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Abstract— This paper is concerned with the computation of
uncertainty bounds for the expansion of uncertain Volterra
models into an orthonormal basis of functions, such as the
Laguerre or Kautz bases. This problem has already been
addressed in the context of linear systems by means of an
approach in which the uncertainty bounds of the expansion
coefficients have been estimated from a structured set of impulse
responses describing a linear uncertain process. This approach
is extended here towards nonlinear Volterra models through
the computation of the uncertainty bounds of the expansion
coefficients from a structured set of uncertain Volterra kernels.
The proposed formulation assures that the resulting model is
able to represent all the original uncertainties with minimum
intervals for the expansion coefficients. An example is presented
to illustrate the effectiveness of the proposed formulation.

I. INTRODUCTION

The performance of a controlled closed loop system de-

pends on the reliability of the model used for the controller

synthesis. In certain cases, however, a single model cannot

adequately represent a complex system. The presence of

external disturbances, for example, may rule out obtaining

a single set of model parameters that would lead to a good

representation of the system. A usual procedure to deal with

this sort of situation consists in incorporating into the model

uncertainties associated with its parameters [15], [7], [28],

[20]. When the uncertainties on the model parameters are

described by means of intervals and the model order is

known, it is said that the model uncertainty is of structured

type [7], [10]. Structured uncertainties are often constrained

to geometric regions of the parameters space, such as poly-

topes, orthotopes, or ellipsoids [28], [9]. Much research has

focused on the modeling of dynamic systems with structured

uncertainties. Models with structured uncertainties are the

basis of the so-called robust control algorithms (e.g. see [14],

[30]).

In the past few decades, there has been a growing interest

in the use of orthonormal basis functions (OBF), such as

the Laguerre and Kautz functions, in studies involving the

identification and control of dynamic processes [12], [3],

[20], [21], [13]. The main reason for using OBF in such areas

is that the corresponding approximate (modeling and control)
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problems usually have simpler solutions, as the orthonormal-

ity of these functions often yields simpler general models.

An important issue regarding the use of an orthonormal basis

model structure is the incorporation of approximate knowl-

edge about the dynamics of the system into the identification

process [6], [18]. This allows a significant reduction of the

number of model parameters to be estimated, thus reducing

the variance of their estimates [19]. The consequence is an

increase in the accuracy of the results.

A few approaches can be found in the literature for the

estimation of uncertain parameters in OBF-based models,

both in the context of linear [25], [1] and nonlinear (e.g.

Wiener and Hammerstein) systems [11], [2]. One such ap-

proach [22] involves a set of I/O data measured from the

system and the use of robust identification methods based

on the unknown-but-bounded-error (UBBE) strategy [15]. In

this case, the uncertainty bounds can be arbitrarily chosen,

what involves the following two risks: i) On the one hand,

if the bounds are under-estimated, the problem of the robust

identification of the parameters may have no solution; ii)

On the other hand, if the bounds are over-estimated, then

the solution can be very conservative. A different approach

considers prior knowledge of structured uncertainties asso-

ciated with the impulse response of a linear process [22].

However, as it will be shown by means of an example in

Section V, this approach cannot always guarantee that the

resulting OBF model represents all the original uncertainties

of the process. A solution to this problem in the context of

linear models has been described in [16] as a solution to a

constrained optimization problem. The formulation of such

an optimization problem and the corresponding solution are

extended in the present paper to the context of nonlinear

Volterra models.

The outline of this paper is as follows. In the next section,

OBF-based models are briefly reviewed. In Section III, the

formulation of uncertain models using interval-valued coef-

ficients is presented. In Section IV, optimization problems

for computing the bounds for the expansion coefficients of

uncertain Volterra kernels are proposed. In Section V, an

example illustrating the theoretical results is presented and,

finally, Section VI addresses the conclusions.

II. APPROXIMATION OF VOLTERRA MODELS USING

ORTHONORMAL FUNCTIONS

A Volterra model is essentially an input-output func-

tional (polynomial) expansion of a nonlinear system whose

structure is given by a straightforward generalization of
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the unit-impulse response model [8], [17]. In the discrete-

time domain, the mathematical description of an ηth-order

Volterra model relates the output y(k) of a physical process

to its input u(k) as [23], [17]:

y(k) =
∞
∑

τ1=0

h1(τ1)u(k − τ1) +

∞
∑

τ1=0

∞
∑

τ2=0

h2(τ1, τ2)u(k − τ1)u(k − τ2) + · · ·

+

∞
∑

τ1=0

· · ·
∞
∑

τη=0

hη(τ1, . . . , τη)u(k − τ1) · · ·u(k − τη), (1)

where the multidimensional functions hη(τ1, . . . , τη) are

the ηth-order Volterra kernels. Although these models can

describe a wide class of nonlinear systems [4], [23], their

practical use is limited due to the usually large number of

coefficients to be estimated. Such a drawback can be avoided

by expanding the Volterra kernels using OBF. The number

of parameters necessary to represent the models can thus be

drastically reduced if properly designed bases of functions

are adopted.

Representing a nonlinear dynamic system by means of

an orthonormal series expansion gives rise to a model of

Wiener type [29]. This sort of model consists of a linear

dynamic, here composed of a set of orthonormal filters,

followed by a nonlinear static mapping, here represented

by the Volterra series. The basic idea of such OBF-Volterra

models is to mathematically describe the Volterra kernels hη
with an orthonormal basis of functions {ψm}, as [23], [17]:

hη(k1, . . . , kη) =
∞
∑

i1=1

· · ·
∞
∑

iη=1

αi1,...,iη

η
∏

l=1

ψη,il(kl), (2)

which assumes that the kernels are absolutely summable

on [0,∞). In practice, this condition can be assured if

the long memory terms of the kernels are null, which is

possible provided that the system to be modeled is stable.

In other words, hη(k1, . . . , kη) is assumed to be zero for

kl > ǫ, ∀ l ∈ {1, . . . , η}. An appropriate value for ǫ < ∞
can be set based on the settling time of the system.

The kernel expansion coefficients α(·) in (2) can be derived

using the orthonormality property of the set {ψm}, i.e.,
∑

∞

k=0 ψq(k)ψr(k) = δqr, where δqr is the Kronecker delta,

as

αi1,...,iη =

∞
∑

k1=0

· · ·
∞
∑

kη=0

hη(k1, . . . , kη)

η
∏

l=1

ψη,il(kl). (3)

For computational reasons, equation (2) is, in practice,

approximated with a finite number M of functions, as

follows:

ĥη(k1, . . . , kη) =

M
∑

i1=1

· · ·
M
∑

iη=1

αi1,...,iη

η
∏

l=1

ψη,il(kl). (4)

The use of orthonormal functions to represent signals and

systems has a long history, since the pioneering works in

[24] and [29]. Discrete-time orthonormal basis functions can

be generated by cascading different all-pass filters of order

one or two, as follows [13], [18]:

Ψm(z) =

√

1− |βm|2
z − βm

m−1
∏

j=1

(

1− β̄jz

z − βj

)

(5)

m = 1, 2, . . . ,

where βm, β̄m are the stable poles of the orthonormal basis

(βm ∈ C : |βm| < 1). The corresponding realizations in

time-domain, ψm(k), are given by the inverse Z-transform of

(5) and satisfy the orthonormality property. The set {ψm} is

complete on ℓ2[0,∞) if and only if
∑

∞

m=1(1− |βm|) = ∞
[18], [13], so any finite energy signal (including absolutely

summable kernels) can be approximated with any prescribed

accuracy by linearly combining a certain finite number of

such functions.

When all the poles of (5) are real-valued and equal to each

other, i.e., βm = β̄m = c, one gets the Laguerre basis, which

can be written in the z-domain as [27], [13]:

Ψm(z) =

√
1− c2

z − c

(

1− cz

z − c

)m−1

, (6)

with c denoting the Laguerre pole.

Another important OBF realization, which has also been

shown to be a particular case of a unifying definition for

(5) [18], is obtained by cascading an all-pass filter with

pole at β and an all-pass filter with pole at β̄, where β̄
denotes the complex conjugate of β. By setting the pairs

of conjugate poles equal to each other for any value of m,

i.e., {β, β̄, β, β̄, . . .}, the result is the so-called two-parameter

Kautz functions. These functions are defined in the z-domain

as [26], [13]:

Ψ2m(z) =

√

(1 − c2)(1− b2)

z2 + b(c− 1)z − c

·
[−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]m−1

,

Ψ2m−1(z) =
(z − b)

√
1− c2

z2 + b(c− 1)z − c

·
[−cz2 + b(c− 1)z + 1

z2 + b(c− 1)z − c

]m−1

, (7)

where the real-valued parameters b and c are related to the

pair of Kautz poles (β, β̄) as b = (β + β̄)/(1 + ββ̄) and

c = −ββ̄.

III. STRUCTURED UNCERTAINTIES IN OBF-VOLTERRA

MODELS

The robust identification method to be studied here takes

as input a set of realizations of the Volterra kernels. Such a

set represents the process uncertainties. So, let us consider

an ηth-order Volterra model, as that in (1), which has
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uncertainties on its parameters. Such uncertainties can be

mathematically described by the following set of kernels:

{hη(k1, . . . , kη)} =
{

h̄η(k1, . . . , kη) +

ρη(k1, . . . , kη)∆hη(k1, . . . , kη)
}

, (8)

where h̄η(k1, . . . , kη) is the mean ηth-order Volterra kernel,

∆hη(k1, . . . , kη) ≥ 0 is the maximum deviation from the

mean at each time instant, and ρη(k1, . . . , kη) is such that

|ρη(k1, . . . , kη)| ≤ 1. Using (8) to rewrite the expansion

coefficients (3), one gets a set of uncertain coefficients, as

follows:

{αi1,...,iη} =

∞
∑

k1=0

· · ·
∞
∑

kη=0

{

h̄η(k1, . . . , kη)

+ ρη(k1, . . . , kη)∆hη(k1, . . . , kη)
}

η
∏

l=1

ψη,il(kl). (9)

Their nominal values are described in terms of the mean

Volterra kernels h̄η(k1, . . . , kη), whereas the deviation values

are described in terms of ∆hη, as follows:

ᾱi1,...,iη =

∞
∑

k1=0

· · ·
∞
∑

kη=0

h̄η(k1, . . . , kη)

η
∏

l=1

ψη,il(kl), (10)

∆αi1,...,iη =

∞
∑

k1=0

· · ·
∞
∑

kη=0

∆hη(k1, . . . , kη)

η
∏

l=1

ψη,il(kl).

(11)

From the development presented above, the set of coefficients

can be rewritten as:

{αi1,...,iη} =
{

ᾱi1,...,iη + σi1,...,iη∆αi1,...,iη

}

, (12)

where σi1,...,iη are scaling terms. Unlike ᾱi1,...,iη and

∆αi1,...,iη , these scaling terms cannot be analytically derived

from (9). The reason is that, unlike h̄η(k1, . . . , kη) and ∆hη,

which are unique, the terms ρη(k1, . . . , kη) in (9) are not

unique for the whole set of coefficients {αi1,...,iη}. Hence,

the scaling terms σi1,...,iη must be numerically estimated.

An optimal formulation to estimate these scaling terms is

described in the next section. Such a formulation is aimed at

minimizing the uncertainties associated with the expansion

coefficients, i.e., the second term of the right-hand side of

expression (12).

IV. COMPUTATION OF UNCERTAINTY BOUNDS

This section introduces optimization problems for com-

puting uncertainty bounds for uncertain dynamical systems

represented by OBF models. First, a formulation for linear

models previously introduced in the literature is reviewed.

Next, such a formulation is extended to any-order Volterra

models. The original and extended formulations are valid re-

gardless of the orthonormal basis adopted (Laguerre, Kautz,

or Generalized Orthonormal Basis Functions — GOBF).

A. Linear models

An optimization problem whose solution provides an

overestimate of the set of impulse responses of uncertain

linear systems has been proposed in [16]. Provided that

set {h1(k1)} is known in advance, the formulation of the

problem is as follows:

min
σi1

M
∏

i1=1

σi1∆αi1 ,

s.t. {h1(k)} ⊆ {h̆1(k)}, (13)

h̆1(k) =

M
∑

i1=1

(

ᾱi1 + σi1∆αi1

)

ψi1(k),

where

ᾱi1 =

∞
∑

k=0

h̄1(k)ψi1(k), (14)

∆αi1 =

∞
∑

k=0

∆h1(k)ψi1(k), (15)

for i1 = 1, . . . ,M .

The objective function of problem (13) describes the

volume of the hyper-rectangle generated by varying the

uncertainties associated with the orthonormal expansion co-

efficients, i.e., σi1∆αi1 . The deviations of these coefficients,

∆αi1 (i1 = 1, . . . ,M), are scaled by σi1 . The problem

consists in minimizing the volume of the hyper-rectangle that

bounds the uncertainties, subject to the constraint that the

system impulse responses, represented by the set {h1(k)},

must lie within the set of model impulse responses {h̆1(k)}.

The variables of the optimization problem (13) are the

coefficients σi1 (i1 = 1, . . . ,M). The constraints of (13)

assure that the resulting model represents all the impulse

responses of the process.

B. Nonlinear models

Consider an ηth-order Volterra model with uncertain ker-

nels, just like those in (8). According to (12), the uncer-

tainties over the corresponding OBF expansion coefficients

are represented by the terms σi1∆αi1 , σi1,i2∆αi1,i2 , and

σi1,...,iη∆αi1,...,iη for the 1st, 2nd, and ηth orders of the

model, respectively. Since the Volterra kernels are indepen-

dent from each other, that is, there is no mutual dependence

among h1, h2, . . . , hη, then it is proposed here that η in-

dependent optimization problems be formulated as in (16),

where ᾱi1,...,iη and ∆αi1,...,iη are given by (10) and (11),

respectively. As in Section IV-A, it is assumed here that the

set of kernels {hη(k1, . . . , kη)} is known in advance.

Analogously to (13), the objective in (16) is to minimize

the volumes generated by the scaling of the uncertainties

over the expansion coefficients α(·). In an ηth-order Volterra

model, the optimal solutions of the η independent problems

minimize the volumes generated by the corresponding uncer-

tainties, subject to the constraint that every possible kernel

of the original Volterra model must lie within the set of OBF

model kernels, {h̆l(k1, . . . , kl)}.
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min
σi1,...,iη

M
∏

i1=1

· · ·
M
∏

iη=1

σi1,...,iη∆αi1,...,iη ,

s.t. {hη(k1, . . . , kη)} ⊆ {h̆η(k1, . . . , kη)}, (16)

h̆η(k1, . . . , kη) =
M
∑

i1=1

· · ·
M
∑

iη=1

(

ᾱi1,...,iη + σi1,...,iη∆αi1,...,iη

)

η
∏

l=1

ψη,il(kl),

il = 1, . . . ,M.

The variables of the optimization problems in (16) are

the coefficients σi1,...,il for l = 1, . . . , η. Their optimal

values provide the minimal scaling of the sides of the hyper-

rectangle that represents the OBF model uncertainties so that

any element of the sets of original kernels is comprised by

the resulting model.

Problem (16) can be solved by using a standard con-

strained nonlinear optimization method. For instance, the

MATLAB routine fmincon, which performs a numerical

search for a constrained minimum of a function of several

variables, can be used.

V. EXAMPLE

The goal of this example is to obtain uncertainty bounds in

OBF-Volterra models using the method proposed in Section

IV-B. Consider a second-order Volterra model with the

following uncertain kernels:

h1(k1) = Z−1

[

z + 0.5

z2 − 1.2z + r1

]

, (17)

h2(k1, k2) = gi1(k1)gi2(k2), (18)

with

gil(k) = Z−1

[

z + 1

z2 − rilz + 0.5

]

, (19)

where Z−1 denotes the unilateral inverse Z-transform. The

kernel uncertainties are given in terms of uncertain param-

eters of the model, here represented by r1 and (ri1 , ri2),
respectively. Suppose that such parameters lie on intervals:

r1 ∈ [0.3, 0.5] and (ri1 , ri2) ∈ [0.4, 0.8]× [0.4, 0.8]. For

computational reasons, these intervals were sampled using

a sampling increment of 0.01.

The central first- and second-order kernels, i.e., h̄1(k1) and

h̄2(k1, k2), are the mean values of h1(k1) and h2(k1, k2),
respectively, at each time instant. In other words, h̄1 is the

average of all the possible functions in (17), by varying

the parameter r1 within its feasibility interval, as in [16].

The same reasoning is valid for h̄2 and (ri1 , ri2 ) in (19).

Mathematically, one has the following:

r1(l) = 0.3 + l · 0.01, l = 0, 1, . . . , 20,
ri1(l

′) = 0.4 + l′ · 0.01, l′ = 0, 1, . . . , 40,
ri2(l

′′) = 0.4 + l′′ · 0.01, l′′ = 0, 1, . . . , 40.

Therefore, h̄1 and h̄2 are computed as:

h̄1(k1) =
1

21

21
∑

l=1

h1(k1, r1(l)), (20)

h̄2(k1, k2) =
1

412

41
∑

l′=1

41
∑

l′′=1

h2(k1, k2, ri1 (l
′), ri2 (l

′′)). (21)

Since the kernels in (17) and (18) are governed by un-

derdamped dynamics, it is more appropriate to adopt the

two-parameter Kautz basis. In this example, the number of

Kautz functions is chosen as M = 8. The central values of

the expansion coefficients and their maximum deviations are

computed using (10) and (11), respectively.

The maximum deviation ∆h1(k) relative to the mean first-

order Volterra kernel in (17) is computed as the absolute

value of the maximum uncertainty from the mean kernel

h̄1(k) at each time instant. The same idea holds true for

the second-order kernel in (18). Then

∆h1(k1) =
∣

∣max{h1(k1, r1)− h̄1(k1)}
∣

∣,

∆h2(k1, k2) =
∣

∣max{h2(k1, k2, ri1 , ri2 )− h̄2(k1, k2)}
∣

∣.

Figures 1 and 2 illustrate the deviations ∆h1(k1) and

∆h2(k1, k2), respectively.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆
h
1
(k

1
)

k1

Fig. 1. Maximum deviation over the mean first-order kernel h̄1(k1).

Optimal values σ∗

i1
and σ∗

i1,i2
are computed as proposed

in Section IV-B, by solving the optimization problems (16)
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∆
h
2
(k

1
,
k
2
)

k1 k2

Fig. 2. Maximum deviation over the mean second-order kernel h̄2(k1, k2).

for η = 1, 2. The optimal solutions are:

σ∗

i1
=

























0.7714
0.3474
0.5102
0.1147
0.0404
0.0288
0.3865
0.5512

























, (22)

σ∗

i1,i2
=

























0.8180 0.8385 0.7948 0.8757
0.6602 0.5681 0.9568 0.7373
0.3420 0.3704 0.5226 0.1365
0.2897 0.7027 0.8801 0.0118
0.3412 0.5466 0.1730 0.8939
0.5341 0.4449 0.9797 0.1991
0.7271 0.6946 0.2714 0.2987
0.3093 0.6213 0.2523 0.6614

0.2844 0.4329 0.7833 0.4154
0.4692 0.2259 0.6808 0.3050
0.0648 0.5798 0.4611 0.8744
0.9883 0.7604 0.5678 0.0150
0.5828 0.5298 0.7942 0.7680
0.4235 0.6405 0.0592 0.9708
0.5155 0.2091 0.6029 0.9901
0.3340 0.3798 0.0503 0.7889

























. (23)

Based on these numerical results, one can verify that the

obtained kernel bounds comprise all the original (uncertain)

kernels. Figure 3 illustrates the lower and upper bounds

of the first-order kernel (17) computed using two different

approaches, namely, the approach proposed in the present

paper and the one that uses solely equations (14) and (15),

as described in [22].

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

bounds of the original kernel

bounds computed as in [22]

bounds computed here

∆
h
1
(k

1
)

k1

Fig. 3. Lower and upper bounds of kernel (17) using different approaches.

As previously mentioned in Section I, it can be seen in

Figure 3 that the bounds computed as described in [22]

have not been able to represent the bounds of h1 for all

time instants. In fact, beyond k1 = 29 the lower bounds

obtained by that method do not contain the lower bounds

of the original kernel. The reason is that the mathematical

condition ψ1,i1(k1) > 0 cannot be satisfied for Kautz func-

tions. Differently, the formulation proposed in the present

paper circumvents this drawback by ensuring that the optimal

bounds do contain both the lower and the upper bounds of

the original kernels. This is a constraint of the optimization

problems in (16).

Figure 4 compares the bounds obtained for the second-

order kernel in (18) projected on the plane k1 = 10. The

method in [22] − extended to nonlinear Volterra models in

[5] − has not been able to represent the bounds of h2 for

all time instants, in contrast to the method proposed here.

Again, the reason is the same as that discussed above with

respect to the 1st order kernel.

It has been verified numerically that, as expected, the

models obtained from σ∗

i1
in (22) and σ∗

i1,i2
in (23) are

indeed able to represent the kernels (17) and (18), respec-

tively. Mathematically, one has {h1(k1)} ⊆ {h̆1(k1)} and

{h2(k1, k2)} ⊆ {h̆2(k1, k2)}, thus satisfying the specifica-

tions imposed by the constraints of problem (16).

VI. CONCLUSIONS

The modeling of uncertain dynamic systems using an

orthonormal basis function framework has been investigated.

This problem has been addressed in the context of nonlinear

Volterra models in which the bounds of the uncertain OBF

model coefficients are estimated from a set of Volterra ker-

nels with known structured uncertainties. This is an extension

— to the context of nonlinear Volterra models — of previous
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bounds of the original kernel

bounds computed as in [22]

bounds computed here

h
2
(1
0
,
k
2
)

k2

Fig. 4. Lower and upper bounds of kernel (18) using different approaches.

results for linear systems previously decribed in the literature

The proposed method may be useful in nonlinear robust

predictive control, where the input signal is calculated con-

sidering the worst possible performance with respect to the

tracking of the reference signal. A simulated example has

been presented to illustrate the theoretical results. In this

example, the modeling of first- and second-order uncertain

Volterra kernels has been illustrated using the two-parameter

Kautz functions, but other related orthonormal bases (e.g.

Laguerre or GOBF) could have been used as well.

In future work, the authors intend to extend the proposed

method towards models with uncertainties taking place at the

output signal.
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