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Abstract—A novel technique for selecting the poles of or-
thonormal basis functions (OBF) in Volterra models of any order
is presented. It is well-known that the usual large number of
parameters required to describe the Volterra kernels can be signif-
icantly reduced by representing each kernel using an appropriate
basis of orthonormal functions. Such a representation results in
the so-called OBF Volterra model, which has a Wiener structure
consisting of a linear dynamic generated by the orthonormal
basis followed by a nonlinear static mapping given by the Volterra
polynomial series. Aiming at optimizing the poles that fully param-
eterize the orthonormal bases, the exact gradients of the outputs
of the orthonormal filters with respect to their poles are computed
analytically by using a back-propagation-through-time technique.
The expressions relative to the Kautz basis and to generalized
orthonormal bases of functions (GOBF) are addressed; the ones
related to the Laguerre basis follow straightforwardly as a partic-
ular case. The main innovation here is that the dynamic nature of
the OBF filters is fully considered in the gradient computations.
These gradients provide exact search directions for optimizing the
poles of a given orthonormal basis. Such search directions can,
in turn, be used as part of an optimization procedure to locate
the minimum of a cost-function that takes into account the error
of estimation of the system output. The Levenberg-Marquardt
algorithm is adopted here as the optimization procedure. Unlike
previous related work, the proposed approach relies solely on
input-output data measured from the system to be modeled, i.e.,
no information about the Volterra kernels is required. Examples
are presented to illustrate the application of this approach to the
modeling of dynamic systems, including a real magnetic levitation
system with nonlinear oscillatory behavior.

Index Terms—Back-propagation-through-time technique,
generalized orthonormal bases of functions (GOBF), Kautz, La-
guerre, linear and nonlinear systems identification, optimization,
orthonormal basis functions (OBF), Volterra series.

I. INTRODUCTION

I N recent years, there has been an increasing interest in
the use of orthonormal basis functions (OBF) in studies

involving the identification and control of dynamic processes
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[10], [15], [23], [24], [47], [48], [52]. The main reason for using
OBF in such areas is that the corresponding approximate (mod-
eling and control) problems usually have simpler solutions,
since the orthonormality of these functions often yields simpler
general models. One important issue involved in the use of an
OBF-based model structure is the incorporation of approximate
knowledge about the dominant dynamics of the system into the
identification process [14], [21], [49]. This knowledge allows
the number of free-design parameters of the model and, accord-
ingly, the variance of their estimates, to be drastically reduced.
The consequence is an increase in robustness and accuracy of
the results. In what concerns robustness, another advantage of
OBF models is that the OBF dynamics correspond to all-pass
filters, which are robust for numerical implementation [13].

The Laguerre and Kautz bases [5], [19], [23] are the most
commonly used OBF for the approximation of signals and
systems. They are preferable for the modeling of systems
having first- or second-order dominant dynamics, respectively.
To model systems with more complex dominant dynamics,
Generalized Orthonormal Basis Functions (GOBF)1 [14], [15],
[21], [22], [47] may be more appropriate, with the caveat that
they involve more complex parameterizations.

Since the poles of the OBF are free-design parameters, their
optimal selection constitutes an important stage of the model
identification problem. When properly selected, an orthonormal
series can increase the speed of convergence in problems of
identification [14], [15]. In fact, if the parameterization of the
basis is set close to the dominant modes of the system, then
an accurate approximation can be obtained with fewer coef-
ficients. For the Laguerre basis, analytical developments that
lead to closed optimization solutions have been extensively ad-
dressed for both linear and nonlinear domains [6], [9], [11], [12],
[17], [25], [27], [33], [34], [37], [40]. As observed in [31], a no-
torious advantage of the Laguerre basis is that its functions sat-
isfy a suitable difference equation. Indeed, the Laguerre basis
involves rational transfer functions with a simple recursive form
and completely parameterized by a single real-valued pole (the
Laguerre pole). For this reason, the Laguerre basis is preferable
for representing well-damped dynamic systems.

Systems with poorly damped dynamics, however, typically
cannot be accurately approximated with a small number of La-
guerre functions. In other words, such functions are not very

1Although the term Generalized Orthonormal Basis Functions is originally
due to the formula by Heuberger and Van den Hof [14], [15], this term will
be generically used hereafter to refer to orthonormal bases of functions with
multiple modes.
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well suited to approximate signals with strong oscillatory be-
havior [16], [26], [47]. This drawback has led to an increasing
interest in the two-parameter Kautz functions, introduced in [3].
These functions can better approximate underdamped systems
for being parameterized by a pair of resonant poles. Optimality
conditions for the error between the impulse response of a given
linear system and its Kautz approximation were derived in [16],
[18]. In the context of pole location, a sub-optimal analytical
choice of Kautz poles for discrete-time linear systems was pro-
posed in [31], and the corresponding nonlinear counterpart was
later addressed for Volterra models in [35], [41]. More recently
[42], an analytical solution for one of the parameters related to
the Kautz poles was derived when any-order Volterra kernels
are decomposed into a set of independent orthonormal bases,
each of which is parameterized by an individual pair of conju-
gate Kautz poles associated with the dominant dynamic of the
kernel along a particular dimension. This is an extension of the
findings in [35] and [41], in which the solution involves a single
Kautz basis for expanding a given kernel along all its dimen-
sions.

Despite the important theoretical results and advances
achieved in regard to analytical approaches to the optimization
of the poles of orthonormal bases, the solutions so far derived
suffer from at least one of the following drawbacks: (i) a model
of the system (e.g. FIR or Volterra) must be known in advance.
For obvious reasons, this is often a hard requirement in prac-
tice, especially in the nonlinear case; (ii) the solution is only
sub-optimal, for it minimizes an upper bound of the approxi-
mation error and/or for it optimizes only a subset of the basis
parameters; and (iii) the solution is restricted to the Laguerre or
Kautz bases. As far as the authors know, no analytical solution
for optimization of GOBF has been derived so far. The reason
is probably the structural complexity of the generalized bases,
whose functions have independent parameterizations.

In contrast to the analytical methods, a different approach to
the problem of pole location can be adopted that utilizes numer-
ical procedures for optimization. For the reasons just described,
numerical procedures are mandatory when optimizing GOBF
or when no model of the system is known in advance. In this
context, numerical procedures for selecting OBF poles in an
iterative manner have been proposed [20], [28]–[30], [32], [36],
[38], [39]. However, such iterative procedures cannot guarantee
either optimality, convergence, or both. A general optimization
formulation that conceptually embodies both the optimality
and convergence requirements has been suggested in [39], but
no strategy has been provided for determining the search direc-
tions to be followed by the optimization algorithm. The main
difficulty comes from the fact that the relations between the
model output and the OBF parameters (poles) are governed by
dynamic equations. The use of the gradient descent technique
was proposed in [28], but the gradient formulation and the
corresponding search directions were roughly approximated
by means of instantaneous (static) estimates of their partial
derivatives. The present paper provides a method for the precise
determination of search directions based on the analytical
recursive computation of the derivatives of the output of the
orthonormal basis filters with respect to their poles (back-prop-
agation-through-time technique). Such derivatives can then be

used as part of an optimization method to obtain exact search
directions for the OBF poles that fully encompass the dynamic
nature of these parameters. The Levenberg–Marquardt method
[2], [4], [49] is adopted in this paper, since it can significantly
outperform gradient descent and conjugate gradient methods
for medium sized problems and is a usual choice in nonlinear
optimization.

The remainder of the paper is organized as follows. In the
next section, orthonormal basis functions are reviewed in the
context of OBF Volterra models. In Section III, the problem of
optimizing the poles of orthonormal bases in the description of
linear systems (first-order Volterra models) is formulated and
the main mathematical foundations for numerically solving it
are furnished. In Section IV, the detailed formulae for the Kautz
basis are provided. In Section V, the formulation for GOBF is
investigated; Laguerre follows straightforwardly as a particular
case. In Section VI, the formulations are extended to any-order
Volterra models. In Section VII, a simulation example is pre-
sented and the results are compared with those from equivalent
experiments reported in the literature. In Section VIII, an appli-
cation to the modeling of a real magnetic levitation system with
nonlinear oscillatory behavior is described. Finally, Section IX
addresses the conclusions.

II. APPROXIMATION OF VOLTERRA MODELS USING

ORTHONORMAL FUNCTIONS

A Volterra model is essentially an input-output functional
(polynomial) expansion of a nonlinear system whose structure
is given by a straightforward generalization of the unit-impulse
response model [46], [49]. The absence of output recursion in
these models, their direct link to the nonlinear realization theory,
and their ability to represent a wide class of nonlinear systems,
among other desirable properties, make them very attractive.
In the discrete-time domain, the mathematical description of a
Volterra model relates the output of a physical process to
its input as [51], [52]

(1)

where the multidimensional functions are the
th-order Volterra kernels. Although these models can describe

a wide class of nonlinear systems, their practical use is limited
due to the usually large number of coefficients that are needed
to be estimated, even for simple problems. Such a drawback can
be avoided by expanding the Volterra kernels using orthonormal
bases of functions. The number of parameters necessary to rep-
resent the models can thus be drastically reduced if properly de-
signed bases of functions are adopted.

Approximating a given dynamic system by means of a trun-
cated orthonormal series was first suggested by Wiener [53]. A
representation of Wiener type [49], [51] consists of a linear dy-
namic, here composed of a set of orthonormal filters, followed
by a nonlinear static mapping, here represented by the Volterra
series. The basic idea of such OBF Volterra models is to de-
scribe the Volterra kernels by means of an expansion using
OBF in such a way that one needs to determine the coefficients
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Fig. 1. General OBF model: static (linear or nonlinear) mapping over the out-
puts of a set of� orthonormal filters.

of this expansion in lieu of the coefficients of the kernels. For-
mally, the kernels can be mathematically described using an
orthonormal basis of functions as [52]

(2)

which assumes that the kernels are absolutely summable on
. In practice, this condition can be assured by forcing

the long memory terms of the kernels to be null, which is pos-
sible provided that the system to be modeled is stable. In other
words, is assumed to be zero for

. An appropriate value for can be set based on
the saddle or rise time of the system.

If the input signal in (1) is bounded so that
, then the higher-order kernels can be ignored in such a way

that the resulting Volterra model is truncated to a finite-order
[46]. Furthermore, for computational reasons, (2) is, in practice,
approximated with a finite number of functions, as follows:

(3)

Hence, if it is assumed that for , then (1) can be
approximated as

(4)
In [8], it is shown that truncated Volterra models, such as

those in (4), can approximate to desired accuracy any time-in-
variant analytical nonlinear system with fading memory and
bounded input. Indeed, any prescribed approximation accuracy
can be obtained by setting the number of kernels, , and func-
tions, , to appropriate finite values.

A schematic description of OBF Volterra models is shown
in Fig. 1, where denotes the response—to the input

—of the filter with impulse response , i.e.

(5)

(6)

Since model (4) is linear in the parameters , these param-
eters can be straightforwardly computed using a least-squares

algorithm. Clearly, the overall number of parameters depends
upon the number of functions, , used in the kernels expan-
sions. This quantity represents a trade-off between accuracy and
parsimony of the model and can be significantly reduced by op-
timally designing the set of orthonormal filters . However,
the actual value for required to provide an accurate approxi-
mation also depends on the complexity of the specific problem
in hand. Dynamic systems with multiple dominant modes, for
example, typically require models with a larger number of func-
tions.

Remark 1: Note that the OBF Volterra model in (4) implic-
itly assumes that all its kernels are expanded using the same or-
thonormal basis . Actually, each th order kernel can be
expanded using an independent basis of functions (e.g.
see [33], [52]), as will be shown in the experiments reported in
Sections VII and VIII. For the sake of simplicity and without
any loss of generality, however, most of the theoretical devel-
opments in this paper will be presented following the same rep-
resentation adopted here in this section, i.e., assuming that all
Volterra kernels are expanded using the same orthonormal basis

.

A. Orthonormal Basis Functions

The use of orthonormal filters for representing signals and
systems has a long history, since the pioneering proposals by
Takenaka [1], Wiener [53], and others. The problem of building
a set of orthonormal continuous functions was presented in [3],
whereas the corresponding discrete case was solved in [5]. Dis-
crete-time orthonormal basis functions can be generated by cas-
cading different all-pass filters of order one or two, as follows
[21], [47]:

(7)
where are the stable poles of the orthonormal basis

and denotes the complex conjugate of
. The functions in (7) are the so-called Takenaka-Malmquist

functions [47]. The corresponding realizations in time-domain,
, are given by the inverse -transform of (7) and sat-

isfy the orthonormality property. The set is complete on
if and only if [21], [47], so any

finite energy signal (including absolutely summable kernels)
can be approximated with any prescribed accuracy by linearly
combining a certain finite number of such functions. In general,
functions are complex-valued, although this is physi-
cally unrealistic in system identification problems. It is shown in
[21] that this drawback can be circumvented by constructing a
modified basis of functions with real-valued impulse responses,
consisting of a linear combination of the complex-valued func-
tions generated by (7).

When all the poles of (7) are real-valued and equal to each
other, i.e. , one gets the Laguerre basis,
which can be written in the -domain as [11], [12], [17]

(8)
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with denoting the Laguerre pole. By setting , the La-
guerre functions simplify to an ordinary Pulse Basis

and model (4) reduces to the ordinary Nonlinear Fi-
nite Impulse Response (NFIR) Volterra model, i.e., a truncated
version of (1).

Another important OBF realization, which has also been
shown to be a particular case of a unifying construction for (7)
[21], is obtained by cascading an all-pass filter with pole at
and an all-pass filter with pole at , in such a way that the pairs
of conjugate poles are equal to each other for any value of ,
i.e. . The result is the well-known Kautz basis,
whose functions are defined in the -domain as [13], [31], [47]

(9)

with and denoting the even and odd Kautz
functions, respectively. Scalars and are real-valued parame-
ters satisfying and . These parameters are related
to the pair of Kautz poles as

(10)

(11)

Expressions analogous to (9) can be found, e.g., in [16], [18].

III. PROBLEM STATEMENT

This section elaborates on the problem of adjusting those pa-
rameters of OBF models that relate dynamically to the model
output. First, the back-propagation-through-time technique is
briefly reviewed [49], whose basic idea is to unfold the dynamics
of a given model in a recursive way until the model is only de-
scribed by static relations. In order to make the basic idea easier
to understand, the technique is initially presented in the context
of linear systems. The optimization of the parameters of OBF
models based on this technique is also initially discussed for
the linear case in this section. The generalization to any-order
Volterra models is addressed in Section VI.

A. Back-Propagation-Through-Time Technique

Consider a linear dynamic system represented by a static
mapping over a set of input and output regression terms

(12)
where denotes the model output. In this sort of model,
so-called Output-Error (OE) model [49], the static mapping
relates dynamically to the model output, since it is implicitly
and recursively included into terms . Hence, the pa-
rameters of mapping cannot be directly estimated from data

using a standard estimation approach, like a least squares al-
gorithm. Instead, the correct approach consists of representing
the dynamics of the system by means of several static models
unfolded through explicit time-recursions. In order to illustrate
this, let’s consider, for instance, model (12) with ,
i.e.

(13)

Then, let the static mapping be such that it can be parameter-
ized by a set of free-design parameters, namely, the parameter
vector of the model. This vector can be optimized if the gra-
dient of a cost-function with respect to it is available. Such a
gradient depends on the derivatives of the model output with re-
spect to the elements of . Particularly, provided that the model
is linear, one can infer from (13) that

(14)

where and are the complementary portions of that
depends and does not depend on , respectively, and

is the th element of the parameter vector . The first term
of (14) represents the static aspect of that equation. The second
term arises from the recursive component and represents the dy-
namic aspect of the equation. Note that, if was an exoge-
nous signal, such as the measured process output , there
would be no dependence of this signal on the model parameters
and the second term of (14) would be null. In OE models, how-
ever, is the output of the model itself in a previous time
instant, which does depend on . Thus, the second term of (14)
requires the derivatives of the model output at the previous time
instant with respect to the model parameters. These derivatives
can be calculated from as

(15)

Again, the second term in (15) requires the derivatives of the
output at the preceding time instant. This procedure continues
until the initial conditions at are reached; at this time,

and, accordingly, .
In summary, the back-propagation-through-time technique

decomposes the dynamics of a system into a series of static
representations. This approach allows describing the derivatives
of the model output in terms of the initial conditions and the
input signal only, by backtracking steps through time. This
technique is illustrated in Fig. 2.

B. Optimization of OBF Poles

Consider initially a first-order OBF Volterra model (linear
OBF model). In this case, the static mapping in Fig. 1 is a
linear function, and model (4) can be rewritten as

(16)

where is defined as (5). The strategy adopted here con-
sists essentially of the optimization of both the pole vector
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Fig. 2. Back-propagation-through-time technique.

that parameterizes the orthonormal basis and the corre-
sponding coefficient vector . To do so,
one defines the following optimization problem:

(17)

where and is the number of input-output
(I/O) data samples to be used in the optimization procedure. The
gradients of functional in (17) with respect to vectors and

are readily obtained from (16) as

(18)

(19)

where .
The central contribution of the present paper is the derivation

of detailed analytical formulae for computing and
their application to optimizing the poles of model (16) using
a gradient-based optimization algorithm. In particular, the
well-known Levenberg-Marquardt algorithm [2], [4], [49] is
suggested and adopted here. The basis of this algorithm is a
quadratic approximation of within a small neighborhood of
its arguments (model parameters). The algorithm approximates
the Hessian (i.e. matrix of mixed partials) of with respect to
the parameters using only the information of the corresponding
first-order derivatives (gradients). Specifically, it estimates the
Hessian matrix using the sum of outer products of the gradi-
ents in (18) and (19). Denoting as the Jacobian of the
cost-function , the algorithm updates the parameter vector

according to the following equation [49]:

(20)
where is a regularization factor and is the identity matrix.

Fig. 3. Diagram of the dynamic portion of a Kautz model: OBF filters for� �

�� �� � � �.

The Levenberg-Marquardt algorithm is a pseudo-second
order method, which means that it relies on function evalua-
tions and gradient information only. This algorithm is globally
convergent, that is, it converges from any starting point
towards a point satisfying necessary optimality conditions
for a local minimizer of , i.e. . Of course, it is
not possible to ensure that is a global minimizer of
unless is a convex function [50]. The Levenberg-Mar-
quardt algorithm can be thought of as a combination of the
steepest descent and Gauss-Newton methods [49]: when the
current solution is far away from the optimum, the algorithm
behaves like a steepest descent method (slow, but guaranteed to
converge); close to the optimum, it becomes a Gauss-Newton
method, thus converging faster.

Section IV presents a study when the Kautz basis is
used to implement the OBF model in (5) and (16).

IV. TWO-PARAMETER KAUTZ FORMULATION

In this section, a scheme like that in Fig. 2 is used to derive ex-
pressions that describe the outputs of the OBF filters in terms of
both their initial conditions and the input signal. These expres-
sions are then used as a basis for deriving the gradients of the
filter outputs with respect to the OBF parameters, i.e.,
in (18). Initially, the two-parameter Kautz functions are investi-
gated. The generalization to GOBF is addressed in Section V.

A. The Even Kautz Functions

According to the definition of the Kautz functions in (9), a
block diagram of the filters that compose the dynamics of a
Kautz model can be constructed, as shown in Fig. 3.

Note that the output of the first even Kautz filter
can be written in the -domain as follows:

(21)

In the time-domain, one gets

(22)

An approach to obtain an expression for in terms of both
the initial conditions ( and ) and the input signal

consists of representing (22) in a state-space form. By

defining and ,
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the difference (22) can be rewritten as the following state-space
realization:

(23)

or equivalently, in the matricial form, as

(24)

This model corresponds to the following representation:

(25)

whose solution for is readily given by

(26)

where and the state matrices are given
by

(27)

(28)

(29)

The gradient in (18) is then computed for
in terms of the derivatives of (26) with respect to parameters
and that fully parameterize the Kautz basis, i.e.

. These derivatives are given by

(30)

where matrices and can be computed as

(31)

(32)

So, in order to compute the gradient composed of the derivatives
in (30), it is necessary to compute matrix . This computation
can be much more efficiently performed by representing in its
eigenvectors basis. In this context, it is not difficult do deduce
from (27), (10), and (11) that matrix has eigenvectors
and , with the corresponding eigenvalues equal to and

, respectively. Hence, can be rewritten as ,
where and are given by

(33)

Based on these observations, it follows that:

(34)

when . Contrarily, if , then becomes

(35)

Matrix , however, is not the only one that is needed for com-
puting the derivatives in (30). Instead, matrices , ,

, and are also required. These matrices are derived
from (27) and (28) as

Then, the gradient that
is composed of the derivatives in (30) is now completely deter-
mined.

Equation (30) represents the derivatives of the first even Kautz
function with respect to the Kautz parameters and ,
where is the even Kautz function in (9) for . Ex-
pressions for the Kautz filters with can equivalently be
obtained. According to the block diagram shown in Fig. 3, one
can write

(36)

or in the time-domain

(37)

By using a reasoning analogous to that above for , it is
possible to rewrite model (37) as the following state-space real-
ization:

(38)

with , and as in (27) and (29),
respectively, and , , and given by

(39)
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The solution of (38) for is computed as

(40)

Taking the derivatives of (40) with respect to parameters and
yields

(41)

The terms , , and in (41) are given
by (31), (32), and (34), (35), respectively, and the derivatives

, , and can be readily computed from
(39) as , , and

.
In summary, analytical expressions for the gradients of the

outputs of the even Kautz filters with respect to the Kautz pa-
rameters and have been derived in this section. These gradi-
ents, given by (for

), are described by (30) and (41) for and
, respectively.

B. The Odd Kautz Functions

The goal of this section is to present results analogous to those
obtained in Section IV-A, but with respect to the odd Kautz
functions. Inasmuch as the formulation related to these func-
tions can be derived following precisely the same steps detailed
above for the even functions, the intermediate mathematical de-
velopments are omitted here for the sake of compactness. The
final analytical expressions for the derivatives that compose the
gradients of the outputs of the odd Kautz filters with respect to
the Kautz parameters and for are given by

(42)

with matrices and defined as

and derivatives straightforwardly computed as

, , and
.

For , the analytical expressions for the derivatives are
obtained by replacing with in (41), as presented in
[43].

C. Algorithm

The method proposed here can thus be summarized by the
following steps. Starting from an initial parameter vector , do:

1) Compute the gradient using (18)
and (19). Note: use (30) and (41), as well as their coun-
terparts for the odd Kautz functions, to compute the term

in (18);
2) Use to update the parameter vector according to

the updating policy of a given optimization algorithm (e.g.
Levenberg-Marquardt). Note: include the feasibility inter-
vals of the Kautz parameters and as constraints into the
optimization model so as to prevent the optimization al-
gorithm from producing instable Kautz poles and/or poles
that are not complex conjugate;

3) Go back to step 1 until a stopping criterion has been
achieved.
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V. GENERALIZATION TO THE GOBF

Laguerre and Kautz bases are preferable for modeling
systems with first- and second-order dominant dynamics, re-
spectively. Systems having more complex dominant dynamics
are better represented using models based on generalized
orthonormal bases, because the mathematical description of
such bases involves multiple poles. For this reason, this section
elaborates on how to extend the results discussed so far in this
paper to the GOBF.

Initially, consider the basis functions in (7) parameterized by
real-valued poles only, i.e. for .
In this case, one has

(43)

and the whole collection of free-design parameters (to be opti-
mized) of the GOBF can thus be arranged in a single real-valued
vector encoding all the poles of the basis, i.e. ,
in such a way that

(44)

From (43) and (6) it follows that the output of the first GOBF
filter is given by:

or equivalently, in the time-domain

(45)

The solution of (45) for is readily obtained as

(46)

and the derivative of the output of the first GOBF filter with
respect to its pole can thus be computed as

(47)

For , one can infer the following from (43) and (6):

Equivalently, in the time-domain one has the following differ-
ence equation:

(48)

whose solution for is given by

(49)

Now, it is necessary to compute the derivatives of in
(49) with respect to for in order to obtain the
gradient in (44). Given that ,
the derivatives of (49) with respect to , , and

can be computed using

(50)

(51)

(52)

The steps of the proposed method when the GOBF basis is
adopted in model (16) are essentially the same as those de-
scribed in Section IV-C. The only difference concerns the gra-
dients , which are now given by (44) and computed
using (47) and (50)–(52) for and , respec-
tively. Recall, however, that these equations were derived by as-
suming that the generalized basis in (43) is parameterized with
real-valued poles only. One of the reasons is that, if one or more
poles are complex, then the GOBF in (7) has complex-valued in-
verse -transforms. Fortunately, this drawback can be circum-
vented by using an alternative generalized orthonormal basis of
functions with real-valued impulse responses, as described in
[21]. The gradients can be derived for this alterna-
tive basis in an analogous fashion. The basic idea is outlined in
Appendix A.
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Finally, it is worth remarking that the formulation presented
in this section has been derived by considering that every GOBF
pole is independent of the others. This means that the number of
poles to be optimized coincides with the number of basis func-
tions . In practice, however, one may require only a lim-
ited number of independent poles that can be repeated multiple
times, in such a way that the number of functions becomes a
multiple of the number of poles to be optimized. The formula-
tion regarding this particular case can be derived in a way anal-
ogous to that described above in this section.

VI. GENERALIZATION TO HIGHER-ORDER VOLTERRA MODELS

As discussed in Section III-B, the gradients of the cost-func-
tion in (17), further derived in Sections IV and V, are valid
only for first-order OBF Volterra models (linear OBF models).
In this section we extend those results to any-order OBF Volterra
models. This extension involves only the static portion of the
models, that is, the Volterra polynomial in (4) for , since
the dynamic portion does not depend on the Volterra polyno-
mial order. So, let us consider the th-order term of model (4),
written individually as

(53)

The gradient of (53) with respect to the parameter vector of
the orthonormal basis is given by

(54)

where when is the Kautz basis (Sec-

tion IV) and when GOBF are used
(Section V). Note that the overall output of model (4) can
be rewritten using (53) as , which im-

plies . Hence, the gradient of the
cost-function for the optimization problem (17) can now be
computed as

(55)

where is given by (54). From an analogous reasoning
one has , where can be
readily derived from (53), and the gradient of with respect to

can thus be computed as

(56)

The main steps of the algorithm described in Section IV-C keep
unchanged. The only difference is that the gradients of the cost-
funcion in (17) are now computed using (55) and (56) in place
of (18) and (19), respectively. An asymptotic analysis of the
computational complexity of the method is presented in Ap-
pendix B.

VII. ILLUSTRATIVE EXAMPLE

The proposed method is illustrated in this section by means
of a simulated example and the results are compared with those
from equivalent experiments reported in the literature. Specif-
ically, the proposed method is used to select the poles for the
dynamic system modeled in a contemporary paper [38], which
consists of a second-order Volterra polynomial series with first-
and second-order kernels given by

(57)

(58)

where

in which denotes the unilateral inverse -transform.
Much of the discussions presented in [38] is focused on

comparing the modeling error when varying the number and
the class of orthonormal functions used to expand the above
kernels. Following the lines of [38], the model used here to
approximate the system described above is also a second-order
OBF Volterra representation with two independent general-
ized orthonormal bases and for expanding
the first- and second-order kernels, respectively (see Remark
1 in Section II). The second-order kernel is considered to
be symmetric, which means that it takes the same value for
any permutation of its arguments [52].2 In this case, one has

and the coefficients of the orthonormal
expansion thus satisfy . Hence, the resulting
model can be written as follows:

(59)
with and denoting the result of the filtering
of the input signal by the generalized orthonormal func-
tions and , respectively. The bases and

are designed to have real-valued poles each. Each
basis is parameterized by an individual pole vector, i.e., the
functions describing the first-order term of model (59) are
parameterized by the pole vector ,
whereas the functions describing the second-order term are
parameterized by , where is

2Note that, under the perspective of the output of the Volterra model, it is
possible to replace any non-symmetric kernel with a symmetric equivalent by
means of an ordinary symmetrization procedure [52].
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TABLE I
ESTIMATED GOBF POLES OF MODEL (59) FOR� � �

defined as the real-valued pole of the th function of the th
basis. The calculation of the gradient of (59) with respect to

is thus given by

(60)

Note that the OBF in the first-order term of model (59) depend
solely on their own pole vector , not on the pole vector of
the second-order term , and vice-versa. Hence, the corre-
sponding independent components of the gradients in (60) will
be null.

The system under investigation is assumed to be excited by
a random input signal with mean zero and variance one. Ini-
tially, no noise is added to the system output. An experiment
with is performed using the initialization pole vectors

. The method thus generates a series
of values for the poles until the algorithm converges, after 18
iterations. The final poles are summarized in Table I. The cor-
responding expansion coefficients are given by

(61)

(62)

The original kernels in (57) and (58) are illustrated in Fig. 4(a)
and (b) together with the corresponding kernels of the model,
recovered from the expansion coefficients in (61) and (62), re-
spectively. The output of the model is also compared to that of
the original system with respect to another set of data (valida-
tion data), as illustrated in Fig. 5. The result can be quantified
by the Normalized Quadratic Error (NQE) [38]

(63)

which gives for the noise-free simulation
illustrated in Fig. 5.

For the sake of a fair comparison with [38], an additional ex-
periment was performed under the same conditions adopted in
that reference. Specifically, the model optimization procedure
proposed here was repeated with Gaussian noise corresponding

Fig. 4. Volterra kernels for the illustrative example: (a) original kernel in (57)
(on the left) and its approximation with optimized GOBF (on the right); and (b)
original kernel in (58) (on the left) and its approximation with optimized GOBF
(on the right). (a) 1st-order kernel; (b) 2nd-order kernel.

Fig. 5. Actual output (top), model output (middle) and error (bottom) for a set
of noise-free validation data.

TABLE II
ERRORS OBTAINED USING DIFFERENT METHODS FOR APPROXIMATING THE

SYSTEM WITH KERNELS (57) AND (58) USING� � � ORTHONORMAL

FUNCTIONS (GAUSSIAN NOISE ADDED TO THE OUTPUT)

to a signal-to-noise ratio (SNR) of 30 dB added to the output.
A comparison of the errors obtained for different optimization
methods and orthonormal bases is presented in Table II. The
error obtained using the proposed methodology is computed
by using an independent set of validation data. It is clear from
Table II that, despite the noise added to the output, the modeling
error resulting from the proposed method underwent a stronger
attenuation than that reported in [38]. Table II also shows that,
as expected, models based on GOBF provide better results than
do those involving simpler bases (Laguerre in this case).

Another experiment, reported in a complementary material
by the authors [43], compares the obtained results with expected
results of a theoretical nature that can be derived analytically for
a particular class of linear systems. In that example, the optimal
Kautz poles have been computed by varying the speed (fast,
medium and slow dynamics) of a system ruled by an impulse
response purely characterized by a pair of complex conjugate
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Fig. 6. Laboratory-scale magnetic levitation system: (a) schematic drawn; and (b) real I/O data for model estimation.

poles. According to the results obtained, the poles of the system
have been almost perfectly recovered after a few iterations of
the proposed methodology.

VIII. MODELING OF A REAL MAGNETIC LEVITATION SYSTEM

The magnetic levitation system considered here, schemati-
cally shown in Fig. 6(a), consists of upper and lower drive coils
that produce a magnetic field in response to a dc current. Two
magnets travel along a precision ground glass guide rod. By en-
ergizing the lower coil, one of the magnets is levitated by a re-
pulsive magnetic force. As current in the coil increases, the field
strength also increases and the height of the levitated magnet is
increased too. Two laser-based sensors measure the positions of
the magnets, which are designed to provide large levitated dis-
placements [45].

Let be the mass of the lower magnet, the viscous fric-
tion coefficient between this magnet and air, and the accelera-
tion of gravity. The movement of the lower magnet (Magnet 1)
is governed by ,
where is the position of Magnet 1, is the magnetic force
from Coil 1 interacting with Magnet 1, is the magnetic
force from Coil 2 interacting with Magnet 1, and is the
mutual magnetic force between the two magnets. These forces
are described by the following nonlinear equations:

where is the position of Magnet 2, is the distance between
Coils 1 and 2, and are the currents through Coils 1 and
2, respectively, and , , , and are real-valued constants. In
the sequel, some experimental results for modeling a laboratory-
scale plant of the magnetic levitation system described above are
presented.

Experimental data have been acquired by keeping constant
the dc current applied to Coil 1 of the plant while varying current
through Coil 2. The input signal (current through Coil 2) has

been designed as a sequence of steps with different amplitudes
so as to excite different modes of the system. The measured
output signal has been taken as the position of Magnet 1 .
Fig. 6(b) shows the input and output data available for estima-
tion of the model. Before estimation, these data were sampled
with a period of 0.017 seconds and normalized within [ 1,1]
in order to avoid numerical problems. Another similar yet in-
dependent set of data has also been acquired and reserved for
further model validation.3

The model adopted here relates the input and output
in Fig. 6(b) by means of a second-order Volterra

representation with a symmetric second-order kernel, as usual in
the literature [7], [10]. By describing its first- and second-order
terms as expansions on two independent Kautz bases, the model
equation becomes the same as that in (59). The Kautz functions
describing the first-order term of this model are parameterized
by a pole vector , whereas those describing the

second-order term are parameterized by . The

gradient of the model output with respect to is
thus given by (60).

In this experiment, the initial Kautz poles are chosen
as for the first- and
second-order terms of model (59). In practice, a better initial
estimate of the poles could be obtained by observing the time
response of the system (Fig. 6(b)). Instead, it is considered
here that a naive user has blindly chosen the initial poles as

for they are placed in the
middle of the feasible search space for the real and imaginary
components of the poles. These values result in the initial
real-valued parameter vectors
from (10) and (11). The number of Kautz functions is chosen
as . One thus applies the algorithm using (30), (41),
and their counterparts for the odd Kautz functions to compute

and, consequently, to get the search directions
for the poles. The evolution of the poles of the orthonormal

3The estimation/validation data sets are available at http://www.icmc.usp.br/
~campello/Sub_Pages/IEEETAC_inpress.htm.
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Fig. 7. Evolution of the Kautz poles for the magnetic levitation system throughout iterations (including some contour lines of NQE). The final poles are 0.7328
� i0.2956 for the first-order term and 0.8125 � i0.2863 for the second-order term of the Volterra model. (a) First-order term; (b) second-order term.

Fig. 8. Modeling of the magnetic levitation system: (a) Input signal used for model validation; and (b) actual system output (���� in solid line) and predicted
output of the model with optimized Kautz poles (����� in dotted line).

TABLE III
ESTIMATED KAUTZ POLES FOR THE MAGNETIC LEVITATION SYSTEM

functions for the first- and second-order terms of the model
of the magnetic levitation system is shown in Fig. 7(a) and
(b), respectively. Some contour lines of NQE are also shown
in these figures. Table III presents the values of the Kautz
parameters and poles after the convergence of the algorithm,
which took 39 iterations. The stopping criterion adopted in this
experiment was the difference between the value of in (17)
in successive iterations be less than .

The model of the magnetic levitation system can now be com-
pared to the actual system output with regard to the data samples
reserved for model validation. Fig. 8(a) shows the set of input
data, designed as a sequence of steps with different amplitudes.
Fig. 8(b) displays the corresponding model output, , jointly

with the actual output measured from the system, . It can be
seen that a nearly exact approximation of this highly nonlinear
system has been obtained.

IX. CONCLUSION

A novel strategy for numerical optimization of orthonormal
bases of functions used for approximation of dynamic systems
has been proposed. This strategy, which is valid for linear
models and also for Volterra models of any order, is based on
the computation of analytical expressions for the derivatives of
the output of the orthonormal filters with respect to the basis
poles. Such expressions provide exact search directions to be
used by a numerical method for optimizing the OBF poles in
linear and nonlinear models. The solution for the underlying
problem involves the minimization of a quadratic cost-function
that takes into consideration the error of estimation of the
system output. The expressions related to the Kautz and GOBF
bases have been emphasized, but those related to the Laguerre
basis can be derived straightforwardly as a particular case. The
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main advantage of the proposed method is that it computes
the gradients analytically using only I/O data measured from
the system to be modeled. No previous information about
the system impulse response or higher-order Volterra kernels
is required. Contrarily, the kernels can be straightforwardly
recovered from their optimized OBF expansions if desired. In
particular, first- and second-order kernels recovered from the
series expansion can be used for graphical visualization of the
corresponding dynamics of the model. An illustrative example
involving a nonlinear simulated system has shown that the
proposed method performs very well and arises as a promising
tool for practical OBF-model-based system identification and
control. In this context, the proposed method has been applied
to the optimization of a second-order Kautz-Volterra model of
a real magnetic levitation system with strong nonlinear oscil-
latory behavior. Simulations suggest that the resulting model
represents the dynamics of the system almost perfectly.

Extensions of the proposed ideas towards adaptive, sto-
chastic, robust, and frequency-domain model formulations are
still open problems that deserve further investigations.

APPENDIX A
GENERALIZATION TO GOBF WITH COMPLEX POLES

As discussed in Section II-A, the orthonormal basis func-
tions defined in (7) have complex-valued inverse -transforms
when they are designed with complex-valued poles. This draw-
back can be circumvented by constructing a modified basis of
functions with complementary pairs of real-valued impulse re-
sponses, as shown in [21]. This modified, alternative represen-
tation will be used here to compute the gradients of the GOBF
with complex conjugate poles.

Let us first consider an OBF-based model with the first
basis functions pa-

rameterized by their respective real-valued poles,
given by the set , precisely as in (43).
According to [21], if it is desired to include a complex-valued
pole into this set of poles, then two modified functions

and with real-valued impulse responses
must be constructed as a linear combination of and

in (7). In this case, the new set of functions will
be , with the corre-
sponding set of poles . The pair of
modified functions is given by [21]

(64)

where is the complex-valued pole included into the
GOBF and are real-valued parameters that relate
to as follows:

According to (6), (43) and (64), the following relationship can
be derived:

or equivalently, in the time-domain

(65)

In order to solve the difference equation in (65), it is helpful
adopting a state-space representation. In this case, (65) can be
rewritten as

whose solution for is given by

(66)

where , matrix is as in (29), and
are as follows:

In order to compute the gradient of (66) with respect to ,
this pole can be merely considered as a real-valued vector, i.e.

. In this case, the gradient is defined
as .
The first element of this gradient is given by
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(67)

whereas the second one can be obtained by replacing
with in (67).

Finally, the derivatives of (66) with respect to
can be computed using the following equation:

(68)

The derivations for the complementary basis function in
(64) are analogous (mutatis mutandis) and are omitted here.

If it is desired to include an additional pair of complex con-
jugate poles into the GOBF, then two more functions with real-
valued impulse responses must be constructed as a linear com-
bination of the complex-valued functions in (7), as suggested
in [21]. The corresponding gradients are presented in a comple-
mentary material by the authors [43].

APPENDIX B
ANALYSIS OF THE COMPUTATIONAL

COST OF THE PROPOSED METHOD

This appendix presents an asymptotic complexity analysis
of the proposed method in terms of computing time. For the
reader not familiar with asymptotic analysis, please refer to [44]
for an introduction. Before proceeding with the discussions, it
is important to remark that the search directions generated by
the proposed method can be used jointly with any gradient-
based optimization algorithm, that is to say, their use is not nec-
essarily hooked on the particular optimization algorithm sug-
gested and adopted in the experiments of this paper (Leven-
berg-Marquardt). For this reason, the following discussions are
restricted to the computational complexity of the procedures for
calculation of these directions only.

A. Linear Kautz Model

In the case of linear OBF models with Kautz functions, the
possibly critical variables of the proposed method in terms
of computing time are the number of I/O samples, , and
the number of functions in the orthonormal basis, . The
complexity analysis considered here consists of evaluating the
asymptotic computational cost of the steps of the proposed
method with regard to these variables. The steps are those
necessary to calculate (18), (19), (30) and (41)4 (please, see the
algorithm in Section IV-C).

4The computational complexity of (42) and its counterpart for� � � is the
same as that of (30) and (41).

(I) According to the respective definitions of matrices ,
, , , , , , , , , ,
, , , , , , and

in Sections IV-A and IV-B, it is clear that none
of them depends on any of the above-mentioned po-
tentially critical variables of the problem ( and ).
Hence, their calculation is made in constant time with
regard to these variables, that is, in time.

(II) The cost of computing , either from (34) or (35), is
determined by the cost of computing term . As such
a term can be computed incrementally for ,
the overall cost of computing for all
is of orders of magnitude .

(III) Each matrix multiplication in (31) and (32) is performed
in constant time, but the summation makes the calcula-
tion of and , for , de-
mand time, that is,

, which is .
(IV) It is trivial to show that, by representing the Kautz dy-

namics in state-space form, the calculation of the out-
puts of all the Kautz filters in a given time instant

, , can be made in time.
Since it is necessary to calculate all the filter outputs for

, one gets time. Once the out-
puts of the Kautz filters have been computed, it is pos-
sible to compute the output of the model, , for all

, using (16). Such a computation demands additional
time. Hence, the calculation of the outputs of

the filters and the output of the model for all sampling in-
stants demand time, or, equivalently,

.
(V) Once all the terms mentioned in the previous items are

available, (30) and (41) can be computed. Each of them
demands, for and given (fixed), a number propor-
tional to algebraic operations, each of which to be
computed in constant time, i.e., in time altogether.
However, for a given , it is necessary to calculate such
equations for , which results in

time, that is, . Finally, it is necessary
to carry through these calculations for each one of the
Kautz filters, that is, , which implies a
total time of orders of magnitude .

(VI) Let be the dimension of the pole vector in (18). The
computational time needed to calculate all the scalar
components of in (18) is of orders of magnitude

. For the Kautz basis it follows that
, which implies .

(VII) The time required for calculation of each one of the
scalar components of the gradient vector in (19) is
of orders of magnitude , which implies
time for computing the whole gradient.

From items (I) through (VII) listed above, it follows that the
time orders of magnitude for computing the directions for opti-
mization of linear Kautz models according to the method pro-
posed in this paper is . In practice, however,
one typically has , which makes it possible to assert
that the orders of magnitude is simply .
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B. Extensions to GOBF and Volterra

The only difference when GOBF are used instead of Kautz
is that the dimension of the pole vector in (18) is no longer
two, but it is such that . This change affects only item
(VI) of the previous analysis for the Kautz case, that comes to
be when GOBF is used. Such a change, however,
does not affect the overall complexity of the method, which is
still , or simply given the practical
hypothesis that the number of I/O samples used for optimiza-
tion is much greater than the number of orthonormal functions
used in the model ( ). It is not difficult to show that this
result also holds for Volterra models, provided that the Volterra
polynomial order, , is considered to be a predefined constant
rather than a critical variable. Such an assumption is quite real-
istic because, in practice, is typically equal to 2 [7], [10] and
rarely greater than or equal to 3.
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