energy
• Limited computing power (CPU, Storage)
• Limited number of bits in the frame
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AmI-based NCS

Constraints for Control Design

NCS Architectures

• Time / event-triggered 

• Direct / hierarchical /cascaded structure

General Network Effects
• Stochastic Delays

• Packet losses including corrupted, 
passed and aged packets

Additional AmI Specific Constraints
• Limited quantization
• Limited energy
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AmI-based NCS

Example of stochastic delays

Transmissions:

C → B   and    D → A
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AmI-based NCS

Our Attempts for Control over AmI-Networks

• MPC-based Adaptive Control 

• QoS-adaptive Heuristic Control

• Time stuffing , 1,2,...
SC C CA N

N S

T

T iT i

τ τ τ+ + <
= =
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AmI-based NCS

MPC – based Control

• Structure and Principle

• Detection of “Packet Losses”
–
– packet is corrupted or

– is lost

( , )SCy pn

1 2( , ,... , )CAu u u pnν

new lastpn pn<

, , 1,2,...SC SC CA CA SC CA ST T T T iT iτ τ> > + = =
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AmI-based NCS

QoS-adaptive Heuristic Control

1      L new last new lastp pn pn pn pn= − − ∀ >

• Controller can 
– calculate transport delay τSC

– recognize the packet losses  (pL)

– adapt to QoS

• Measuring the QoS
– Sensor samples time-triggered
– Clocks are synchronized occasionally

– 4-bit packet number instead of timestamp
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AmI-based NCS

QoS-adaptive Heuristic Control

( )
max

100 1 ,     1

0 100,    0.5  e.g.

IE
QoC IE IAE ITAE

IE

QoC

λ λ

λ

 
= − = − + ⋅ 

 

≤ < =

• General adaptation attempt
– Offline calculation of the best controller individuals for 

different τSC by genetic algorithm maximizing QoC
– Online adaptation by switching to the best Controller 

individual according to the measured τSC 
– Online adaptation of the sampling time T according to the 

measured number of packet losses 
– Online adaptation by two further heuristic schemes to 

increase the Quality of Control (QoC)
• Comparison with a robust non adaptive Time-Triggered 

Controller (TT)

• Definition of the Quality of Control  (QoC)
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AmI-based NCS

QoS-adaptive Heuristic Control

1

1 1 1 1
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• Heuristics 
H1: Dropping of overtaken and corrupted packets
H2: Adaptation of control parameters according to the measured 

delays τm

H3: Adaptation of the sampling time Tm according to the packet 
losses 

H4: Immediate reaction on set point change

• Control algorithm
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AmI-based NCS

QoS-adaptive Heuristic Control

2029.826
( )

( 26.29)( 2.296)
G s

s s
=

+ +

PL

t3.1

[ ]1, 1 45 ,35τ ∈NS ms ms [ ]2, 1 25 ,35τ ∈NS ms ms

[ ]1, 1 35%,45%∈NSPL [ ]2, 1 20%,30%∈NSPL

Example from literature:

Two out of four chosen network scenarios:
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AmI-based NCS

QoS-adaptive Heuristic Control

Results by QoC

-63,826,6310,0152,12TT

100,073,1444,055,9967,541111

100,072,7615,739,8464,291011

92,8273,9822,7711,7061,241101

97,4071,3019,2410,6962,221001

adaptive
better in %

maxminσσσσHV
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AmI-based NCS

QoS-adaptive Heuristic Control
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AmI-based NCS

QoS-adaptive Heuristic Control and MPC

Comparison of 1111 and MPC:
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MPC-based Adaptive Control
• Better QoC

• More Computational Power
• More Noise Sensitive

QoS-adaptive Heuristic Control
• Worser QoC

• Less Computational Power
• Less Noise Sensitive
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AmI-based NCS

QoS-adaptive Heuristic Control and stability proof

• BMI-approach for NCS (Yue, D.; Han, Q.; Peng, C.: State 
Feedback Controller Design of Networked Control Systems, 
2004)

• Measure for Packet losses and delays:

• Approach: Lyapunov functional 

• Stability condition:
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AmI-based NCS

QoS-adaptive Heuristic Control and stability proof

0,0804; 0,1782[20;30][25;35]2b

0,1042; 0,2343[35;45][45;55]1b = 2a

0,1555; 0,3545[5;10][5;15]1a

Controller parameter (k’P, 
k’ I)

Packet losses 
(in %)

Delays (in ms)Scenario

0,07792b

0,10951b = 2a

0,04831a

η (in s)Scenario

Feasibility test with Matlab is positive 

-> all scenarios are stable

(under given conditions)
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AmI-based NCS

QoS-adaptive Heuristic Control and stability proof

0,0804; 0,1782[20;30][25;35]2b

0,1042; 0,2343[35;45][45;55]1b = 2a

0,1555; 0,3545[5;10][5;15]1a

Controller parameter (k’P, 
k’ I)

Packet losses 
(in %)

Delays (in ms)Scenario

0,07792b

0,10951b = 2a

0,04831a

η (in s)Scenario

Feasibility test with Matlab is positive 

-> all scenarios are stable

(under given conditions) ?
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AmI-based NCS

An experiment with an NCS System

A

Inverted Pendulum
u

S1
x

S2
v

S3
α

Controller

• Effects
– Packet losses

– Quasi packet losses

– Disturbances
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AmI-based NCS

An experiment with an NCS System
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AmI-based NCS

An experiment with an NCS System
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Outlook NCS-Systems

• Mapping of the technical problems to mathematical design methods

• Treating several limited resources at the same time

• Non conservative stability criteria 

• Stability criteria for nonlinear systems

• Performance - measures for a proper judgment of different solutions

• Cross-Design-Methods with optimization of the trade-Offs

Needs for the future:
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Outlook NCS-Systems

Needs for the future:

Astrom, IFAC 50
15.09.06
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Thanks for your attention !
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Status of development

Sensor Systems

� Wind Senor : field test

� Encoded Heart-beat : Tested

Crank Set / Bottom Bracket

� Tested in laboratory environment,

Communication
� System with multihop completed, up to 32 bicycles,

field tests running

UWB and ECG

� in development

Master Board
� Tested and completed

Control Algorithms

� Model Predictive Controller developed

Outdoor training Tests

� Field tests in preparation

Assisted Training Bicycle Demonstrator
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Borg‘s scale (6 – 20 )
(no exertion – maximal exertion)
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Slower group of cyclists

Communication range of 
slower group of cyclists

Forwarded by global broadcast 
routing if available

Multi-Hop Broadcast Routing
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Hardware Concept

DISPLAY

Masterboard

Data-
logger

DCF77           
Receiver

Control Keys

Wind

Heart-beatµC

MicaZ
MicaZ

PDA

optional

Bottom Bracket
and

Crank Set

Spead

Cadence

Total torque (Crank Set)

Difference Torque of Cranks
(Bottom Bracket) – indoor only

Trainer-
Application

Radio Transmission

Seriell Interface

Seriell  Interface
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Master Board

LCD Joystick
Batterie Data Flash ATmega169

Piezo
Element

Timer Oscillator (32kHz)

ATmega169 : 
8 MHz
Flash: 16 Kbytes
SRAM:  1 kBytes
LCD Driver: 4 X 25 Segment 

Data Flash :
2048 Pages with 264 Bytes  4 MBytes
Memory for 2,7h Training Duration
(storing data every second)
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S1

Push-Button

Vcc
EXT

Heartbeat Sensor
Wind Sensor

MicaZ

Power ON/OFF

DCF77 Receiver

Bottom Bracket
Crank Set

Master Board and Interfaces
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Master Board – Interfaces

Interface : 
MicaZ – Master-Board

- Software UART

- BAUD Rate 38,4 kbps

Interface: 
Master-Board - Bottom Bracket/ Crank Set

- UART in MultiProcessorCommunicationMode

- BAUD Rate 76,8 kbps

MicaZ
Communication

Modul

Master-Board

Crank Set
Bottom Bracket

UART

MPCM
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� Message Format (Masterboard MicaZ)

Length : Length of the message (Header+Data)
ID : Bicycle-Identifikation (set by MicaZ)
Type : Type of the message (DATA, COMMAND, SET-UP…)
Version : Version of the message type

(<0x00>: Initialisation, <0x01>: Single Training, 
<0x02>: Group Training, <0x10>: Output Datalogger)

� Message Format (Masterboard  Crank Set/Bottom Brackets)

Communication Protocol

0x020xFFDataVersionTypeIDLength0x010xFF

End Of FrameDataHeaderStart Of Frame

0x020xFFDataVersionTypeAddressLength0x010xFFAddress

End Of 
Frame

DataHeader
Start Of 
Frame

Address
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Bicycle Training Demonstrator

In-house Development:   MacZ - Layer by Prof. Dr. Got zhein

Communication requirements

� Spontaneous messages

� Sensor values

� Periodical data

� Messages with guaranteed delay

� Alert messages

� Voice communication

� Actuator control

� Enhanced- Best- Effort Transmission

� Distributed Multihop-time-synchronization

Synchronization of the whole network 

after a constant time-delay

� Supporting different Transmission slots

Priority oriented transmission

Reserve oriented transmission

Alert messages

� Recognition of external networks 

and automatic synchronization

Hybrid QoS MAC Layer


