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A new solution for the problem of selecting poles of the two-parameter Kautz functions in

Volterra models is proposed. In general, a large number of parameters are required to

represent the Volterra kernels, although this difficulty can be overcome by describing each

kernel using a basis of orthonormal functions, such as the Kautz basis. This representation has

a Wiener structure consisting of a linear dynamic generated by the orthonormal basis

followed by a non-linear static mapping represented by the Volterra series. The resulting

Wiener/Volterra model can be truncated into fewer terms if the Kautz functions are properly

designed. The underlying problem is how to select the arbitrary complex poles that fully

parametrize these functions. This problem has been approached in previous research by

minimizing an upper bound for the error resulting from the truncation of the kernel

expansion. The present paper goes even further in that each multidimensional kernel is

decomposed into a set of independent Kautz bases, each of which is parametrized by an

individual pair of conjugate Kautz poles intended to represent the dominant dynamic of the

kernel along a particular dimension. An analytical solution for one of the Kautz parameters,

valid for Volterra models of any order, is derived. A simulated example is presented to

illustrate these theoretical results. The same approach is then used to model a real non-linear

magnetic levitation system with oscillatory behaviour.

1. Introduction

In recent years, there has been growing interest in the
use of orthonormal basis functions (OBFs) in studies
involving the identification and control of dynamic
processes (Schetzen 1989, Dumont and Fu 1993, Bokor
and Schipp 1998, Oliveira et al. 2000, Doyle III et al.
2002, Heuberger et al. 1995, 2005). This approach
consists of representing a given system in terms of an
orthonormal basis for the space of interest. Many
problems of control and signal processing can be
formulated as optimizing a certain cost-function
over the class of stable systems using orthonormal
exponentials (Wahlberg and Mäkilä 1996). Such opti-
mization provides good parameters for modelling this

class of systems, because the property of orthonormality

of those functions facilitates the solution of the problem

and hence leads to a simpler model. Furthermore,

OBF-based models have an output-error structure,

which takes advantage that the deterministic component

of the model can be estimated consistently whenever

the system noise is uncorrelated with the system input

(Nelles 2001). One important issue regarding the use

of orthonormal bases in the model structure is the

incorporation of approximate knowledge about the

dynamics of the system into the identification process

(den Hof et al. 1995, Ninness and Gustafsson 1997,

Nelles 2001), reducing in this way, the number of

parameters to be estimated and consequently increasing

the accuracy of the model.
Models using OBFs can generally be constructed with

a reduced number of terms to describe a given system.*Corresponding author. Email: alex@dca.fee.unicamp.br
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When properly parametrized, such functions lead to
an increase in the speed of convergence in problems of
identification (den Hof et al. 1995, Heuberger et al.
1995), since the parsimony of OBF-based models
depends strongly on the choice of the bases poles.
Moreover, the orthonormal functions correspond to
all-pass filters, which are robust in the implementation
of numerical computations (Wahlberg 1994). The most
commonly used orthonormal bases of functions are the
Laguerre and Kautz bases (Broome 1965, Wahlberg and
Mäkilä 1996; Bokor and Schipp 1998), which are
more suitable for modelling systems having kernels
with dominant dynamics of first and second order,
respectively. To model more complex dynamics, the
generalized orthonormal basis functions (GOBFs)
(den Hof et al. 1995, Ninness and Gustafsson 1997,
Heuberger et al. 2005) are more appropriate, although
they involve a more complex parametrization.
The poles of the orthonormal bases are arbitrary

within a region of stability. Despite this, their selection
can be optimized. Such an optimization allows for
reducing the number of functions associated with a
given series truncation error, thus reducing the resulting
finite-dimensional representation. Many papers have
been written about how this can be done, especially by
means of analytical approaches, as will be discussed
further in this paper. Analytical approaches used for
deriving optimal Laguerre poles are possible since
the Laguerre functions satisfy a suitable difference
equation, which provides further reduction of the
mathematical complexity associated with that problem.
To the best of the authors’ knowledge, however, since
an analogous difference equation relative to the Kautz
functions has not yet been established, no fully
analytical solution for optimal Kautz poles has been
obtained so far.
Laguerre functions involve rational transforms with

a simple recursive form. Since such functions are
completely parametrized by a real-valued pole, they
are more appropriate for representing well-damped
dynamic systems. The choice of the best Laguerre
poles has been extensively addressed and is well
established in the literature. The first study concerning
this subject which optimized the performance of
Laguerre functions based models in the case of linear
continuous-time systems seems to be (Clowes 1965).
Later, the problem of selecting Laguerre poles in
discrete-time linear systems was investigated in
Masnadi-Shirazi and Ahmed (1991) by minimizing the
error between the impulse response of the system
and the corresponding Laguerre model. The main
drawback of this strategy is that it requires finding
roots of high-order polynomials. In Fu and Dumont
(1993) and Tanguy et al. (1995), respectively, a cost-
function and an energy error are minimized for

obtaining analytical formulae for optimal Laguerre
poles. In the context of non-linear systems, an analytical
optimization of Laguerre bases for the orthonormal
series expansion of second-order Volterra models has
first been derived in Campello et al. (2001) and further
extended to any-order Volterra models in Campello
et al. (2003, 2004). Such a research represents a
generalization of the study found in Fu and Dumont
(1993), whose solution is only valid for first-order
Volterra models (linear models). In Campello et al.
(2006), a strict global optimal solution was derived by
decomposing each multidimensional kernel of the
model using a set of independent orthonormal bases,
each of which is parametrized by an individual Laguerre
pole associated with the kernel dynamics along a
particular dimension. The list of works dealing
with the Laguerre pole location also include Silva
(1994), which derived optimality conditions for linear
truncated Laguerre networks. These conditions of great
theoretical interest can however result in complicated
computations in practical cases, as already observed in
Tanguy et al. (2002).

Poorly damped dynamics are not accurately approxi-
mated with a small number of Laguerre functions.
Indeed, these functions are not well suited to approx-
imate signals with strong oscillatory behaviour (Silva
1995, Tanguy et al. 2000, Nelles 2001). This drawback
has led to an increasing interest in the two-parameter
Kautz functions, first introduced in Kautz (1954). These
functions can better approximate systems with oscilla-
tory behaviour because they are parametrized by
resonant poles. The problem of approximating linear
time-variant stable systems by a finite expansion of
the Kautz functions can be found in Wahlberg (1994),
which provided a frequency-domain approach in system
identification. Optimality conditions for truncated
Kautz series in linear discrete-time models have been
derived in den Brinker et al. (1996) by minimizing the
error between the impulse response of a given system
and its corresponding Kautz model. In the context of
pole location of the Kautz bases, a sub-optimal choice
of Kautz poles in the representation of discrete-time
linear systems was proposed in Tanguy et al. (2002),
whereas the corresponding non-linear counterpart was
later addressed in da Rosa et al. (2005, 2007). Such
approaches are said sub-optimal because they consider
the optimal selections of only one of the Kautz
parameters, and involve the minimization of an upper
bound for the kernel truncation error.

Much research concerning the problem of pole
location of OBFs require prior information about the
system kernel(s) (impulse response in the linear case).
When such information is unavailable, the kernels
need to be estimated from input-output data measured
from the system. An iterative strategy for selecting the

Volterra models using independent Kautz bases 963



D
ow

nl
oa

de
d 

B
y:

 [E
B

S
C

O
H

os
t E

JS
 C

on
te

nt
 D

is
tri

bu
tio

n]
 A

t: 
18

:1
2 

21
 M

ay
 2

00
8 

Kautz poles has been presented in Sarroukh et al.
(2001). A recent method with high computational cost
based on an exhaustive search of GOBFs poles has been
proposed in Kibangou et al. (2005b). This drawback
has been ameliorated by the analytical determination
of the poles, as presented in Kibangou et al. (2005a).
Other papers present experimental results regarding
the use of orthonormal bases for the identification of
real-world systems. In this context, one can cite
Nalbantoğlu et al. (2003), which studied the pole
location via frequency-domain techniques, and Ziaei
and Wang (2006), where the system identification based
on GOBFs with both real and complex poles is
presented. In Patwardhan and Shah (2005), it is
proposed a decomposed strategy to estimate only the
GOBFs poles by nonlinear iterative search and the
orthonormal expansion coefficients analytically. One
consequence of this method is the reduction in
dimensionality of the optimization problem. Surveys of
the studies involving GOBFs also are found in Ninness
et al. (1999) and Silva (1997), with the latter presenting
stationary conditions for optimal GOBFs-based linear
models.
In the present paper, an analytical solution for one

of the parameters related to the Kautz pole is derived
when any-order Volterra kernels are decomposed into a
set of independent orthonormal bases, each of which
parametrized by an individual pair of conjugate Kautz
poles associated with the dominant dynamic of the
kernel along a particular dimension. Such a solution is
based on the minimization of an upper bound of the
error resulting from the truncated approximation of
Volterra kernels using Kautz functions. This is an
extension of the results presented in da Rosa et al.
(2005, 2007), where the solution involves a single Kautz
basis for expanding a given kernel along all its
dimensions. Using independent bases for each kernel
dimension is expected to reduce the truncation error
when the dominant dynamics along the multiple
dimensions are different from one another. The results
to be presented here can also be seen as a generalization
of the results found in Campello et al. (2006), from
Laguerre to Kautz bases.
This paper is outlined as follows. In the next section,

orthonormal basis functions are presented in the context
of Volterra and Wiener/Volterra models. In x 3, an
upper bound for the kernel truncation error in expan-
sion of Volterra models using Kautz functions is
derived. By minimizing this bound, an optimization
problem for the selection of the Kautz poles is
formulated and solved. An example illustrating the
theoretical results is provided in x 4, and a comparison
to previous work is presented as well. Section 5 presents
an application of the proposed method for the modeling
of a real magnetic levitation system with strong

non-linear behaviour. Finally, x 6 addresses the conclu-
sions and the perspectives for future research.

2. Volterra and Wiener/Volterra models

A Volterra model is essentially an input–output
functional expansion of a non-linear system whose
structure is given by a straightforward generalization
of the unit-impulse response model (Eykhoff 1974,
Nelles 2001). The direct link of these models to the
non-linear realization theory and their ability to
represent a wide class of non-linear systems make
them very attractive. In the discrete-time domain, the
mathematical description of a Volterra model relates
the output y(k) of a physical process to its input u(k) as
(Rugh 1981, Schetzen 1989)

yðkÞ ¼
X1
�¼1

X1
�1¼0

. . .
X1
��¼0

hnð�1, . . . , ��Þ
Y�
l¼1

uðk� �lÞ, ð1Þ

where the multidimensional functions h�(�1, . . . , ��) are
the �th-order Volterra kernels. Although these models
can describe a wide class of non-linear systems, their
practical use is limited due to the usually large number
of coefficients that are needed to be estimated, even for
simple problems. The reason is that Volterra models,
like impulse response models, do not depend on past
output signals. Such a drawback can be avoided by
expanding the Volterra kernels using orthonormal bases
of functions. The number of parameters necessary to
represent the models can thus be drastically reduced
if properly designed bases of functions are adopted.

Approximating a given system by means of a
truncated orthonormal series was first suggested by
Wiener (1966). A representation of Wiener type (Rugh
1981, Nelles 2001) consists of a linear dynamic, here
composed by a set of orthonormal filters, followed by a
nonlinear static mapping, here represented by the
Volterra series. The basic idea of such Wiener/Volterra
models is to describe the kernels h� by means of an
expansion using OBFs in such a way that one needs
to determine the coefficients of this expansion in lieu of
the coefficients of the kernel. In the more general
case of using independent bases of functions { l,n}
for expanding the kernel along its multiple
dimensions (l¼ 1, . . . , �), the expansion is as follows
(Schetzen 1989):

h�ðk1, . . . , k�Þ ¼
X1
i1¼1

. . .
X1
i�¼1

�i1,..., i�
Y�
l¼1

 l, il ðklÞ ð2Þ

which assumes that the kernels are absolutely summable
on [0,1). In practice, this condition can be assured by
forcing the long memory terms of the kernels to be null,

964 A. da Rosa et al.
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which is possible provided that the system to be modeled

is stable. In other words, h�(k1, . . . , k�) is assumed to

be zero for kl4�, 8l2 f1, . . . , �g. An appropriate value

for �51 can be set based on the saddle or rise time of

the system.
The kernel expansion coefficients �(�) in (2) can be

derived using the orthonormality property of the sets

{ l,n}, i.e.,
P1

k¼0  l, qðkÞ l, rðkÞ ¼ �qr, where �qr is the

Kronecker delta, as

�i1,..., i� ¼
X1
k1¼0

. . .
X1
k�¼0

h�ðk1, . . . , k�Þ
Y�
l¼1

 l, ilðklÞ: ð3Þ

If the input signal u(k) in (1) is bounded so that

juðkÞj51 8k, then the higher-order kernels can be

ignored in such a way that the resulting Volterra model

is truncated to a finite-order N (Eykhoff 1974).

Furthermore, for computational reasons, equation (2)

is, in practice, approximated with a finite number M of

functions, as follows:

~h�ðk1, . . . , k�Þ ¼
XM
i1¼1

. . .
XM
i�¼1

�i1,..., i�
Y�
l¼1

 l, il ðklÞ: ð4Þ

Hence, if it is assumed that u(k)¼ 0 for k50, then

equation (1) can be approximated as

~yðkÞ ¼
XN
�¼1

XM
i1¼1

. . .
XM
i�¼1

�i1,..., i�
Y�
l¼1

Xk
�l¼0

 l, ilð�lÞuðk� �lÞ

 !2
4

3
5:
ð5Þ

In Boyd and Chua (1985), it is shown that truncated

Volterra models, such as those in (5), can approximate

to desired accuracy any time-invariant analytical

non-linear system with fading memory and bounded

input. Indeed, any prescribed approximation accuracy

can be obtained by setting the number of kernels, N,

and functions, M, to appropriate finite values.
Since model (5) is linear-in-the-parameters �(�), these

parameters can be straightforwardly computed using a

least-squares algorithm. Clearly, the overall number of

parameters depends upon the number of functions, M,

used in the kernels expansions. This number represents a

trade-off between accuracy and parsimony of the model

and can be significantly reduced by optimally designing

the set of orthonormal filters f l, ilg. However, the actual

value for M needed to provide an accurate representa-

tion depends on the complexity of the specific problem

in hand. Dynamic systems with multiple dominant

modes, for example, typically require models with a

larger number of functions.
The orthonormal basis functions most commonly

used in signal and system representations are presented

in the sequel.

2.1 Orthonormal basis functions

The use of rational orthonormal filters for representing

signals and systems has a long history, since the

pioneering proposal of Takenaka (1925), which investi-

gated orthonormal networks in system modelling.

The problem of building a set of continuous-time

orthonormal functions was introduced in Kautz

(1954), whereas the corresponding discrete case was

solved in Broome (1965). Discrete-time generalized

orthonormal basis functions are defined in the complex

z-domain as (den Hof et al. 1995, Ninness and

Gustafsson 1997, Heuberger et al. 2005)

Fl, nðzÞ ¼
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�l, nj

2
q
z� �l, n

Yn�1
j¼1

1� ��l, jz

z� �l, j

� �
n ¼ 1, 2, . . . ,

ð6Þ

where �l, n, ��l, n 2C are the poles of the GOBFs. The

corresponding realizations in the time-domain, namely

fl,n(k), are given by the inverse Z-transform of equation

(6) and satisfy the property of orthonormality. The set

{fl,n} is complete on ‘2[0,1) if and only ifP1
n¼1 ð1� j�l, njÞ51 (Heuberger et al. 1995, 2005), so

any finite energy signal (including absolutely summable

kernels) can be approximated with any prescribed

accuracy by linearly combining a certain finite number

of such functions. In general, the functions fl,n(k) will be

complex, although this is physically unrealistic in system

identification problems. In Ninness and Gustafsson

(1997), it is shown that this drawback can be overcome

by constructing a new orthonormal basis of functions

with real impulse responses, consisting of a linear

combination of the complex functions generated by (6).
When all the poles of (6) are real-valued and equal to

each other for any value of n, i.e., �l, n ¼ ��l, n ¼ cl, one

gets the Laguerre basis (Fu and Dumont 1993,

Silva 1994, Tanguy et al. 1995)

�l, nðzÞ ¼
z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l

q
z� cl

1� clz

z� cl

� �n�1

n ¼ 1, 2, . . . ð7Þ

with cl denoting the Laguerre pole of the lth basis.

By setting cl¼ 0, the Laguerre functions are simplified

to the pulse basis �l,n(z)¼ z�(n�1), and model (5) is

reduced to an ordinary non-linear finite impulse

response (NFIR) Volterra model, i.e., a truncated

version of (1).
The particular case of GOBFs in which the set of

poles {�l,n} in (6) is f�l, ��l,�l, ��l, . . .g, with �, ��l 2C,

results in the so-called two-parameter Kautz functions.

These functions constitute a second-order generalization

Volterra models using independent Kautz bases 965
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of (7) and are defined as follows (Wahlberg 1994,

Ninness and Gustafsson 1997):

where bl and cl are real-valued constants related to the
pair of Kautz poles ð�l, ��lÞ as

bl ¼
ð�l þ ��lÞ

ð1þ �l ��lÞ
ð9Þ

cl ¼ ��l ��l: ð10Þ

Expressions analogous to (8) can be found elsewhere,
e.g., in Silva (1995) and den Brinker et al. (1996).

3. Selection of Kautz parameters in expansions

of Volterra kernels

In this section, the problem of sub-optimal choice for
the Kautz poles based on the minimization of an upper
bound for the kernel approximation error is presented.
The approach consists of the adaptation of the original
(Kautz) problem into a transformed (Laguerre) problem
with known solution. The underlying problem consid-
ered here is how to select the Kautz parameters bl and cl
in (8) so as to minimize the upper bound resulting from
the truncated series expansion in (4). The simultaneous
optimal selection of both bl and cl is still under
investigation, but it is possible to set one of them as
constant and obtain the best choice for the other.
In the proposed method, each multidimensional kernel
is decomposed into a set of independent orthonormal
bases, each of which is parametrized by an individual
Kautz pole. Details are given below.
By defining the norm kh�k as

kh�k
2 ¼

X1
k1¼0

. . .
X1
k�¼0

h2�ðk1, . . . , k�Þ

and using equations (2) through (4), as well as the
orthonormality property of the sets { l,n}, the normal-
ized quadratic error (NQE) of the approximation of
kernel h�, defined as NQE ¼

�
kh� � �h�k

2
� �

=kh�k
2, can be

written as follows:

NQE ¼

P1
i1¼Mþ1

. . .
P1

i�¼Mþ1
�2i1,..., i�P1

i1¼1
. . .
P1

i�¼1
�2i1,..., i�

, ð11Þ

where �i1,..., i� are the coefficients of the expansion of

h�(k1, . . . , k�) according to equation (3). An upper

bound for (11) when the Kautz functions in (8) are

considered can be obtained by means of the following

theorem.

Theorem 1: Let f�l, ng be time-domain Laguerre bases,

i.e. the inverse Z-transform of (7), parametrized by

parameters cl (l¼ 1, . . . , �). Also, let �i1,..., i� be the

coefficients of the expansion of the kernel h�(k1, . . . , k�)

as in equation (3) using Kautz bases { l,n} with the same

parameters cl as f�l, ng. Now define the following functions

for l¼ 1, . . . , �:

geven, lðk1, . . . , k�Þ ¼
�
X1
i1¼1

. . .
X1
i�¼1

�2i1,..., 2i�
Y�
l¼1

�l, i1ðklÞ ð12Þ

godd, lðk1, . . . , k�Þ ¼
�
X1
i1¼1

. . .
X1
i�¼1

�2i1�1,..., 2i��1
Y�
l¼1

�l, i1 ðklÞ:

ð13Þ

The truncated approximation error of the Volterra kernel

h� decomposed into � M-term Kautz bases (one indepen-

dent basis along each kernel dimension) is bounded by

NQE �
2

�ðMþ 1Þkh�k
2

X�
l¼1

m2, lc
2
l � 2m1, lcl þm3, l

1� c2l

� �

ð14Þ

where the terms mp,l (p¼ 1, 2, 3) are computed as

m1, l ¼ �1, lðgeven, lÞ þ �1, lðgodd, lÞ ð15Þ

m2, l ¼ �2, lðgeven, lÞ þ �2, lðgodd, lÞ ð16Þ

m3, l ¼ �2, lðgeven, lÞ þ �2, lðgodd, lÞ

þ ��3, lðgeven, lÞ þ ��3, lðgodd, lÞ
ð17Þ

and the moments �1,l(x), �2,l(x), �3,l(x) are given by

�1, lðxÞ ¼
X1
k1¼0

. . .
X1
kl¼0

. . .
X1
k�¼0

klxðk1, . . . , kl, . . . k�Þ

� xðk1, . . . , kl � 1, . . . k�Þ ð18Þ

�2, lðxÞ ¼
X1
k1¼0

. . .
X1
kl¼0

. . .
X1
k�¼0

klx
2ðk1, . . . , kl, . . . k�Þ ð19Þ

�l, 2nðzÞ ¼
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2l Þð1� b2l Þ

q
z2 þ blðcl � 1Þz� cl

�clz
2 þ blðcl � 1Þzþ 1

z2 þ blðcl � 1Þz� cl

� �n�1
n ¼ 1, 2, . . . ,

�l, 2n�1ðzÞ ¼
zðz� blÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l

q
z2 þ blðcl � 1Þz� cl

�clz
2 þ blðcl � 1Þzþ 1

z2 þ blðcl � 1Þz� cl

� �n�1
ð8Þ
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�3, lðxÞ ¼
1

�

� �X1
k1¼0

. . .
X1
kl¼0

. . .
X1
k�¼0

x2ðk1, . . . , kl, . . . k�Þ:

ð20Þ

Proof: See Appendix A. œ

The results of Theorem 1 can be used to obtain an

optimal choice for the Kautz parameter cl by solving

the optimization problem

min
jclj51, l¼1,...,�

Lðc1, . . . , c�Þ ¼
2

�ðMþ 1Þ h�
�� ��2

�
X�
l¼1

m2, lc
2
l � 2m1, lcl þm3, l

1� c2l

� �
:

ð21Þ

Since kh�k is a (non-null) constant for a given system,

the necessary conditions for solving (21) are @L/@cl¼ 0,

8l ¼ f1, . . . , �g. From equations (19) and (16), it is

straightforward to verify that m2,l40. Consequently,

function $ðclÞ ¼
�
m2, lc

2
l � 2m1, lcl þm3, l is convex. It is

also differentiable. Moreover, $ðclÞ is non-negative

for all cl 2 � � 1, 1½; otherwise NQE would be negative

according to equation (14), which is not possible by

definition. The function vðclÞ ¼
�
1� c2l , in turn, is

differentiable, concave and positive for cl 2 � � 1, 1½.

Hence, L(c1, . . . , c�) is a pseudo-convex function for

clj j51, which implies that the conditions @L/@cl¼ 0,

8l ¼ f1, . . . , �g, are necessary and sufficient for solving

the problem (21) (Bazaraa et al. 1993).
The optimality conditions @L/@cl¼ 0 are satisfied

if and only if

m1, lc
2
l � ðm2, l þm3, lÞcl þm1, l ¼ 0 l ¼ 1, . . . , �: ð22Þ

Then, defining 	l as (m2,lþm3,l)/(2m1,l), the solution

of (22) is given by

copt, l ¼
	l �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	2l � 1

q
if 	l41

	l þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	2l � 1

q
if 	l5� 1

8><
>: l ¼ 1, . . . , �:

ð23Þ

Equation (23) is thus an analytical solution for the

selection of the parameter cl of the Kautz functions

according to the criterion (21). After the setting of the

value of parameter bl, it can be used to minimize

the upper bound L(c1, . . . , c�) for the squared norm of

the error resulting from the truncated expansion of the

Volterra kernels.
It is possible to show that the absolute value of

variable 	l is greater than unity. To see this, notice

first that the following inequality holds for

8l ¼ f1, . . . , �g:

05
X1
k1¼0

. . .
X1
kl¼0

. . .
X1
k�¼0

kl
	
xðk1, . . . , kl, . . . k�Þ

� xðk1, . . . , kl � 1, . . . k�Þ

2

¼ 2�2, lðxÞ � 2�1, lðxÞ þ ��3, lðxÞ: ð24Þ

By making x¼ geven,l and x¼ godd,l in (24), one gets (25)

and (26) respectively

2�2, lðgeven, lÞ � 2�1, lðgeven, lÞ þ ��3, lðgeven, lÞ > 0 ð25Þ

2�2, lðgodd, lÞ � 2�1, lðgodd, lÞ þ ��3, lðgodd, lÞ > 0: ð26Þ

The sum of (25) and (26) yields

2�2, lðgeven, lÞ þ 2�1, lðgodd, lÞ þ ��3, lðgeven, lÞ þ ��3, lðgodd, lÞ

4� ½2�1, lðgeven, lÞ þ 2�1, lðgodd, lÞ�

which allows the conclusion that:

2�2, lðgeven, lÞ þ 2�2, lðgodd, lÞ þ ��3, lðgeven, lÞ þ ��3, lðgodd, lÞ

2�1, lðgeven, lÞ þ 2�1, lðgodd, lÞ

����
����

41: ð27Þ

Finally, the use of equations (15)–(17) into (27) leads to

the result that ðm2, l þm3, lÞ=ð2m1, lÞ
�� �� ¼ 	lj j41.

Theorem 2: If h� is symmetric (Schetzen 1989), which

means that it takes the same value for any permutation of

its arguments (e.g. h2(k1, k2)¼ h2(k2, k1) for the second-

order kernel), and if all parameters bl are set equally for

all l¼ 1, . . . , �, then the solution (23) is reduced to the

special case in which the expansion of the kernel using

a single Kautz basis is adopted, i.e. (da Rosa et al. 2005,

2007):

copt ¼
	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 1

p
if 	41

	 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � 1

p
if 	5� 1,

(
ð28Þ

where 	 ¼
P�

l¼1 	l.

Proof: The proof is straightforward since the terms

m1,l, m2,l, m3,l, �1,l, �2,l, �3,l in (15)–(20) are constant

for l¼ 1, . . . , � when kernel h� is symmetric and when

b ¼ b1 ¼ � � � ¼ b�. In this case, the single solution in (28)

becomes clearly equivalent to each individual solution

in (23), i.e., copt ¼ copt,1 ¼ � � � ¼ copt, �. œ

Note that, from the perspective of the output of the

Volterra model in (1), it is possible to replace any

non-symmetric kernel with a symmetric equivalent by

means of an ordinary symmetrization procedure

(Schetzen 1989). However, the symmetric kernels are

equivalent to their non-symmetric counterparts only in

terms of the model output, i.e., they are not equivalent

to each other as multidimensional functions to be

Volterra models using independent Kautz bases 967
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described by means of a truncated series expansion. This

means that the symmetrization of a given kernel does

not ensure that its conventional expansion using a single

Kautz basis is equivalent to the expansion of the original

kernel using a particular basis for each dimension. The

advantage of using an independent basis for each

dimension l¼ 1, . . . , �, as solved in equation (23), is

that it enhances flexibility and is expected to reduce the

truncation error when the kernel has different dominant

dynamics along its multiple dimensions. For instance,

independent bases can provide a better approximation

of a second-order kernel with well-damped dynamics

along one of the axial directions and poorly damped

dynamics along the other. In summary, Theorem 2

suggests that if one begins by identifying a symmetric

Volterra model, as usual in practice, then there is no

reason to use multiple Kautz bases to approximate each

kernel. On the other hand, if one does decide to adopt

multiple bases, then the use of asymmetric kernels may

provide better approximation results.
When using equations (12) and (13) for computing the

functions geven,l and godd,l, one must explicitly compute

the coefficients �(�) given by (3). However, such

computations can be performed independently of �(�)
using the following theorem.

Theorem 3: Functions geven,l(k1, . . . , k�) and

godd,l(k1, . . . , k�), defined in equations (12) and (13),

respectively, can be written in terms of both the �th-
order kernel h� and the Kautz functions as

geven, lðk1, . . . ,k�Þ ¼
X1
�1¼0

� � �
X1
��¼0

h�ð�1, . . . , ��Þ
Y�
l¼1

 ̂l, 2ðklþ1Þð�lÞ

ð29Þ

godd, lðk1, . . . ,k�Þ¼
X1
�1¼0

� � �
X1
��¼0

h�ð�1, . . . ,��Þ
Y�
l¼1

 ̂l,2ðklþ1Þ�1ð�lÞ

ð30Þ

where  ̂ð�Þ denotes the time-domain Kautz functions

with cl¼ 0.

Proof: See Appendix B.

Theorem 3 extends previous results (Tanguy et al. 2002,

da Rosa et al. 2007) in the sense that different Kautz

poles can now be set for each dimension l¼ 1, 2, . . . , �
of the �th kernel h�(�1, . . . , ��). It states that geven,l and

godd,l depend solely on the �th-order kernel h� and on

parameter bl of the lth Kautz basis. The same holds true

for m1,l, m2,l, m3,l, �1,l, �2,l, �3,l in equations (15)–(20).

Thus, the analytical solution to an optimal selection

of parameter cl, given by (23), also depends solely on

bl and h�.

The method proposed here can be summarized by

the following steps. For each dimension l¼ 1, . . . , � of

kernel h�(k1, . . . , k�)

(a) choose an arbitrary value for Kautz parameter

bl 2 �1, 1� ½;
(b) once kernel h� is known, compute the functions

geven,l and godd,l using equations (29) and (30),

respectively;
(c) compute the terms �1,l, �2,l, �3,l from

equations (18)–(20) and the terms m1,l, m2,l, m3,l

using (15)–(17);
(d) calculate copt,l using equation (23).

The pair obtained (bl, copt,l) thus represents the Kautz

parameters that minimize the upper bound L(c1, . . . , c�)

in (21) for the squared norm of the error resulting from

the truncated expansion of each Volterra kernel with

this specific value of bl.

4. Illustrative example

Suppose that a specific system has the following second-

order Volterra kernel:

h2ðk1,k2Þ ¼ ðk1� 2k2Þexpð�
1k1�
2k2Þcosð!1k1þ!2k2Þ

ð31Þ

for k1, k2� 0. For negative values of k1 or k2, the kernel

h2(k1, k2) is assumed to be null (causal system). Memory

terms of h2 which are longer than 30 lags are considered

null, i.e., the multiple summations in equation (3) go

until k1, k2¼ 30. The selection of this factor represents

a practical truncation for the Volterra kernels, i.e., a

constant �51 such that h�(k1, . . . , k�) is assumed to be

null for kl4�, 8l2 f1, . . . , �g. The real-valued constant 
l
(l¼ 1,2) can be seen as the decay rate of the kernel in

(31) along the lth axis, whereas !l is the frequency with

which the kernel oscillates in that direction. For this

example, the values 
1¼ 0.45, 
2¼ 0.7, !1¼ 100 and

!2¼ 1 were used.
The method proposed in the previous section will

be carried out to compute the Kautz poles for each

dimension of the kernel in (31). For instance, the values

b1¼ 0.6 for the first axial direction and b2¼ 0.5 for the

second have been arbitrarily chosen. Computational

simulations provided the following values, computed

using equation (23): copt,1¼�0.2321 and copt,2¼

�0.3058. With the values of Kautz parameters

(b1, copt,1)¼ (0.6, �0.2321) and (b2, copt,2)¼ (0.5,

�0.3058), the approximation of kernel h2 can be

computed using equation (4). The error associated

with this approximation, calculated via (11), is shown

in table 1 for different numbers of Kautz functions.

968 A. da Rosa et al.
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The kernel in (31) is depicted in figure 1(a), whereas
figure 1(b) illustrates the corresponding approximation
of this kernel with M¼ 8. The Kautz poles are
calculated from (9) and (10) as �1¼ 0.3696� i0.3090
for the first direction (l¼ 1) and �2¼ 0.3264� i0.4463
for the second direction (l¼ 2).
The method proposed in da Rosa et al. (2005, 2007),

in which equal parameters (poles) are considered for
each kernel dimension, has also been applied to the
kernel in equation (31). For the sake of comparison, the
same values of the parameters bl just selected (0.6
and 0.5) have been adopted for this new computational
simulation; the numerical results are summarized in
table 2.
As can be seen by comparing the results in tables 1

and 2, the use of an independent basis for each
dimension generally reduces the truncation error when
the dominant dynamics of the kernel along its multiple
dimensions are different from one another. By varying
parameters b1 and b2 within the region of feasibility
ðb1, b2Þ 2 �1, 1� ½ � �1, 1� ½, each set of parameters

(b1, copt,1) and (b2, copt,2) provides an approximation
error. The values of c1 and c2 providing the best
approximation are those for which NQE is the lowest.
It is obtained from equation (23) by choosing b1¼ 0.770
and b2¼ 0.345, which results in copt,1¼�0.4583 and
copt,2¼�0.2473, respectively. For (b1, copt,1)¼ (0.770,
�0.4583) and (b2, copt,2)¼ (0.345, �0.2473), the Kautz
poles are �1¼ 0.5615� i 0.3783 and �2¼ 0.2152�
i 0.4483. Equation (4) with M¼ 8 gives the correspond-
ing approximation of the kernel in (31). The error
associated with this approximation is shown in figure 2,
resulting in NQE¼ 3.6082� 10�7.

5. Modelling of a magnetic levitation system

The magnetic levitation system considered here, sche-
matically shown in figure 3, consists of upper and lower
drive coils that produce a magnetic field in response to
a DC current. One or two magnets travel along a

Table 1. Approximation errors of the ortho-

normal expansion of the kernel in (31) with
different numbers of Kautz functions.

Number of

functions (M)
NQE ¼

kh2 � ~h2k
2

kh2k
2

2 0.8110
4 0.1036
6 0.0077

8 8.1136� 10�4
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Figure 1. Second-order kernel h2(k1, k2) and its approximation ~h2ðk1, k2Þ with (b1, copt,1)¼ (0.6,�0.2321), (b2, copt,2)¼

(0.5,�0.3058) and M¼ 8.

Table 2. Approximation errors of the ortho-
normal expansion of the kernel in (31) using the
method presented in (da Rosa et al. 2005, 2007).

Number of

functions (M)

NQE for

b1¼ b2¼ 0.6

NQE for

b1¼ b2¼ 0.5

2 0.8422 0.7878
4 0.1081 0.2029
6 0.0086 0.0133

8 8.2405� 10�4 0.0046
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precision ground glass guide rod. By energizing the

lower coil, a single magnet is levitated by a repulsive

magnetic force. As current in the coil increases, the field

strength also increases and the height of the levitated

magnet is increased too. For the upper coil, the

levitating force is attractive. Two laser-based sensors

measure the magnet positions. The magnets are of an

ultra-high strength rare earth (NeBFe) type and are

designed to provide large levitated displacements to

clearly demonstrate principles of levitation and motion

control (ECP 1999).

Let m1 be the mass of the lower magnet, v1 the viscous

friction coefficient between this magnet and air, and g

the acceleration of gravity. The equation that describes

the movement of the lower magnet (Magnet 1) is

given by

m1 €y1 þ v1 _y1 þ Fm12 ¼ Fu11 � Fu21 �m1g,

where y1 is the position of Magnet 1, Fu11 is the magnetic

force from Coil 1 interacting with Magnet 1, Fu21 is the

magnetic force from Coil 2 interacting with Magnet 1,

and Fm12 is the mutual magnetic force between the two

magnets. These forces are described by the following

non-linear equations:

Fm12 ¼
c

ðyc þ y2 � y1 þ dÞ4

Fu11 ¼
i1

aðksy1 þ bÞ4

Fu21 ¼
i2

aðyc þ ksy1 þ bÞ4
,

where

. y2 : position of Magnet 2;

. yc : distance between Coils 1 and 2;

. i1 : current through Coil 1;

. i2 : current through Coil 2;

. a, b, c, d: real constants.

In x 5.1, some experimental results for modeling a

laboratory-scale plant of the magnetic levitation

system just described are presented.

5.1 Simulation results

Experimental data have been acquired by keeping

constant the DC current applied to Coil 1 of the plant

while varying current through Coil 2. The input signal

u (current through Coil 2) has been designed as a

sequence of steps with different amplitudes so as to

excite different modes of the system. The measured

output signal y has been taken as the position of

Magnet 1 (y1). Figure 4 shows the input and output

data available for estimation of the model. Before

estimation, these data were sampled using a sampling

period of 0.017 seconds, and normalized within the

interval [�1, 1] in order to avoid numerical problems.

Another similar yet independent set of data has also

been acquired and reserved for further model

validation.
The model to be used relates the input u and output y

in figure 4 by means of a second-order (N¼ 2) Volterra
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20
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× 104
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 −
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Figure 2. Error surface h2ðk1, k2Þ � ~h2ðk1, k2Þ for the optimal

Kautz poles �1¼ 0.5615� i0.3783 and �2¼ 0.2152� i0.4483.

y1

y2

Coil 1

Coil 2

Magnet 1

Magnet 2

Figure 3. Schematic sketch of the magnetic levitation system.
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representation, as usual in the literature (Billings 1980,
Dumont and Fu 1993)

ŷðkÞ ¼
X�
�1¼0

h1ð�1Þuðk� �1Þ

þ
X�
�1¼0

X�
�2¼0

h2ð�1, �2Þuðk� �1Þuðk� �2Þ ð32Þ

in which kernels h1 and h2 are to be expanded using
a truncated Kautz basis { l,n} according to equation (4).
In model (32), only the input and output signals are

known. In this case, no prior information on the
model kernels is available; therefore it is necessary to
estimate them from input–output data measured from
the system in order to obtain the optimal Kautz
poles. The underlying idea adopted here consists of
recovering the Volterra kernels from a numerical
least-squares estimation of the Kautz coefficients
followed by the computation of the corresponding
optimal poles. This procedure continues until either
the difference between kernels in successive steps is
less than a given threshold or a maximum number of
steps is exceeded.
The procedure thus begins with an initial Kautz pole

for each direction l¼ 1, . . . , � of each kernel
h�(k1, . . . , k�). Then, the coefficients �(�) in (5) are
estimated by using available input–output data and a
least-squares algorithm. Next the Volterra kernels are
computed using equation (4). Finally, for each kernel
direction: find the Kautz parameters bl and cl that
provide the lowest kernel approximation error (NQE)
by varying bl over the interval �1, 1� ½ and computing
the respective optimal values for cl by means of
equation (23).

Based on the time response of the magnetic levitation

system, long memory terms of the kernels – longer than
50 memory lags – are considered to be null. In other

words, �¼ 50 is adopted in equation (32). Moreover,

M¼ 8 is used for the number of Kautz functions.

Choosing, for instance, the initial Kautz poles as
0.5� i0.5 for the first-order kernel as well as for the

two directions of the second-order kernel, the corre-

sponding initial values for the Kautz parameters,
according to equations (9) and (10), are

b1¼ b2¼ 0.6666 and c1¼ c2¼�0.5. Table 3 presents

the values of the Kautz poles after the convergence of
the above procedure, which took 17 steps. The adopted

stop criteria was that the difference between the

quadratic norms of the kernels in successive steps is
less than 10�3. Simulations with different initial poles

have provided similar results.
By using the values of the Kautz poles shown

in table 3, the kernels h1(k1) and h2(k1, k2) can be
calculated according to equation (4). They are illustrated

in figures 5 and 6, respectively.
Figure 7 illustrates the model prediction of output of

the system, ŷðkÞ, with respect to another set of data

(validation data), jointly with the actual (measured)
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0

0.5
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2

× 104

0 200 400 600 800 1000

−10000

−5000
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5000

u
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Figure 4. Above: current through Coil 2 (input signal u).

Below: position of Magnet 1 (output signal y).
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h
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Figure 5. Estimated first-order kernel for model (32).

Table 3. Final values for the Kautz parameters after 17 steps:

first and second order kernels.

Kernel

order (�)
Axial direction

of h� bl cl ð�l, ��lÞ

1 l¼ 1 0.9047 �0.6832 0.7614� i0.3216

2 l¼ 1 0.9323 �0.7604 0.8206� i0.2949
l¼ 2 0.9434 �0.6521 0.7793� i0.2116
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output value y(k). It can be seen that the model matches
the output of the system almost perfectly.

6. Conclusions

An analytical solution for the optimal selection of one
of the Kautz parameters in Wiener/Volterra models has
been derived. It is based on the decomposition of
each multidimensional Volterra kernel using a set of
independent orthonormal bases, each of which is
parametrized by an individual pair of conjugate Kautz
poles associated with the kernel dynamics along a
particular dimension. The strategy adopted consists
of adapting the original (Kautz) problem into a
transformed (Laguerre) problem with known solution.
Such a transformation makes it possible to set one of the

Kautz parameters as constant in order to obtain the

best choice for the other. The resulting solution, valid

for models of any order, is based on the minimization

of an upper bound for the error resulting from the

truncated approximation of Volterra kernels using the

two-parameter Kautz functions. It indirectly minimizes

the number of functions associated with a given series

truncation error.
In the proposed method, each multidimensional

kernel is decomposed into independent orthonormal

bases along its multiple dimensions. This approach

provides a more general way for selecting the Kautz

poles and represents an extension of a former work

found in da Rosa et al. (2005, 2007), where an analytic

solution was obtained for the particular case in which a

single Kautz basis is used for expanding a given kernel

along all its dimensions. It has been proven here that

the particular and extended solutions are equivalent to

each other when the Volterra kernels are symmetric.

These results can be seen as a generalization, to the

Kautz domain, of the work in Campello et al. (2006),

where an analogous problem was investigated within the

scope of Laguerre functions.
One illustrative example has shown that system

identification with orthonormal basis functions is

a very suitable framework for modeling non-linear

systems when prior information about the system

kernels is avaliable. When compared to results found

in previous work (da Rosa et al. 2007), it has been

observed that the use of an independent basis for each

kernel dimension reduces the truncation error when

the kernel has different dominant dynamics along its

multiple dimensions. Moreover, a practical application

of the theoretical results has been made to the

computation of the Kautz poles from input–output

data measured from a non-linear magnetic levitation

system with strong oscillatory behaviour. A very

accurate second-order Volterra model, which represents

almost perfectly the dynamics of the levitation system,

has been obtained.
As stated in this paper, Laguerre and Kautz bases

are preferable for modeling systems with dominant

dynamics of first and second order, respectively.

Systems having more complex dynamics are better

represented using models based on generalized ortho-

normal bases, because the mathematical description

of such bases involves multiple poles. For this reason,

an important subject for future research concerns the

extension of the results presented here to generalized

orthonormal bases. Within the narrower scope of

Kautz functions, an open problem that still deserves

investigation is how to obtain an analytical solution to

the simultaneous optimization of the two Kautz

parameters.
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Appendix A: Proof of Theorem 3.1

Consider a non-null function x(k1, . . . , k�), which is null

for kl50 (l¼ 1, 2, . . . , �). Suppose that x is absolutely

summable on [0, 1), i.e.,

X1
k1¼0

. . .
X1
k�¼0

xðk1, . . . , k�Þ
�� �� <1:

Now let �i1, . . . , i�
be the expansion coefficients of the �th

kernel h� decomposed into a set of independent Kautz

bases, according to equation (4), and let each of the real

constants cl represent one of the Kautz parameters. The

following relationship is valid for all l¼ 1, . . . , �:

� 2cl
X1
k1¼1

� � �
X1
kl¼0

� � �
X1
k�¼0

klxðk1, . . . , kl � 1, . . . , k�Þ

� xðk1, . . . , kl, . . . k�Þ

þ ð1þ c2l Þ
X1
k1¼0

. . .
X1
kl¼0

. . .
X1
k�¼0

klx
2ðk1, . . . , kl, . . . , k�Þ

þ
X1
k1¼0

� � �
X1
kl¼0

� � �
X1
k�¼0

x2ðk1, . . . , kl, . . . , k�Þ

¼ ð1� c2l Þ
X1
i1¼1

. . .
X1
il¼1

. . .
X1
i�¼1

il�
2
i1,..., il,..., i�

ðA1Þ

The use of equations (18)–(20) allows rewriting (A1) for

l¼ 1, . . . , � as

X1
i1¼1

. . .
X1
il¼1

. . .
X1
i�¼1

il�
2
i1,..., il,..., i�

¼
�2cl�1, lðxÞ þ ð1þ c2l Þ�2, lðxÞ þ ��3, lðxÞ

1� c2l
ðA2Þ

and summing up equation (A2) with respect to l yields:

X1
i1¼1

. . .
X1
i�¼1

ði1þ�� �þ i�Þ�
2
i1,..., i�

¼
X�
l¼1

�2cl�1, lðxÞþ ð1þ c2l Þ�2, lðxÞþ��3, lðxÞ

1� c2l

� �
: ðA3Þ

Consider the Laguerre expansions of functions geven,l
and godd,l defined in (12) and (13) with coefficients

�i1 , . . . , i� and �i1 , . . . , i� , respectively, such that:

geven, lðk1, . . . , k�Þ ¼
X1
i1¼1

. . .
X1
i�¼1

�i1,...i�
Y�
l¼1

�l, il ðklÞ ðA4Þ

godd, lðk1, . . . , k�Þ ¼
X1
i1¼1

. . .
X1
i�¼1

�i1,...i�
Y�
l¼1

�l, il ðklÞ ðA5Þ

By comparing equations (12) and (13) with (A4) and

(A5), it can be verified that the coefficients �(�) of the

expansion of kernel h�(k1, . . . , k�) using Kautz functions

are related to the coefficients of the expansions above as

�i1,..., i� ¼ �2i1,..., 2i� and �i1,..., i� ¼ �2i1�1,..., 2i��1, 8i1, . . . , i�.
The upper bound given by (14) is thus deduced from

the following inequality (Campello et al. 2004):

�ðMþ 1Þ
X1

i1¼Mþ1

� � �
X1

i�¼Mþ1

�i1,..., i�
2

�
X1
i1¼1

� � �
X1
i�¼1

ði1 þ � � � þ i�Þ�
2
i1,..., i�

¼
X1
i1¼1

. . .
X1
i�¼1

ð2i1 þ � � � þ 2i�Þ�
2
2i1,..., 2i�

þ
X1
i1¼1

. . .
X1
i�¼1

½ð2i1 � 1Þ þ � � � þ ð2i� � 1Þ��22i1�1,..., 2i��1

� 2
X1
i1¼1

. . .
X1
i�¼1

ði1 þ � � � þ i�Þ�
2
i1,..., i�

þ 2
X1
i1¼1

� � �
X1
i�¼1

ði1 þ � � � þ i�Þ�
2
i1,..., i�

: ðA6Þ

The (quadratic) approximation error of kernel

h�(k1, . . . , k�), given by (11), appears on the left-hand

side of equation (A6) multiplied by �ðMþ 1Þkh�k
2.

Then, dividing (A6) by �ðMþ 1Þkh�k
2 and using (A3)

results in:

Finally, equations (15), (16), and (17) as well as

inequality (A7) yield

NQE �
2

�ðMþ 1Þ h�
�� ��2

X�
l¼1

m2, lc
2
l � 2m1, lcl þm3, l

1� c2l

� �

which completes the proof.

NQE � 2
X�
l¼1

�2cl�1, lðgeven, lÞ þ ð1þ c2l Þ�2, lðgeven, lÞ þ �3, lðgeven, lÞ

�ðMþ 1Þkh�k
2ð1� c2l Þ

" #

þ 2
X�
l¼1

�2cl�1, lðgodd, lÞ þ ð1þ c2l Þ�2, lðgodd, lÞ þ �3, lðgodd, lÞ

�ðMþ 1Þkh�k
2ð1� c2l Þ

" #
: ðA7Þ
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Appendix B: Proof of Theorem 3

Using (3) for rewriting equation (12) yields

geven, lðk1, . . . , k�Þ

¼
X1
i1¼1

. . .
X1
i�¼1

�2i1,..., 2i�
Y�
l¼1

�l, ilðklÞ

¼
X1
i1¼1

. . .
X1
i�¼1

X1
�1¼0

. . .
X1
��¼0

h�ð�1, . . . , ��Þ
Y�
l¼1

 l, 2ilð�lÞ

0
@

1
A

�
Y�
l¼1

�l, il ðklÞ

¼
X1
�¼0

. . .
X1
��¼0

h�ð�1, . . . , ��Þ

�
X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

 l, 2il ð�lÞ�l, il ðklÞ

0
@

1
A: ðB1Þ

Then, taking the Z-transform with respect to �l (for

l¼ 1, 2, . . . , �) of the term between parentheses above

results in:

Z
X1
i1¼1

� � �
X1
i�¼1

Y�
l¼1

 l, 2il ð�lÞ�l, ilðklÞ

2
4

3
5

¼
X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2l Þð1� b2l Þ

q
zl

z2l þ blðcl � 1Þzl � cl

2
4

8<
:

�
�clz

2
l þ blðcl � 1Þzl þ 1

z2l þ blðcl � 1Þzl � cl

� �il�1

�l, ilðklÞ

#)

¼
Y�
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2l Þð1� b2l Þ

q
zl

z2l þ blðcl � 1Þzl � cl

2
4

3
5

�
X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

�l, il ðklÞw
1�il
l

2
4

3
5, ðB2Þ

where the following simplification has been made

wl ¼
� z2l þ blðcl � 1Þzl � cl

�clz
2
l þ blðcl � 1Þzl þ 1

l ¼ 1, . . . , �: ðB3Þ

The last term in (B2) can be rewritten as

X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

�l, ilðklÞw
1�il
l

¼
Y�
l¼1

wl

X1
il¼1

�l, ilðklÞw
�il
l

 !

¼
Y�
l¼1

wl

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l

q
wl þ cl

1þ clwl

wl þ cl

� �kl

2
4

3
5 ðB4Þ

after having used the following valid relationship for the
Laguerre functions �l, nðkÞ (Tanguy et al. 2002):

X1
n¼1

�l, nðkÞw
�n
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2l

q
wl þ cl

1þ clwl

wl þ cl

� �k

:

Substituting (B3) into (B4) and using the resulting
equation to rewrite (B2) gives the following (after certain
algebraic manipulations):

Z
X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

 l, 2il ð�lÞ�l, il ðklÞ

2
4

3
5

¼
Y�
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2l

q
zl � bl

1� blzl
zl � bl

� �kl

z�kll

2
4

3
5

¼
Y�
l¼1

Z ½ l, 2ðklþ1Þð�lÞ�cl¼0
� 

¼ Z
Y�
l¼1

½ l, 2ðklþ1Þð�lÞ�cl¼0
� ( )

: ðB5Þ

Equation (B5) is thus rewritten as:

X1
i1¼1

. . .
X1
i�¼1

Y�
l¼1

 l, 2ilð�lÞ�l, ilðklÞ ¼
Y�
l¼1

 ̂l, 2ðk1þ1Þð�lÞ, ðB6Þ

where  ̂l, nð�Þ ¼
�
½ l, nð�lÞ�cl¼0. Substituting (B6) into (B1)

completes the proof.
The proof for godd,l(k1, . . . , k�) is analogous.
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choice of free parameter in orthonormal approximations’’,
IEEE Transactions on Automatic Control, 40, pp. 1811–1813,
1995.

N. Tanguy, R. Morvan, P. Vilbé and L.C. Calvez, ‘‘Pertinent
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