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Abstract—In the year of 2003 it was established a coopera-
tion agreement between Ukraine and Brazil for utilization of
Cyclone-4 launch vehicle at Alcantara Launch Center. The
company responsible for the marketing and operation of launch
services is the company bi-national Alcantara Cyclone Space
(ACS). The Cyclone-4 launch vehicle is the newest version of
the Ukrainian Cyclone family launchers developed by Yuzhnoye
State Design Office. This family has been used for many suc-
cessful spacecrafts launches since 1969. This paper is concerned
with the yaw stabilization problem around a nominal trajectory
for the third stage of a satellite carrier rocket similar to the
Cyclone-4. Only the steering machine of the main engine is
considered as actuator. The dynamic behavior of the third
stage around the nominal trajectory is modeled as a fourth-
order time-varying linear system whereas the steering machine
is modeled as a linear dynamical system up to third order. The
values of the parameters of the steering machine model are
unknown, however belonging to known intervals. As the main
result, the stabilization problem is solved with a proportional
derivative (PD) controller. The proposed tuning approach takes
into account the robustness of the controller with respect to the
steering machine model uncertainties. The performance of the
PD controller is demonstrated by simulation results.

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 DESCRIPTION OF THE PROBLEM . . . . . . . . . . . . . . . . 2
3 ELECTRO -HYDRAULIC SERVO VALVE : AN EX -

AMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 NON-STATIONARY MATHEMATICAL MODEL

OF DYNAMIC SYSTEM AND CALCULATION OF
PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 STUDY OF STABILITY AREAS . . . . . . . . . . . . . . . . . . . . 8
6 DEVELOPMENT AND RESULTS . . . . . . . . . . . . . . . . . . . 9
7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . .10
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1. INTRODUCTION

A launch vehicle, or Rocket Carrier (RC), in general, is
referred as a rocket carrying some payload into outer space
[22]. There are several common characteristics which must
be taken into account in designing the flight control system
of a RC [22]. To achieve this objective, it is necessary to
study dynamic properties of RC of spacecrafts or satellitesas
objects of control. This is a complex problem because the RC
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model is a time-variant dynamic system [5]. Rockets often
require special guidance and control design strategies that
are able to deal with rapidly time varying parameters [19].
With respect to the control system design, each rocket has a
particular system, which depends on its structure and mission.

During the flight, the rocket is influenced by disturbance
forces due to the influence of environment, the inaccuracy
of rocket and propulsion manufacture and installation and the
inaccuracy of elements and instruments of governance [5]. As
an example, in an ideal situation, the thrust vector should be
in the longitudinal axis of rocket, passing through the center
of gravity. However, in practice, the thrust vector makes a
small angle in relation of the longitudinal axis due to struc-
tures errors and disturbance forces. The result of this angle
is three components of thrust vector, one in the longitudinal
axis, as expected, and the others in the perpendicular axes to
the longitudinal one, taking into account a coordinate system
fixed at the center of mass in the start of launch. These cause
a small variation in the angles of pitch and yaw and a center of
mass displacement. To circumvent this problem of stability,
it used, in the present work, a thrust vector control system
actuating in a single engine rocket. The vector control is
applied in space vehicle nozzles to change the thrust direction
in order to perform maneuvers and small deviations [21].
An electro-hydraulic servo valve, thereafter called steering
machine (SM), is used as actuator.

The electro-hydraulic servo valves have been studied for
many years [1, 6–8, 10–12, 15]. In [1], for example, it is
showed that until 1957, there was around 21 different servo
valve designs. These are used in industrial applications,
such as testing equipments and autonomous manufacturing
systems [15], in flight simulations and robots [7], and, in
the aerospace industry, for flight attitude control of rockets
[11]. Nowadays, in all spacecraft, it is common to use
hydraulic actuators to vary the engine angle [8]. A lot of
studies about these valves are found in the literature, such
as discussion on some issues involved in controlling linear
hydraulic actuators [6], modeling and control of a hydraulic
servo system [7] and designing of a proportional integral
derivative controller attached to electro-hydraulic servo ac-
tuator system [10]. Control of the angular position of the
rotary actuator, which controls the movable surface of space
vehicles is also studied in [10]. A mathematical model for
an electro-hydraulic servo directional valve is presentedin
[12] and a comprehensive dynamic model of a closed-loop
servo-valve controlled hydro-motor drive system is proposed
in [15].

Some investigations about nozzle vector control have been
applied to a mini-launcher [17]. The principles of analysis
and design of launch vehicle flight control are described
in [9], where stability robustness with respect to modeling
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uncertainties and a gimbal angle constraint is discussed. In
[20] a thrust vector control of an upper-stage rocket with
multiple propellant slosh modes is proposed, where the con-
trol inputs are defined by the gimbal deflection angle of a
main engine and a pitching moment about the spacecraft
center of mass. The electro-hydraulic thrust vector control
of twin rocket engines with position feedback was presented
[8], and a comparison between mechanical and gas-dynamic
control system of space vehicle is discussed [18]. In [18],
a mathematical model using mechanical control system that
describes the angular motion of a closed loop dynamic system
in the plane of yaw is considered.

In the present work, a third stage rocket stability control
problem using a SM as actuator of a single engine is investi-
gated. As an example, it is used a rocket similar to Cyclone-
4, which is the newest version of the Ukrainian Cyclone
family launchers developed by Yuzhnoye State Design Office.
This family has been used for many successful spacecrafts
launches since 1969. To solve the rocket stability control
problem, the proposed approach involves:

1. to obtain the equations that describe the system,
2. to calculate the coefficients that vary in time,
3. to construct stability areas,
4. to select the structure and parameters of control system,
5. to validate the choices by mathematical modeling of
movement.

The remainder of this paper is organized as follows. Section
2 presents a description of the control problem, Section 3
describes the electro-hydraulic servo valve model. Section
4 presents the description of dynamic system non-stationary
mathematical model and calculation of equations parameters.
Section 5 is about the construction of stability areas. Section
6 shows the results of control problem to stabilize the yaw
angle by designing a PD controller. Finally, Section 7
presents the conclusions.

2. DESCRIPTION OF THE PROBLEM

Consider the following coordinate systems:

• a coordinate system fixed on the Earth -X0Y0Z0, in the
initial position of rocket at launch site, as shown in Figure1;
• a coordinate system fixed in the center of mass (CM) of
rocket -XY Z, whereX coincides with the direction of the
velocity vector and tangent of rocket trajectory, as shown in
Figure 2;
• a coordinate system related to the rocket, fixed at the initial
position of CM in the start of launch -X1Y1Z1, whereX1 is
aligned with the rocket longitudinal axis andY1 is located in
the plane of symmetry of rocket, as shown in Figure 2;

In Figure 1, the angle in the planeX0Y0 between the horizon
line andX1 is the angle of pitchφ and the angle in the plane
X0Z0 betweenX1 and the planeX0Y0 is the yaw angleψ
(figure 2). The initial coordinate system is used to determine
the position of the rocket as a rigid body in space [5].

In Figure 2, I, II, III and IV represent the symmetrical axis
of rocket andV is the velocity of the rocket. The plane I-
III coincides with the plane of fireX0Y0, andY0 is positive
direction taken from the Earth’s surface [5].

In an ideal situation, the rocket thrust vector should be in
the longitudinal axis of rocket, passing through the centerof
gravity, resulting in a maximum impulse. But, in practice,

Figure 1. Initial coordinate systemX0Y0Z0

Figure 2. Coordinate system related to the rocketX1Y1Z1
and coordinate systemXY Z situated in the center of mass

of the rocket

the mass distribution, small structure errors and disturbance
forces result in a small angle of thrust vector with respect
to this longitudinal axisX1. This angle, in turn, results in
three components of thrust vector: one in the axisX1, one
toward to the lateral in the direction ofZ1 (yaw plane) and
one in direction ofY1 (pitch plane). The lateral component
on the yaw plane is responsible for a moment that results in
an initial small angle of yaw and a CM lateral displacement
with respect to the longitudinal axis, causing instabilityof
the rocket. There are some different ways to deal with this
instability. For example, for the third stage control system
of a rocket similar of Cyclone-4 with a single engine, it is
possible to vary the engine angle within a small range (usually
less than1o) for the upper stages [4]. In this problem it is
considered an angle not greater than5o, generating a moment
about the center of mass and maintaining the rocket stable in
a previous established nominal trajectory area. This scheme
is depicted in Figure 3, whereP is the thrust vector andδ is
the gimballed angle.

Figure 3. Scheme of rocket gimbaled engine
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To control the thrust vector, an SM can be used. This
device turns an electrical current into a hydraulic flow that
can generate a mechanical motion; linear, rotational, shuttle
or unidirectional [13]. It is possible to model an electro-
hydraulic servo valve at various levels of detail, depending
on the project application. For example, when designing the
valve, more detail is needed than when modeling a system
controlled by an already designed one [2]. Its dynamic
can generally be described by first and second-order transfer
functions [15]. The servo-valve mechanism can be variable in
its weight, size, capacity and efficiency. The characteristics of
an SM depends on the rocket and engine structure, as well as
on the mission to be developed. To increase the payload and
decrease the rocket mass, it is better if the SM is small and has
a high capacity, generating a fast response of the engine. To
understand better the dynamic of the electro-hydraulic servo
valve, a third stage rocket mathematical model and stability
study are presented.

3. ELECTRO -HYDRAULIC SERVO VALVE : AN
EXAMPLE

Consider an SM composed by an eletric RL circuit connected
to a steel rod that can move to the left or to the right by an
Small angleθ. The rod is kept from each of two nozzles by
twice the distance and is very small, with weight less than
0.005kg. Connected to each nozzle is a valve that attaches
them to a hydraulic actuator. One of the nozzles is coupled
to a piston system. The actuator works with the difference
of pressure between one of the nozzles (P4) and the piston
system (P3). The system of SM is shown in details in Figure
4, enlarged in relation to the rocket engine.

Figure 4. Sketch of the interaction of SM with a rocket
managing engine

When pressureP3 is equal to pressureP4, the system is in
equilibrium and the rod is exactly at the middle of distance
between the two nozzles. In other words, the valve is in the
null position. Moving the rod to the right untilh by an electric
impulse with an applied tensionu, P4 becomes greater than
P3 and the system composed by nozzles and pistons moves
to the right, opening a gap to the pipes. The pump leads
special oil (working liquid) fromPm to P1 and, as result,
P1 > P2. After that, the oil fromP2 goes to tank passing
throughP3r and the piston betweenP1 andP2 moves to the

right in a distancey. The thrust vector direction changes
and the angleδ that rocket makes with its longitudinal axis
becomes nonnull.

Thereafter, the closed-loop system receives a negative feed-
back until the input is equal to zero and the rod is exactly in
the middle of distance between the two nozzles again. Thus
the system composed by nozzles and pistons returns to the
initial position. The rod is moved to the left by other electric
impulse,P4 < P3, the system also moves to the left, and the
pump leads working liquid fromPm to P2 until P1 = P2.
In this situation, one hasP1 = P2 and δ = 0. Again, by
feedback, the input becomes equal to zero, and the system
is at the null position. A similar procedure occurs when the
system is in equilibrium and the rod moves first to the left.

Summarizing, three cases can be considered:

1. u = 0 andδ = 0: valve at the null position (P3 = P4);
2. u > 0 andδ 6= 0: after the rod has been moved;
3. u = 0 andδ 6= 0: after feedback.

The system that represents the SM and the actuation on the
engine is shown in Figure 5.

Figure 5. Representation of electro-hydraulic servo valve
and its actuation at engine

To the open loop system, the electric RL circuit may be
described by the following differential equation [3]:

T1
dI

dt
+ I = k1u, (1)

whereT1 = L
R

, K1 = 1
R

, L is the inductance andR the
resistance.

The electrical currentI moves the steel rod, so it is the
input to other control block whose output ish, the steel rod
block. The equation that describes this block is a second-
order differential equation given by

m1
d2h

dt2
+ b1

dh

dt
+ C1h = k2I, (2)

where the constantsb1, C1 andk2 are obtained experimen-
tally, k2 is a constant of proportionality,b1 is related with
the expenses of viscous friction energy and the moment of
Coriolis force due to stream of nozzles gas, andC1 is related
with the damped motion of steel rod. The first term in (2) is
obtained from the steel rod moment equation.

Figure 4 shows a steel rod described as a very small rod
near the eletric circuit, in which the moment is represented
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by Iθ̈ = M , whereI is the moment of inertia andθ the
angle of rod rotation. From this figure, it is possible to write
h = rθ for small θ values. By deriving this equation twice
and substituting in the moment equationθ̈ = ḧ/r, it yields
M = ḧI/r. So, the moment of inertia can be written as
I/r = m1. Thus,ḧm1 =M .

It is possible to rewrite equation (2) as follows [3]:

T 2
2

d2h

dt2
+ 2ζ2T2

dh

dt
+ h = K2I, (3)

whereT 2
2 = m1

C1

, 2ζ2T2 = b1
C1

andK2 = k2
C1

.

The outputh becomes input to the variation of the piston
system. BeingA3 the section area of piston system andk3
a constant of proportionality, it is possible to write [3]:

T3
dx

dt
+ x = h, (4)

whereT3 = A3/k3.

Positionx is the input to the variation of pressure∆P =
P1 − P2 = k4x, and∆P is the input to the displacementy
of the piston betweenP1 andP2. The equation that describes
the displacement piston control blocks is:

m4
d2y

dt2
+ b4

dy

dt
+ C4y = A4k4x, (5)

where b4 is related with the expenses of viscous friction
energy and the moment of Coriolis force due to stream of
engine gas,C4 is related with the moment of engine dis-
placement, andk4 is a constant of proportionality. The first
term of equation (5) can be described as moment of engine
movement.

Figure 4 shows an example of engine movement, whereδ
is the engine angle,̄F is the force applied by movement of
piston in the engine, andr′ is the distance between the center
of pressure (CP) and the engine point where the forceF̄ is
applyed. CP is the point of rocket where all the fluid pressure
forces are concentrated (in this case the thrust vector).F̄ is
applied to the CM. Sincey = r′δ and the moment equation
is given byIg δ̈ = M , then for ÿ = r′δ̈, it is possible to
write Ig ÿ/r′ = M , whereIg/r′ = m4, andm4ÿ = M . It is
important to remark that this last equation does not take into
account compressibility of liquid, nonlinear dependences,
and so on. The equation (5) also can be rewritten as:

T 2
4

d2y

dt2
+ 2ζ4T4

dy

dt
+ y =

A4k4
C4

x, (6)

whereT 2
4 = m4

C4

and2ζ4T4 = b4
C4

.

Finally, consideringr′ = 1m, one has|y| = |δ|. The block
diagram of the open loop SM is shown in Figure 6.

Figure 6. Block diagram of the SM in open loop

In order to study this isolated system and its stability, theopen
and the closed loop are considered. For the closed loop, the
equations are almost the same ones than those of the open
loop, however replacingu by the feedback controlu′ − k5y,
wherek5 is a system proportional gain:

T1
dI

dt
+ I = k1(u

′ − k5y). (7)

It is clear that the SM is described by a set of differential
equations formed by (1), (3), (4), (6). To solve them, first of
all, the variation of parameters with respect to time is studied.
As |y| = |δ|, the calculations were performed using onlyy.

Open loop and closed loop systems

Open loop—The parameters used in the computational simu-
lations are shown in Table 1 [3].

Table 1. Parameters of the SM

Parameter Value
T1 0.01s
k1 0.005Ω−1

b1 3.5kg/s
C1 12500N/m
m1 4500kg
u 20V
k2 12.5N/A
T3 100s
m4 1kg
b4 20kg/s
C4 104N/m
A4 104m2

k4 2000V/m

By denotingQol(0) the matrix containing the initial values of
parametersI, h, ḣ, x, y, andDol(t, x) the matrix representing
the set of differential equations for the open loop system, one
has:

Qol(0) =
[

I0 h0 ḣ0 x0 y0 ẏ0
]T

= [ 0 0 0 0 0 0 ]
T
.

Equations (1), (3), (4) and (6) can be rewritten as follows:

Dol(t, x) =

























k1u−I
T1

ḣ

k3I−2T2ζ2ḣ−h
T 2

2

h−x
T3

ẏ
A4k4x

C4
−2T4ζ4ẏ−y

T 2

4

























,

whereζ2 = b1
2
√
C1m1

andk3 = k2
C1

. The graphics obtained
applying the stepu with amplitude of20V are shown in
Figure 7.
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Figure 7. Open loop graphics of variation of parameters
with time

Closed loop—For the closed loop system, it is used a stepU
with amplitude ofU = u′ − k5y, wherek5 = 2 · 103 and
u′ = 20V . The initial values of parameters and the set of
differential equations are given by:

Qcl(0) =
[

I0 h0 ḣ0 x0 y0 ẏ0
]T

= [ 0 0 0 0 0.01 0 ]
T
,

Dcl(t, x) =

























k1(u
′−k5y)−I
T1

ḣ

k3I−2T2ζ2ḣ−h
T 2

2

h−x
T3

ẏ
A4k4x

C4
−2T4ζ4ẏ−y

T 2

4

























.

The graphics for the closed loop are shown in Figure 8.

Figure 8. Closed loop graphics of variation of parameters
with time

Analyzing these graphics in Figs. 7 and 8, one can see that
the state variables converge to a single point and none of them
goes to infinity, so the system is stable. Studying the blocks
of piston variation and piston displacement of device with and
without damping, it was seen that the systems with damping
converge faster than the systems without damping.

To calculate the roots of the characteristic equation of the
open loop and closed loop systems, it is necessary to rewrite
the differential equations in the Laplace domain:

Open loop—


















(T1s+ 1)I(s) = k1U(s),

−k2I(s) + (m1s
2 + b1s+ C1)H(s) = 0,

−H(s) + (T3s+ 1)X(s) = 0,

−A4K4

C4

X(s) + (T 2
4 s

2 + 2ζ4T4s+ 1)Y (s) = 0.

(8)

The roots of the open loop system are computed as:

Zol =



















−388.889 + 1621i

−388.889− 1621i

−100.014− 0.027i

−99.986 + 0.027i

−10 + 99.499i

−10− 99.499i



















.

Closed loop—


















(T1s+ 1)I(s) + k1k5sY (s) = k1U
′(s),

−k2I(s) + (m1s
2 + b1s+ C1)H(s) = 0,

−H(s) + (T3s+ 1)X(s) = 0,

−A4K4

C4

X(s) + (T 2
4 s

2 + 2ζ4T4s+ 1)Y (s) = 0.

(9)

The roots of the closed loop system are computed as:

Zcl =



















−388.889− 1621i

−388.889 + 1621i

−102.387

−97.615

−9.999− 99.527i

−9.999 + 99.527i



















.

By analyzing the roots of the open and closed loop system,
it is also possible to see that its real part is negative, so the
system is stable.

A more general equation

As said before, it is possible to model an electro-hydraulic
servo valve at various level of detail depending of the objec-
tive. Consider again the system of differential equation (8) of
the SM. By isolatingI in the first equation of this system of
equations, one has:

I =
K1

(T1s+ 1)
u.
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ReplacingI in the second equation and isolatingh:

h =
K1K2

(T1s+ 1)(T 2
2 s

2 + 2ζ2T2s+ 1)
u.

Again replacingh in the third equation and isolatingx:

x =
K1K2

(T1s+ 1)(T 2
2 s

2 + 2ζ2T2s+ 1)(T3s+ 1)
u.

Finally, replacingx in the last equation:

y =
A4K4K1K2u

η
,

whereη = (T1s+1)(T 2
2 s

2 +2ζ2T2s+1)(T3s+1)(T 2
4 s

2 +
2ζ4T4s+ 1).

Using |y| = |δ|, one gets the following 6th-order transfer
function:

ηy = A4K4K1K2u. (10)

Since the steel rod is considered very small and moves along
with a small distance or angle, such as the piston system, in
generalT1, T2 andT3 are small. Because of that, equation
(10) can be approximated by a 3rd-order transfer function:

(τ1s+ 1)(τ22 s
2 + 2ζτ2s+ 1)δ = uc, (11)

whereζ is a damping factor,τ1 and τ2 are time constants,
δ the angle of engine movement (output),uc the input. The
damping factorζ is determined by the frictional forces in the
bearings of mobile connections and may vary slightly. The
values ofτ1 and τ2 are determined by mass and geometry
(size) of governing bodies, in particular the control engines.
They are defined as induced drag, present in the control
devices.

4. NON-STATIONARY MATHEMATICAL MODEL
OF DYNAMIC SYSTEM AND CALCULATION

OF PARAMETERS

Using a thrust vector control system, it is possible to gimbal
the engine in order to maintain the rocket stability in a
previous established nominal trajectory area. For this, itis
necessary to obtain the equations that describe the dynamic
of rocket third stage. Those equations describe the lateral
CM displacement acceleration and the acceleration of yaw
angle. In this problem only the control of yaw in its plane
is considered, supposing that the control of pitch and yaw
are independent because of the approximation of small angles
(δ ≤ 5o). The equations in the pitch plane are very similar to
the equations of yaw in this case.

The equation of CM lateral displacement acceleration is di-
rectly proportional to CM lateral displacement velocity, yaw

angle, variation of yaw, the SM angle and the resultant force
of disturbance:

z̈ = azz ż + a′zψψ̇ + azψψ + azδδ + F̄z,

F̄z =
Fz
m
,

(12)

wherez is the rocket lateral deviation of the CM,m is the
third stage mass andFz the perturbed resultant force [5].
This resulting disturbance force can be caused by action of
wind (not in this case because it is considered the mathe-
matical model of third stage), presence of manufacturing and
assembly (installation) errors of a rocket and driving force
installation.

Due to skew and frame deformation respectively, two per-
turbed forces are considered in the model:F1 ≈ P sin( 5

60

o
)

and F2 ≈ P sin( 1060
o
). The forceFz is calculated as

Fz =
√

F 2
1 + F 2

2 [16], see Figure 9.

Figure 9. Perturbed forces due to skew and frame
deformation

The time-variant parametersazz, azψ, a′zψ andazδ can be
calculated using experimental values [16] of thrust, mass,
dimensions of rocket, forces, density of air and area of
transversal section. This model does not consider the terms
that depends of flow rate of total mass and the flow of mth
tank. In the third stage, the density of air (ρ) is considered
negligible and the parametersazz anda′zψ can be considered
zero [5], since these are dependent on the air density.

The equation for the acceleration of yaw angle is similar to
the equation of CM lateral displacement acceleration, but it is
dependent of resultant moment of disturbance:

ψ̈ = aψz ż + a′ψψψ̇ + aψψψ + aψδδ + M̄z,

M̄z =
Mz

Ig
,

(13)

whereIg is the inertial moment of stage andMz the resultant
of perturbed moment. Once again, the parameters can be
calculated using data from [16] and asρ = 0, the parameters
aψz, a′ψψ andaψψ, which depend onρ, will be considered
zero [5].
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Due to skew and frame deformation forces,F1 andF2, the
arising moments areM1 = F1(Lp−Xt) andM2 = F2(Lp−

Xt) (see Figure 9), which result inM ′ =
√

M2
1 +M2

2 . Also,
moments of disturbance arise due to displacement of the CM.
In the yaw plane, the momentM∗

z is calculate asM∗
z = PzHT ,

wherezHT is the distance component of CM in the axisz1
(see Figure 10). The resultant of perturbed moment,Mz, is
calculated asMz =M ′+M∗

z . yHT is the distance component
of CM in the axisy1.

Figure 10. Moment of disturbance relative to CM
displacement

To simplify this complex problem, a PD controller actuating
only on the angle of yaw is considered. For this, one has the
law controluc = Kpψ + Kdsψ, whereKp andKd are the
constants to be determinate (controller gains). Finally, the
set of equations for a rigid hardened rocket that describes the
stability problem is as follows:















s2z − azψψ − azδδ = F̄z,

s2ψ − aψδδ = M̄z,

(τ1s+ 1)(τ22 s
2 + 2ζτ2s+ 1)δ = uc,

uc = Kpψ +Kdsψ.

(14)

The used data are close to those of the Cyclone-4 third
stage [16] whitin the time interval from0 through 0.7s.
Aerodynamic factors are considered negligible since the air
density is disregarded.

The factorazδ is calculated asazδ = −P0/m, whereP0 is the
thrust engine in Earth andm is the mass of the rocket at the
third stage, calculated asm = G(t)/9.81. G(t) = G0 − G′

is the variation in weight with time, whereG0 is the initial
values of weight andG′ the change in weight with time.

To calculateaψδ, it is necessary to use the values of thrust
engine on Earth, the coordinateP0 of CM;Xt; the coordinate
of engine location,Xp = Lp − 1; and the inertia moment

obtained fromaψδ = −P0(Xp − Xt)/I. Lp is the distance
between the beginning of third stage rocket and the end, not
considering the engine. Figure 9 shows a sketch of distances
Xt,Xp, Lp andXd distance of CP to the top of rocket.

Factorazψ is obtained asazψ = −P/m, whereP is the thrust
engine by approximating to small angles,P cos(α) = P and
P sinα = Pα. At least,F̄z = Fz/m is also calculated as
already explained. All the factors were computed in the yaw
plane.

During the time interval0 through0.25s, all the parameters
are null, so the polynomial regression can be performed
considering only the interval[0.3, 0.7]s. A fourth-order poly-
nomial has been used to iterpolate the data. Figure 11 shows
the graphics obtained comparing the used time-variant data
[16] to the polynomial regression for each one of parameters.

Figure 11. Graphics of the polynomial regression

Finally, the mathematical modeling of the time-variant sys-
tem has been obtained. The polynomial functions obtained
for each one of parameters are given as follows:

azψ (t) = −2.047 + 19.027t− 67.266t2 + 103.296t3 − 59.254t4,

azδ (t) = −2.047 + 19.027t− 67.266t2 + 103.296t3 − 59.254t4,

aψδ (t) = −33.285 + 299.319t− 1003t2 + 1437t3 − 751.562t4,

F̄z (t) = 6.679 · 10−3
− 0.062t+ 0.218t2 − 0.333t3 + 0.19t4,

M̄z (t) = 0.216− 2.009t+ 6.912t2 − 10.246t3 + 5.594t4.

(15)
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The set of equations is given by:


















s2z − azψψ − azδδ = F̄z,

s2ψ − aψδδ = M̄z,

−(Kp +Kds)ψ + [τ1τ
2
2 s

3 + (2ζτ1τ2

+τ22 )s
2 + (τ1 + 2ζτ2)s+ 1]δ = 0,

(16)

or, in the time domain:


































d2z
dt2

= azψ(t)ψ + azδ(t)δ + F̄z(t),
d2ψ
dt2

= aψδ(t)δ + M̄z(t),

−(Kpψ +Kd
dψ
dt
) + τ1τ

2
2
d3δ
dt3

+(2ζτ1τ2 + τ22 )
d2δ
dt2

+

(τ1 + 2ζτ2)
dδ
dt

+ δ = 0.

(17)

5. STUDY OF STABILITY AREAS

In order to evaluate the control stability problem, first con-
sider the analysis of area stability construction. To deliver
the payload to a given point on the space, it is considered a
region around the nominal trajectory, i.e., a technical stability
region. That means that if the rocket is maintained inside this
region, the mission would be accomplished. Taking different
instants of time(t = 0.3s, t = 0.4s, t = 0.5s, t = 0.6s, t =
0.7s) and setting the parameters values at these instants [16],
areas of stability are constructed for some probable values
of constantsτ1 and τ2 in order to analyze the influence of
these constants on the size of stability areas. For each instant
of time there are different coefficient values of movement
equations of rocket and different stability areas.

The study of the influence ofτ1 andτ2 on the size of the areas
is important for solving the control problem. These values
are generated for design parameters and cannot be chosen
arbitrarily. They may vary slightly and, in the design, theycan
be changed within some range. It is considered the variation
of τ1 and τ2 between0.001 and 0.15. Each point inside
the stability region defines the coordinatesτ1, τ2, Kp and
Kd, indicating the values of time constants and gains in the
implementation that provide the stable movement of rocket.
The time constants are chosen before constructing the areas,
such as the SM damping factor, chosen between 0.1 and 0.4
(in most of stability area construction was usedζ = 0.3). The
limits of stability regions moves inτ1, τ2,Kp,Kd because of
changes in movement equation coefficients. It is possible that
the selection of the values in the initial instant of design is not
inside the stability region in some moment of flight. In this
case,τ1 andτ2 cannot change, so it is necessary to change
the value of lengthr′ in the SM, the shoulder of control force
relative of CM. The calculation of boundary stability enables
the choice of gain value, formed by the control system and
implemented as needed.

First, it is chosen a time instant to set the parametersazψ(t),
azδ(t) andaψδ(t) is chosen. Then, one isolatesδ in the third
equation of 16 and replaces in the first two system equations.
Finally, the resulting equations are written in the matrix form:







s2 (−azψ)−
(azδKp+azδKds)

(τ1s+1)(τ2

2
s2+2ζτ2s+1)

0 (s2 −
(−aψδKp+aψδKds)

(τ1s+1)(τ2

2
s2+2ζτ2s+1))







[

z(s)

ψ(s)

]

=

[

F̄z(s)

M̄z(s)

]

. (18)

The characteristic polynomial of the first matrix of above
equation, calculated ats = jw, can be written as:

A11(w)Kp +A12(w)Kd = B1(w),

A21(w)Kp +A22(w)Kd = B2(w).

Then, by defining:

∆(w) =

∣

∣

∣

∣

A11(w) A12(w)

A21(w) A22(w)

∣

∣

∣

∣

,

∆1(w) =

∣

∣

∣

∣

−B1(w) A12(w)

−B2(w) A22(w)

∣

∣

∣

∣

,

∆2(w) =

∣

∣

∣

∣

A11(w) −B1(w)

A21(w) −B2(w)

∣

∣

∣

∣

,

one finally gets the PD controller parameters:

Kp(w) =
∆1(w)

∆(w)
, Kd(w) =

∆2(w)

∆(w)
. (19)

For instance, att = 0.3s the polynomialsazψ(t), azδ(t), aψδ(t)
are evaluated as:

azψ(0.3) = −0.084,

azδ(0.3) = −0.084,

aψδ(0.3) = −1.048.

In this example, the range of frequency for the calculation
of Kp, Kd is w ∈ [0, 100] rad/s and the damping factor is
ζ = 0.3. By varying the time constants, the stability areas
can be constructed. As an example, considering the variation
of τ2 inside the interval[0.1, 0.15] with fixed τ1 = 0.01s,
one obtains the plot shown in Figure 12. Similarly, for fixed
τ2 = 0.01s and varyingτ1 inside the interval[0.1, 0.15], one
obtains the plot shown in Figure 13.
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Figure 12. Areas of stability -τ1 fixed

Figure 13. Areas of stability -τ2 fixed

It can be observed that the stability areas in Figure 12
decrease asτ2 increases. In Figure 13, the stability areas
decrease less than in Figure 12, but these areas are a little
dislocated asτ1 increases.

6. DEVELOPMENT AND RESULTS

Consider again the mathematical model of the time-variant
system. Another approach studied in this work is to choose
τ1min ≤ τ1 ≤ τ1max, τ2min ≤ τ2 ≤ τ2max, Kp andKd in
such a way that the yaw angle and its variation to be stable
(converging to zero). The parametersazψ, azδ andaψδ are
considered fixed at a given time instant.

Define the following state-space variables:

z = x0,

dz

dt
=

dx0
dt

= x1,

ψ = x2,

dψ

dt
=

dx2
dt

= x3,

δ = x4, (20)
dδ

dt
=

dx4
dt

= x5,

d2δ

dt2
=

dx5
dt

= x6.

The set of equations (17) is written as:


















































dx0

dt
= x1,

dx1

dt
= azψ(t)x2 + azδ(t)x4 + F̄z,

dx2

dt
= x3,

dx3

dt
= aψδ(t)x4 + M̄z(t),

dx4

dt
= x5,

dx5

dt
= x6,

dx6

dt
= (−a2x6 − a3x5 − x4 +Kpx2 +Kdx3)

1
a1
,

wherea1 = τ1τ
2
2 , a2 = 2ζτ1τ2 + τ22 anda3 = τ1 + 2ζτ2.

Consider the initial values ofz, ż andδ as0, the initial yaw
angleψ as2.5o (0.044 rad) and yaw velocitẏψ as0.044 rad/s.
By setting the SM damping factorζ = 0.4, it was found that
the angle and velocity of yaw are controllable forKp = 1.33
andKd = 0.2. This result was found for the stability area
constructed att = 0.6s, with time constantsτ1 = 0.001s and
τ2 = 0.02s. See Figure 14.

Figure 14. Area of stability

After the study of stability area, the simulation of system
with time-varying parameters is represented by polynomials
azψ(t), azδ(t), aψδ(t). The parameters have been set asτ1 =
0.001, τ2 = 0.02, Kp = 1.33, Kd = 0.2 andζ = 0.4. To
choose these gains, a lot of simulations taking into account
the stability area have been performed.

By varying the time instants, the time constants and proceed-
ing as in the previous section, an extensive study about the
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Figure 15. Dynamic system with non-stationary
characteristics: yaw and yaw variation versus time

Figure 16. Dynamic system with non-stationary
characteristics: SM angle versus time

influences of the parameters in the technical stability areais
performed. The study of each one of these areas enables the
choice of gains in order to stabilize the system. The goal is to
find the value of the parameters leading the initial angleψ and
ψ̇ to zero. Control of lateral displacementz and its variation
ż has not been considered in order to simplify the problem.

Figures 15 and 16 shows the obtained values forψ, ψ̇ andδ
to validate the control design.

Analyzing Figure 15, it is possible to see that the yaw angle

and the variation of yaw approach zero, as expected. These
graphics were obtained for an short period of time because the
initial values of parameters, before the polynomial regression,
are just for0.7 seconds. Because of that, in the simulation of
non-stationary system, the analysis was made for this time
interval.

With respect of SM angleδ, it can be seen in Figure 16 that its
variation is between0.081 and−0.015 rad; i.e., it was taken
into account the overshoot ofδ, −5o ≤ δ ≤ 5o.

7. CONCLUSIONS

The stability control problem of third stage rocket using an
SM as actuator of a single engine has been addressed. This
problem has been approached by obtaining the equations
that describe the system, calculating the time-variant model
parameters, constructing stability areas, and selecting the
structure and parameters of a PD controller.

After choosing the parameters related to the mechanical
electro-hydraulic valve structure, and the controller gains,
which are applied to the yaw angle and velocity, the problem
of obtaining the third stage RC stability inside a technicalarea
could be solved.

The model parameters have direct influence on the stability
areas, such as setting of time variant coefficients, which
describe the third stage rocket dynamic and actuation system.
At every time instant, these coefficients values will generate
different stability areas. Studying the stability areas ineach
instant inside a given interval and the influence of model
parameters chosen in these areas, it was possible to find the
controller gains to stabilize the yaw angle and velocity, taking
care of maximum and minimum values that the engine angle
can reach. If the variation angle of engine were greater than
the engine overshoot, the time constants of SM should be
smaller; i. e., it is necessary an SM with a better valve flow
capacity [2].

To illustrate these theoretical results, computational simula-
tions have been presented. However, the problem of con-
trollability maintenance is a challenge and often demands
solutions that are not traditional [5]. For future works, it
is intended to research and study more about RC as control
object and rocket controllability maintenance.
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Braśılia. His research interests include the areas of modeling
and identification of nonlinear dynamic systems.

Henrique Cezar Ferreira has a Bach-
elor degree in Electrical Engineering
from the Polytechnic University of S̃ao
Paulo (2003), where he also obtained a
Master (2004) and a Ph.D. (2008) degree
in Electrical Engineering. He is cur-
rently an associate professor at the Uni-
versity of Brasilia and a control system
researcher affiliated with the Laboratory
of Automation and Robotics (LARA).

He has experience in Engineering Electric, with emphasis
on control of electronic process, feedback systems, working
mainly in the following topics: robust control robust, non-
linear control, process control, optimization and magnetic
levitation.

João Yoshiyuki Ishihara has a Bach-
elor degree in Electrical Engineering
from the Polytechnic University of S̃ao
Paulo (1990), where he also obtained a
Master (1996) and a Ph.D. (1998) degree
in Electrical Engineering. From 1998 to
2002 he held a post-doctoral position at
the Engineering School of São Carlos,
University of S̃ao Paulo. Since 2004 is
an assistant professor at the University

of Brasilia and a control system researcher affiliated with the
Laboratory of Automation and Robotics (LARA). He has ex-
perience in Electrical Engineering with emphasis on control
of electronic process, feedback systems, working mainly in
the following topics: robust control and filtering, descriptor
systems, systems with Markovian jumps. João Ishihara is a
Fellow Researcher of Productivity of the National Council for
Scientific and Technological Development (CNPq).

Renato Alves Borgesreceived a Master
(2004) and a Doctoral (2009) degree in
Electrical Engineering from the Univer-
sity of Campinas and a PhD degree in
Electrical Engineering from the Univer-
sity of New Mexico (2009) (USA). From
2009 to 2011 he held a post-doctoral fel-
lowship from the State of S̃ao Paulo Re-
search Foundation working at the School
of Electrical and Computer Engineering

at the University of Campinas. He is currently an assis-
tant professor at the Electrical Engineering Department of
the University of Brasilia, and a control system researcher
affiliated with the Laboratory of Automation and Robotics
(LARA). His main research interests are Lyapunov stability
theory, stability analysis of uncertain linear and nonlinear
systems, and linear systems with parameter variations and
finite-time stability.

12


