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Abstract

This work tackles the problem of modeling nonlinear systems using Volterra models based on Kautz functions. The drawback of requiring a
large number of parameters in the representation of these models can be circumvented by describing every kernel using an orthonormal basis
of functions, such as the Kautz basis. The resulting model, so-called Wiener/Volterra model, can be truncated into a few terms if the Kautz
functions are properly designed. The underlying problem is how to select the free-design complex poles that fully parameterize these functions.
A solution to this problem has been provided in the literature for linear systems, which can be represented by first-order Volterra models. A
generalization of such strategy focusing on Volterra models of any order is presented in this paper. This problem is solved by minimizing
an upper bound for the error resulting from the truncation of the kernel expansion into a finite number of functions. The aim is to minimize
the number of two-parameter Kautz functions associated with a given series truncation error, thus reducing the complexity of the resulting
finite-dimensional representation. The main result is the derivation of an analytical solution for a sub-optimal expansion of the Volterra kernels
using a set of Kautz functions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Models based on orthonormal basis functions have received
increasing interest in recent years. This subject has become an
important topic of research in studies involving the identifica-
tion and control of dynamic processes (Bokor & Schipp, 1998;
Doyle, Pearson, & Ogunnaike, 2002; Dumont & Fu, 1993;
Heuberger, Van den Hof, & Bosgra, 1995; Heuberger, Van den
Hof, & Wahlberg, 2005; Oliveira, Amaral, Favier, & Dumont,
2000; Schetzen, 1989). The use of orthonormal series for rep-
resenting signals and systems was first addressed by Wiener
(1958). This approach consists of representing a given signal
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or system in terms of an orthonormal basis for the space of
interest. Many control problems can be formulated as optimiz-
ing a certain cost-function over the class of stable systems, and
orthonormal exponentials provide good parameterizations for
this class of systems (Wahlberg & Mäkilä, 1996).

The main reason for using orthonormal basis functions in
modeling for control and signal processing is that the cor-
responding approximate problem usually has a simplified
solution (Heuberger et al., 2005). The orthonormality property
of those functions often yield a simpler general model. An
important issue regarding the use of a generalized orthonormal
basis model structure is the incorporation of approximate
knowledge about the system dynamics into the identification
process (Heuberger et al., 1995). This way, the number of
model parameters to be estimated and, accordingly, the vari-
ance of their estimation, can be reduced. The consequence is
an improvement to the accuracy of the models.

Models using orthonormal functions may require a reduced
number of terms to represent a given system by means of
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a truncated orthonormal series. When properly selected, the
orthonormal series can increase the speed of convergence in
problems of identification (Van den Hof, Heuberger, & Bokor,
1995; Heuberger et al., 1995). Another advantage is that such
functions correspond to all-pass filters, which are robust to
implement in numerical computations. Laguerre and Kautz
bases (Bokor & Schipp, 1998; Broome, 1965; Wahlberg, 1994;
Wahlberg & Mäkilä, 1996) are probably the most used or-
thonormal basis functions in the approximation, modeling and
identification of systems. They are adequate to model sys-
tems having kernels with dominant dynamic of first or second
order, respectively. To model more complex dynamics, the gen-
eralized orthonormal basis functions (GOBFs) (Van den Hof
et al., 1995; Ninness & Gustafsson, 1997) are more suitable.
The price to pay, however, is a much more complex parame-
terization of that basis.

A notorious advantage of Laguerre functions is that they
have transforms that are rational functions with simple recur-
sive form. Since these functions are completely parameterized
by a real-valued pole, they are more suitable for representing
well-damped dynamic systems. The Laguerre functions have
certain properties that facilitate the problem of optimizing their
poles in an analytical strategy, as such functions satisfy a spe-
cific second-order difference equation. The optimization of the
Laguerre pole was addressed for the linear case in Clowes
(1965), Masnadi-Shirazi and Ahmed (1991), Fu and Du-
mont (1993), Tanguy, Morvan, Vilbé, and Calvez (1995),
Silva (1994). More recently, analytical formulae for any-order
Volterra models have been presented in Campello, Favier, and
Amaral (2004) and Campello, Amaral, and Favier (2006).
Poorly damped dynamics, however, are difficult to approxi-
mate with a small number of Laguerre functions. Indeed, these
functions are not well suited to approximate signals with strong
oscillatory behavior (Silva, 1995; Tanguy, Morvan, Vilbé, &
Calvez, 2000). This drawback has led to an increasing interest
in the two-parameter Kautz functions, introduced in the 1950s
by Kautz (1954). Such functions can better approximate sys-
tems with oscillatory behavior because they are parameterized
by resonant poles. A sub-optimal analytical solution for the
choice of the Kautz poles in the representation of discrete
linear systems was proposed in Tanguy, Morvan, Vilbé, and
Calvez (2002), and the corresponding nonlinear counterpart
was addressed in da Rosa (2005), and da Rosa, Amaral, and
Campello (2005). The list of works on studies of pole loca-
tion also includes (Silva, 1997), which presented stationary
conditions for optimal linear models based on GOBFs.

In this paper, the results presented in Tanguy et al. (2002)
are extended to any-order Volterra models in such a way that
an analytical solution for the selection of one of the parameters
related to the Kautz pole is obtained. An optimization of the
Kautz bases for the orthonormal series expansion of discrete-
time Volterra models is given, representing a sub-optimal solu-
tion for the choice of the Kautz poles. This solution is based on
the minimization of an upper bound of the error resulting from
the truncated approximation of Volterra kernels using Kautz
functions. The proposed approach requires the system kernels
to be known in advance.

The outline of this paper is as follows. In the next section,
orthonormal basis functions are presented in the context of
Wiener/Volterra models. In Section 3, the optimization problem
for the selection of the Kautz pole is discussed. In Section 4, an
illustrative example is presented. Finally, Section 5 addresses
the conclusions.

2. Volterra and Wiener/Volterra models

Discrete-time Volterra models relate the output y(k) of a
physical process to its input u(k) as (Rugh, 1981; Schetzen,
1989)

y(k) =
∞∑

�=1

∞∑
�1=0

· · ·
∞∑

��=0

h�(�1, . . . , ��)

�∏
j=1

u(k − �j ), (1)

where the functions h�(�1, . . . , ��) are the �th-order Volterra
kernels. Eq. (1) is a generalization of the impulse response
model (Eykhoff, 1974), traditionally used for the analysis
of linear systems. The main drawback of these models is
over-parameterization. Such a drawback can be avoided by
expanding the Volterra kernels using an orthonormal basis of
functions. This leads to the so-called Wiener/Volterra models.

Wiener/Volterra models have a linear dynamic, composed of
filters of orthonormal functions, followed by a static nonlinear
mapping (Rugh, 1981). Such models mathematically describe
the kernels h� using orthonormal bases of functions {�n} as
(Schetzen, 1989):

h�(k1, . . . , k�) =
∞∑

i1=1

· · ·
∞∑

i�=1

�i1,...,i�

�∏
j=1

�ij
(kj ) (2)

which assumes that the kernels are absolutely summable on
[0, ∞). Given the orthonormality property of the set {�n}, i.e.∑∞

k=0�q(k)�r (k) = �qr , where �qr is the Kronecker delta, the
coefficients �(·) can be computed from (2) as

�i1,...,i� =
∞∑

k1=0

· · ·
∞∑

k�=0

h�(k1, . . . , k�)

�∏
j=1

�ij
(kj ). (3)

For computational reasons, Eq. (2) is, in practice, approximated
with a finite number M of functions, as follows:

h̃�(k1, . . . , k�) =
M∑

i1=1

· · ·
M∑

i�=1

�i1,...,i�

�∏
j=1

�ij
(kj ). (4)

If the input signal u(k) in (1) is bounded and normalized so that
|u(k)| < 1 ∀k, then the higher-order kernels can be ignored in
such a way that the resulting Volterra model is truncated into
a finite-order N (Eykhoff, 1974). Furthermore, if it is assumed
that u(k) = 0 for k < 0, then Eq. (1) becomes

ỹ(k) =
N∑

�=1

⎡
⎣ M∑

i1=1

· · ·
M∑

i�=1

�i1,...,i�

·
�∏

j=1

⎛
⎝ k∑

�j =0

�ij
(�j )u(k − �j )

⎞
⎠
⎤
⎦ . (5)
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Truncated Volterra models such as those in Eqs. (1) and (5)
can approximate to desired accuracy a broad class of stable
nonlinear systems (Boyd & Chua, 1985; Schetzen, 1989).

The orthonormal basis functions that are most commonly
used in signal and system representations are presented in the
sequel.

2.1. Orthonormal basis functions

The first mention of rational orthonormal bases seems to
have occurred in Takenaka (1925). Three decades later, the
problem of orthonormalizing a set of continuous functions was
presented in Kautz (1954), whereas the corresponding discrete
case was solved in Broome (1965). The (discrete-time) GOBFs
are defined in the complex z-domain for n=1, 2, . . . as (Van den
Hof et al., 1995; Heuberger et al., 2005; Ninness & Gustafsson,
1997)

Fn(z) = z
√

1 − |�n|2
z − �n

n−1∏
l=1

(
1 − �̄lz

z − �l

)
, (6)

where �l , �̄l ∈ C are the poles of the GOBFs. These functions
are the so-called Takenaka–Malmquist functions. The corre-
sponding realizations in the time-domain, fn(k), are given by
the inverse z-transform of (6) and satisfy the orthonormality
property. The set {fn} is complete on �2[0, ∞) if and only if∑∞

n=1(1 − |�n|) < ∞ (Heuberger et al., 1995, 2005), so any
finite energy signal (including absolutely summable kernels)
can be approximated with any prescribed accuracy by truncat-
ing the infinite expansion.

In general, the functions fn will be complex, which is phys-
ically unreasonable in real system identification problems. In
Ninness and Gustafsson (1997), it is shown that this drawback
can be overcome by constructing a new orthonormal basis of
functions with real impulse responses as a linear combination
of the complex functions generated by (6). Using this approach,
when all the poles of (6) are real-valued and equal to each other
for any value of n, i.e. �n = �̄n = c, one gets the particular case
of Laguerre functions (Wahlberg, 1991; Silva, 1994)

�n(z) =
√

1 − c2 z

z − c

(
1 − cz

z − c

)n−1

(7)

with c denoting the Laguerre pole. By setting c=0, the Laguerre
functions simplify to an ordinary pulse basis �n(z) = z−(n−1)

and model (5) reduces to the ordinary nonlinear finite impulse
response (NFIR) Volterra model in (1).

The particular case of GOBFs in which the set of poles {�n}
in (6) is {�, �̄, �, �̄, . . .}, with �, �̄ ∈ C, results in the so-called
two-parameter Kautz functions. They constitute a second-order
generalization of (7) and are defined as follows (Wahlberg,
1994)

	2n(z) =
√

(1 − c2)(1 − b2)z

z2 + b(c − 1)z − c

[−cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c

]n−1

,

	2n−1(z) =
√

1−c2z(z−b)

z2+b(c−1)z−c

[−cz2+b(c−1)z+1

z2+b(c−1)z−c

]n−1

, (8)

where b and c are real-valued constants which are related to
the pair of Kautz poles (�, �̄) as

b = (� + �̄)/(1 + ��̄), (9)

c = −��̄. (10)

Expressions analogous to (8) can be found e.g. in den Brinker,
Benders, and Silva (1996), and Heuberger et al. (2005).

3. Selection of the Kautz poles

In this section, a solution to the problem of determining the
Kautz pole based on the minimization of an upper bound for
the kernel approximation error is presented. The approach to be
described here consists of an adaptation of the original (Kautz)
problem into a transformed (Laguerre) problem with known
solution.

Kautz functions, defined in Eq. (8), depend upon two real-
valued parameters (b and c). The selection of these parameters
has a direct influence on the computation of the coefficients
�i1,...,i� in (3). The simultaneous optimal selection of both b
and c is still under investigation.1 It is possible, however, to set
one of these parameters as constant in order to obtain the best
choice for the other according to a certain criterion. Details are
given below.

First, let the norm ‖h�‖ be defined as

‖h�‖2 =
∞∑

k1=0

· · ·
∞∑

k�=0

h2
�(k1, . . . , k�).

By using Eqs. (2)–(4), as well as the orthonormality property
of set {�n}, it is not difficult to deduce that the normalized
quadratic error (NQE) of the approximation of kernel h�, de-
fined as NQE�(‖h� − h̃�‖2)/‖h�‖2, can be written as follows:

NQE =
∑∞

i1=M+1 · · ·∑∞
i�=M+1�

2
i1,...,i�∑∞

i1=1 · · ·∑∞
i�=1�

2
i1,...,i�

, (11)

where �i1,...,i� are the coefficients of the expansion of
h�(k1, . . . , k�) according to Eq. (3). An upper bound for (11)
when the Kautz functions in (8) are considered can be obtained
by means of the following theorem.

Theorem 1. Let 
n (n = 1, 2, . . .) be the Laguerre functions
in the time-domain, i.e. the inverse z-transform of (7), param-
eterized by the Kautz parameter c. Also, let �i1,...,i� be the
coefficients of the expansion of kernel h�(k1, . . . , k�) using the
same Kautz basis and consider the following functions:

geven(k1, . . . , k�)�
∞∑

i1=1

· · ·
∞∑

i�=1

�2i1,...,2i�

�∏
j=1


ij
(kj ), (12)

1 The required difference equations relative to the discrete-time Kautz
functions have not yet been established (Tanguy et al., 2002), at least to the
best of the authors’ knowledge.
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godd(k1, . . . , k�)�
∞∑

i1=1

· · ·
∞∑

i�=1

�2i1−1,...,2i�−1

�∏
j=1


ij
(kj ). (13)

Then, the truncated approximation error of the Volterra kernel
h� decomposed into an M-term Kautz basis, NQE in (11), is
bounded by

NQE�L(c)� 2(m2c
2 − 2m1c + m3)

�(M + 1)‖h�‖2(1 − c2)
, (14)

where the terms mp (p = 1, 2, 3) are computed as

m1 = �1(geven) + �1(godd), (15)

m2 = �2(geven) + �2(godd), (16)

m3 = �2(geven) + �2(godd) + ��3(geven) + ��3(godd) (17)

with geven(k1, . . . , k�) and godd(k1, . . . , k�) defined in Eqs. (12)
and (13), respectively. The moments �1(x), �2(x), �3(x) are
given by

�1(x) =
�∑

j=1

⎡
⎣ ∞∑

k1=0

· · ·
∞∑

kj =0

· · ·
∞∑

k�=0

kj

· x(k1, . . . , kj , . . . , k�)

· x(k1, . . . , kj − 1, . . . , k�)

⎤
⎦ , (18)

�2(x) =
�∑

j=1

⎡
⎣ ∞∑

k1=0

· · ·
∞∑

kj =0

· · ·
∞∑

k�=0

kj

· x2(k1, . . . , kj , . . . , k�)

⎤
⎦ , (19)

�3(x) =
∞∑

k1=0

· · ·
∞∑

k�=0

x2(k1, . . . , k�). (20)

Proof. See Appendix A. �

Computing the functions geven and godd via Eqs. (12) and
(13), respectively, requires that the coefficients �(·) given by
(3) be known. However, such computation can be performed
independently of �(·) using the following auxiliary theorem.

Theorem 2. The functions geven and godd, defined in Eqs. (12)
and (13), respectively, can be written in terms of both the �th-
order kernel h� and the Kautz functions as

geven(k1, . . . , k�) =
∞∑

�1=0

· · ·
∞∑

��=0

h�(�1, . . . , ��)

·
�∏

j=1

�̂2(kj +1)(�j ), (21)

godd(k1, . . . , k�) =
∞∑

�1=0

· · ·
∞∑

��=0

h�(�1, . . . , ��)

·
�∏

j=1

�̂2(kj +1)−1(�j ), (22)

where �̂(·) denotes the Kautz functions in time-domain with
c = 0.

Proof. The proof follows the lines of reasoning of an anal-
ogous theorem provided in Tanguy et al. (2002), whose
results are valid only for the first-order Volterra kernel. This
reference provides the essential arguments and mathemati-
cal foundations also used for proving the generalized result
in Theorem 2. The main steps of the proof can be found in
da Rosa et al. (2005). �

An optimal choice for parameter c of the Kautz functions can
thus be derived from the solution of the following optimization
problem:

min|c|<1
L(c) = 2(m2c

2 − 2m1c + m3)

�(M + 1)‖h�‖2(1 − c2)
. (23)

Since ‖h�‖ is a (nonnull) constant for a given system, a nec-
essary condition for solving (23) is �L(c)/�c = 0. From Eqs.
(16) and (19), it is straightforward to verify that m2 > 0. Con-
sequently, function �(c)�2(m2c

2 − 2m1c + m3) is convex. It
is also differentiable. Moreover, �(c) is nonnegative for all c ∈
] − 1, 1[, otherwise NQE would be negative according to Eq.
(14), which is not possible by definition. Function (c)�1−c2,
in turn, is differentiable, concave and positive for all c ∈]−1, 1[.
Hence, L(c) is a pseudo-convex function for |c| < 1, which im-
plies that �L(c)/�c = 0 is a necessary and sufficient condition
for solving problem (23) (Bazaraa, Sherali, & Shetty, 1993).

The optimality condition �L(c)/�c=0 is satisfied if and only
if:

m1c
2 − (m2 + m3)c + m1 = 0. (24)

Then, defining ��(m2 + m3)/(2m1), the solution of (24) is
given by

copt =
{

� −
√

�2 − 1 if � > 1,

� +
√

�2 − 1 if � < − 1.

(25)

It is possible to show that the condition −1���1 is unfeasible.
See details in Appendix B.

Remark 3. Theorem 2 states that the functions geven and godd
depend solely on the �th-order kernel h� and on parameter b
of the Kautz basis. Accordingly, the same holds for the terms
m1, m2, m3 (see Eqs. (15)–(17)) and for the moments �1, �2, �3
(see Eqs. (18)–(20)). Thus, the analytical solution to the selec-
tion of parameter c, given by (25), also depends solely on b
and h�.
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The method proposed here can be summarized by the
following steps. For every kernel h�(k1, . . . , k�) do:

1. Choose an arbitrary value for the Kautz parameter b ∈
] − 1, 1[.

2. Once kernel h� is known, compute the functions geven and
godd using Eqs. (21) and (22), respectively.

3. Compute the terms �1, �2, �3 from Eqs. (18) to (20) and
the moments m1, m2, m3 using (15)–(17).

4. Compute copt using Eq. (25).
The resulting pair (b, copt) represents the Kautz parameters that
minimize the upper bound L(c) for the squared norm of the
error resulting from the truncated expansion of the Volterra
kernels with this specific value of b.

4. Illustrative example

Suppose that a specific system has the following second-
order Volterra kernel:

h2(k1, k2) = (k1 − 2k2) exp(−�1k1 − �2k2)

· cos(�1k1 + �2k2) (26)

for k1, k2 �0. For negative values of k1 or k2, h2(k1, k2) is
assumed to be null (causal system). Long memory terms of the
kernels—longer than 30 memory lags—are considered to be
null. In other words, the multiple summations in Eq. (3) go until
k1, k2 = 30. The selection of this factor represents a practical
truncation for the Volterra kernels, i.e., a constant � < ∞ such
that h�(k1, . . . , k�) is assumed to be null for kj > �, ∀j ∈
{1, . . . , �}. This value can be set based on the saddle or rise
time of the system. The real-valued constant �j (j = 1, 2) can
be seen as the decay rate of kernel (26) along the jth axis,
whereas �j is the frequency with which the kernel oscillates
in that direction. For this example, let �1 = 0.45, �2 = 0.7,
�1 = 100 and �2 = 1.

The choice of b=0.4, for instance, results in copt =−0.2083,
computed via Eq. (25). For (b, c) = (0.4, −0.2083) the NQE
associated with the approximation of h2, computed using (11),
is shown in Table 1 for different numbers of Kautz functions.
The values of the upper bound (14) are presented as well.

For each value of parameter b in the interval ] − 1, 1[, the
corresponding copt is given by (25). The lowest upper bound
L(c) results from the optimal pair (b, copt)=(0.593, −0.2594).
For these values, the Kautz poles are computed from (9) and
(10) as (�, �̄)= 0.3734 ± i0.3464. The associated upper bound
is L(c) = 0.0239 when using M = 8 Kautz functions. Fig. 1
illustrates the kernel (26) and Fig. 2 shows the corresponding

Table 1
Approximation errors and upper bounds for the orthonormal series expansion
of kernel (26) with different numbers of Kautz functions

Number of functions (M) NQE L(c)

2 0.7352 0.8305
4 0.2830 0.3183
6 0.0588 0.1274
8 6.936 × 10−3 0.0853

5
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Fig. 1. Second-order kernel (26).
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˜

Fig. 2. Approximation of kernel (26) for b = 0.593, c =−0.2594, and M = 8
Kautz functions.

approximation of this kernel computed using Eq. (4). The error
associated with this approximation is obtained from (11) as
NQE = 1.242 × 10−3.

5. Conclusions

In this paper, an optimization of a two-parameter Kautz basis
for the orthonormal series expansion of discrete-time Volterra
models of any order has been addressed. An analytical solution
for the choice of one of the Kautz parameters in Wiener/Volterra
models has been derived. This solution is based on the mini-
mization of an upper bound of the error resulting from the trun-
cated approximation of Volterra kernels using Kautz functions
and presumes that the kernels are a priori known. It indirectly



A. da Rosa et al. / Automatica 43 (2007) 1084–1091 1089

minimizes the number of functions associated with a given
series truncation error.

The results reported here represent an extension of the
results found in Tanguy et al. (2002), where a solution has been
obtained for the particular case in which the Kautz basis is used
for expanding the first-order Volterra kernel (linear model).
By means of an illustrative example, it has been seen that the
use of orthonormal basis functions is a suitable framework for
modeling nonlinear systems when prior information about the
system kernels is available. Simulation results have shown that
the proposed method can provide satisfactory approximations
of nonlinear systems with oscillatory behavior.
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Appendix A. Proof of Theorem 1

Let x(k1, . . . , k�) be a nonnull function, which is null for
kj < 0 (j =1, 2, . . . , �). Suppose that x is absolutely summable
on [0, ∞), i.e.:

∞∑
k1=0

· · ·
∞∑

k�=0

|x(k1, . . . , k�)| < ∞.

The coefficients ϑi1,...,i� of the Laguerre expansion of function
x are given by

ϑi1,...,i� =
∞∑

k1=0

· · ·
∞∑

k�=0

x(k1, . . . , k�)

�∏
j=1


ij
(kj ), (A.1)

where 
n is the nth Laguerre function. In (da Rosa, 2005),
it is shown that these coefficients satisfy

∞∑
i1=1

· · ·
∞∑

i�=1

(i1 + · · · + i�)ϑ
2
i1,...,i�

= −2c�1(x) + (1 + c2)�2(x) + ��3(x)

1 − c2
(A.2)

with �1(x), �2(x) and �3(x) given by Eqs. (18)–(20).
Consider now the Laguerre expansions of the functions geven

and godd in (12) and (13) with coefficients �i1,...,i�
and �i1,...,i� ,

respectively, such that

geven(k1, . . . , k�) =
∞∑

i1=1

· · ·
∞∑

i�=1

�i1,...,i�

�∏
j=1


ij
(kj ), (A.3)

godd(k1, . . . , k�) =
∞∑

i1=1

· · ·
∞∑

i�=1

�i1,...,i�

�∏
j=1


ij
(kj ). (A.4)

By comparing Eqs. (12) and (13) to (A.3) and (A.4), it is
straightforward to verify that the coefficients �(·) of the expan-
sion of kernel h�(k1, . . . , k�) using Kautz functions are related

to the coefficients of the expansions above as �i1,...,i�
=�2i1,...,2i�

and �i1,...,i� = �2i1−1,...,2i�−1, ∀i1, . . . , i�. Then, by using the
inequality (Campello et al., 2004)

�(M + 1)

∞∑
i1=M+1

· · ·
∞∑

i�=M+1

�2
i1,...,i�

�
∞∑

i1=1

· · ·
∞∑

i�=1

(i1 + · · · + i�)�
2
i1,...,i�

(A.5)

it follows that
∞∑

i1=M+1

· · ·
∞∑

i�=M+1

�2
i1,...,i�

� 1

�(M + 1)

∞∑
i1=1

· · ·
∞∑

i�=1

(i1 + · · · + i�)�
2
i1,...,i�

= 1

�(M + 1)

∞∑
i1=1

· · ·
∞∑

i�=1

(2i1 + · · · + 2i�)�
2
2i1,...,2i�

+ 1

�(M + 1)

∞∑
i1=1

· · ·
∞∑

i�=1

[(2i1 − 1) + · · · + (2i� − 1)]

· �2
2i1−1,...,2i�−1

� 2

�(M + 1)

∞∑
i1=1

· · ·
∞∑

i�=1

(i1 + · · · + i�)�
2
i1,...,i�

+ 2

�(M + 1)

∞∑
i1=1

· · ·
∞∑

i�=1

(i1 + · · · + i�)�
2
i1,...,i�

. (A.6)

The left-hand side of inequality (A.6) is the (quadratic) ap-
proximation error of kernel h�(k1, . . . , k�) (Campello et al.,
2004, 2006). Then, dividing (A.6) by ‖h�‖2 and using (A.2)
results in:

NQE

�2 ·
[−2c�1(geven) + (1 + c2)�2(geven) + ��3(geven)

�(M + 1)‖h�‖2(1 − c2)

]

+ 2 ·
[−2c�1(godd) + (1 + c2)�2(godd) + ��3(godd)

�(M + 1)‖h�‖2(1 − c2)

]
.

(A.7)

Finally, the substitution of Eqs. (15)–(17) into inequality
(A.7) completes the proof. �

Appendix B. Proof of the feasibility of �

First and foremost, note that

0 <

�∑
j=1

⎛
⎝ ∞∑

k1=0

· · ·
∞∑

kj =0

· · ·
∞∑

k�=0

kj [x(k1, . . . , kj , . . . , k�)

± x(k1, . . . , kj − 1, . . . , k�)]2

⎞
⎠

= 2�2(x) ± 2�1(x) + ��3(x). (B.1)
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By making x = geven and x = godd in (B.1), one gets the
following two inequalities:

2�2(geven) ± 2�1(geven) + ��3(geven) > 0, (B.2)

2�2(godd) ± 2�1(godd) + ��3(godd) > 0. (B.3)

The sum of (B.2) and (B.3) yields

2�2(geven) + 2�2(godd) + ��3(geven) + ��3(godd)

> ± [2�1(geven) + 2�1(godd)]
which allows to conclude that∣∣∣∣2�2(geven) + 2�2(godd) + ��3(geven) + ��3(godd)

2�1(geven) + 2�1(godd)

∣∣∣∣> 1. (B.4)

Finally, the use of Eqs. (15)–(17) into (B.4) leads to |(m2+m3)/

(2m1)| = |�| > 1. �
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