
Int. J. Modelling, Identification and Control, Vol. 14, Nos. 1/2, 2011 121 

Copyright © 2011 Inderscience Enterprises Ltd. 

An introduction to models based on Laguerre, Kautz 
and other related orthonormal functions – part I: 
linear and uncertain models 

Gustavo H.C. Oliveira* 
Department of Electrical Engineering, 
Federal University of Paraná (UFPR), 
80215-901, Curitiba-PR, Brazil 
E-mail: gustavo@eletrica.ufpr.br 
*Corresponding author 

Alex da Rosa 
Department of Electrical Engineering, 
University of Brasília (UnB), 
70910-900, Brasília-DF, Brazil 
E-mail: alex@ene.unb.br 

Ricardo J.G.B. Campello 
Department of Computer Sciences, 
University of São Paulo (USP), 
13560-970, São Carlos-SP, Brazil 
E-mail: campello@icmc.usp.br 

Jeremias B. Machado 
Engineering and Information Technology Institute, 
Federal University of Itajubá (UNIFEI), 
37500-903, Itajubá -MG, Brazil 
E-mail: jeremias@unifei.edu.br 

Wagner C. Amaral 
School of Electrical and Computer Engineering, 
University of Campinas (UNICAMP), 
13083-852, Campinas-SP, Brazil 
E-mail: wagner@dca.fee.unicamp.br 

Abstract: This paper provides an overview of system identification using orthonormal basis 
function models, such as those based on Laguerre, Kautz, and generalised orthonormal basis 
functions. The paper is separated in two parts. In this first part, the mathematical foundations of 
these models as well as their advantages and limitations are discussed within the context of linear 
and robust system identification. The second part approaches the issues related with non-linear 
models. The discussions comprise a broad bibliographical survey of the subjects involving linear 
models within the orthonormal basis functions framework. Theoretical and practical issues 
regarding the identification of these models are presented and illustrated by means of a case study 
involving a polymerisation process. 

Keywords: modelling; system identification; robust identification; orthonormal basis functions; 
OBF; linear systems. 

Reference to this paper should be made as follows: Oliveira, G.H.C., da Rosa, A.,  
Campello, R.J.G.B., Machado, J.B. and Amaral, W.C. (2011) ‘An introduction to models based 
on Laguerre, Kautz and other related orthonormal functions – part I: linear and uncertain 
models’, Int. J. Modelling, Identification and Control, Vol. 14, Nos. 1/2, pp.121–132. 

Biographical notes: Gustavo H.C. Oliveira received his BSc in Electrical Engineering from the 
Federal University of Juiz de Fora, Brazil, in 1988, MSc in Electrical Engineering from the 
School of Electrical and Computer Engineering of the State University of Campinas, in 1992, and 



122 G.H.C. Oliveira et al.  

PhD in Electrical Engineering from University of Nice-Sophia Antipolis, France, and from State 
University of Campinas, Brazil, in 1997. From 1999 to 2009, he was with the Mechatronic 
Engineering Department of the Pontifical Catholic University of Paraná, Brazil and, since 2009, 
he is with the Electrical Engineering Department of the Federal University of Paraná. His 
research interests include the areas of system identification and predictive control, HVAC 
applications and electrical power systems modelling and simulation. 

Alex da Rosa received his BSc in Electrical Engineering from the Federal University of Goiás 
(UFG), in 2002, and MSc and PhD in Electrical Engineering from the School of Electrical and 
Computer Engineering of the State University of Campinas (UNICAMP), in 2005 and 2009, 
respectively. He is currently with the Department of Electrical Engineering of the University of 
Brasília. His research interests include the areas of modelling and identification of non-linear 
dynamic systems. 

Ricardo J.G.B. Campello received his BSc in Electronics Engineering from the State University 
of São Paulo (Unesp), Ilha Solteira-SP, in 1994, and MSc and PhD in Electrical Engineering 
from the School of Electrical and Computer Engineering of the State University of Campinas 
(Unicamp), Campinas-SP, in 1997 and 2002, respectively. In 2002, he was a Visiting Scholar at 
the Laboratoire D’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), Université de 
Nice-Sophia Antipolis (UNSA), France. Since 2007, he is with the Department of Computer 
Sciences of the University of São Paulo (USP) at São Carlos. His current research interests 
include dynamic systems identification, computational intelligence, data mining, and machine 
learning. 

Jeremias B. Machado received his BSc in Electrical Engineering from the Federal University of 
Itajubá (UNIFEI), in 2005, and MSc and PhD in Electrical Engineering from State University of 
Campinas (UNICAMP), in 2007 and 2011, respectively. Since 2011, he has been with the 
Systems Engineering and Information Technology Institute, Federal University of Itajubá 
(UNIFEI). His research interests include artificial intelligence, modelling, identification and 
control of non-linear dynamic systems. 

Wagner C. Amaral received his BSc, MSc and Doctorate in Electrical Engineering from the State 
University of Campinas, UNICAMP, in 1974, 1976 and 1981, respectively. Since 1991, he has 
been a Full Professor at the Department of Computer Engineering and Industrial Automation at 
UNICAMP. From 1995 to 1999, he was the Director of the School of Electrical and Computer 
Engineering at UNICAMP. His research interests are modelling, identification and predictive 
control. 

 

1 Introduction 

The increasing complexity of production processes and the 
demand for high efficiency in industrial plants have 
imposed high performance goals on their associated control 
systems. Many strategies have been proposed to improve 
the performance of these systems. Among the most 
successful are the ones that use mathematical models of 
dynamic processes, such as model-based predictive 
controllers (MBPC) (Garcia et al., 1989; Soeterboek, 1992; 
Clarke, 1994; Camacho and Bordons, 1999; Henson, 1998; 
Allgower and Zheng, 2000; Balbis et al., 2006; Zhu, 2006). 
In MBPC, modelling plays an important role in the 
prediction of the dynamic behaviour of the process, since it 
allows the controller to make a decision in advance based on 
optimality criteria. 

These MBPC calculate the control input by minimising 
a cost function over a future time horizon under certain 
process constraints. The closed-loop performance depends 
on the choice of an appropriate prediction model and on 
several tuning parameters. In most cases, a single linear 
model is adopted to describe the behaviour of the process, 
but this involves only an approximation; hence, great 
uncertainty in the value of the process parameters can result. 

So, during the design stage, it is very important to consider 
the effect of these uncertainties on both the optimality and 
the stability of the closed-loop system. 

Models of dynamic systems are usually constructed 
using the well-known auto-regressive with exogenous inputs 
– ARX – structure, in which the system output in a given 
discrete-time instant is represented in terms of past input 
and output (I/O) values (van den Bosch and van der Klauw, 
1994; Sjöberg et al., 1995; Ljung, 1999; Nelles, 2001). 
Although this approach has several advantages, such as 
allowing parsimonious representations of unstable systems 
(infinite memory) (Aguirre et al., 2002), one of its main 
drawbacks is that the auto-regressive aspect generally 
increases the sensitivity regarding the choice of the model 
order. This characteristic generates a recursion of errors that 
can damage the quality of the prediction, especially for 
long-range prediction horizons. 

In order to lessen the previously mentioned drawbacks, 
one approach of particular interest consists of using models 
without output feedback. The best known such models are 
the finite impulse response – FIR – models, in which the 
system output in a given discrete-time instant is represented 
only in terms of past samples of the input. The absence of 
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output recursion in such FIR models, however, has the 
drawback of usually requiring a large number of terms in 
the regression vector, especially when representing slow 
dynamics. The number of terms of the regression is 
proportional to the number of unknown model parameters, 
and this relation is exponential for most general-purpose 
non-linear models, as will be seen in subsequent sections. 
Models without output feedback that circumvent this 
drawback are the so-called orthonormal basis functions 
(OBF) models (Heuberger et al., 2005). 

The Laguerre and Kautz basis functions (Broome, 1965; 
Wahlberg, 1991, 1994; Wahlberg and Mäkilä, 1996) are the 
most commonly used basis functions in the approximation 
of signals and systems and are, respectively, preferred for 
modelling systems with first and second-order dominant 
dynamics. To model systems with more complex dominant 
dynamics, basis functions constructed with more than one 
dynamic, such as the generalised orthonormal basis 
functions (GOBF) (Heuberger et al., 1995; Van den Hof  
et al., 1995) can be more appropriate. These functions have 
been widely used in the context of the identification and 
control of linear and non-linear systems (Schetzen, 1980; 
Dumont and Fu, 1993; Heuberger et al., 1995; Ninness and 
Gustafsson, 1997; Oliveira et al., 2000; Doyle et al., 2002; 
Heuberger et al., 2005), especially because the corresponding 
dynamic models have several desirable characteristics, such 
as the following (Dumont and Fu, 1993; Ninness and 
Gustafsson, 1995; Nelles, 2001; Heuberger et al., 2005): 

1 there is no output recursion or feedback of prediction 
errors, which often leads to superior performance over 
long-range predictions and a natural decoupling 
between multiple outputs 

2 prior knowledge of the relevant past terms of the 
system signal is not necessary, this represent an 
advantage particularly for non-linear systems where 
such knowledge is barely available 

3 the representational capability of the models can be 
improved by simply increasing the number of functions 
in the orthonormal basis 

4 the representation of a stable system is assuredly stable 

5 these models are able to deal with time delays and are 
tolerant of unmodelled dynamics. 

This paper presents an overview of the state-of-the-art in the 
identification of dynamic systems using OBF models. Issues 
related with non-linear OBF models are approached on the 
second part of this paper (Oliveira et al., forthcoming).  
For simplicity but without loss of generality, only the 
single-input single-output (SISO) case will be considered. 

The outline of this paper is as follows. Section 2 
discusses the problem of identifying linear dynamic systems 
using an OBF-based framework, including the robust 
identification of models with parametric uncertainties. 
Section 3 discusses several methodologies for the design  
of OBF that parameterise the corresponding models.  
Section 4 describes a case study involving an isothermic 

polymerisation process. Finally, Section 5 addresses the 
conclusions. 

2 Linear system identification 

The idea behind dynamic linear models with an OBF 
framework is grounded in the completeness property of 
these orthonormal bases. This property ensures that any 
function of the Lebesgue space ℓ2[0, ∞) can be 
approximated with arbitrary accuracy by a linear 
combination of functions of these bases. In other words,  
for any quadratically summable function ( ) :h k →  on  

[0, ∞), that is, 2
0

( ) ,
k

h k
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=
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where {ψ1(k), ..., ψn(k)} is the set containing the first n 
orthonormal functions of the basis, and c1, ... , cn are scalars. 

So, the representation 
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and, using the orthonormality property of the functions 
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one then has from (3) that the coefficients of the series 
expansion are given by 

0

( ) ( ).j j
k

c h k kψ
∞

=

=∑  (5) 

The idea of the OBF framework in dynamic models is to 
represent the system’s impulse response using a set of 
orthonormal functions. This representation is possible for 
bounded-input bounded-output (BIBO) stable dynamic 
systems whose impulse responses are absolutely (and 
therefore quadratically) summable. It is important to note 
that systems with integrators have impulse response with 
infinite energy and therefore fall outside the preceding 
requirement. Since, in general, the presence of integrators in 
a real system is known, one can model the variation of  
the system output instead of its absolute value, which  
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is equivalent to removing the integrator(s) from the 
identification loop. 

The convolution equation describing a linear,  
causal, time-invariant dynamic system is given by 

0
( ) ( ) ( ),

k
y k h u k

τ
τ τ

=
= −∑  where u(k) is the discrete-time 

input, y(k) is the discrete-time output, and h(τ) is the 
impulse response of the system. The approximate expansion 
of h(τ) using n orthonormal functions is performed so that 
the convolution model is represented as: 
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where li(k) is the convolution of the input signal u(k) with 
the ith orthonormal function ψi(k). Since each function ψi(k) 
of the orthonormal basis, from its Z-transform, can be 
associated with a transfer function representing a linear 
filter Ψi(z), the term li(k) is merely the result of filtering  
the input signal u(k) by the function Ψi(z). In other words, 
li(k) = Ψi(q)u(k), where Ψi(q) is the transfer function of the 
ith orthonormal function represented in the shift operator q, 
where ( ) ( 1).qu k u k +  

The OBF that are most commonly used in signal and 
system representations are presented below. 

2.1 Orthonormal basis functions 

The use of orthonormal filters to represent signals and 
systems has a long history, since the pioneering proposals of 
Takenaka (1925) and Wiener (1958). Discrete-time OBF 
can be generated by cascading different all-pass filters of 
order one or two, as follows (Ninness and Gustafsson, 1997; 
Heuberger et al., 2005): 
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where βi are stable poles of the orthonormal basis 
( :| | 1)i iβ β∈ <  and iβ  denotes the complex conjugate of 
βi. The functions in (7) are the so-called Takenaka-Malmquist 
functions (Heuberger et al., 2005). The corresponding 
realisations in the time-domain, ψi(k), are given by the 
inverse Z-transform of (7) and satisfy the orthonormality 
property. The set {ψi} is complete on ℓ2[0, ∞) if and  

only if 
1
(1 | |)ii

β
∞

=
− = ∞∑  (Ninness and Gustafsson, 1997; 

Heuberger et al., 2005), so any finite energy signal 
(including absolutely summable functions) can be 

approximated with any prescribed accuracy by linearly 
combining a certain finite number of such functions. In 
general, functions ψi(k) are complex-valued, although this is 
physically unrealistic in system identification problems. It is 
shown (Ninness and Gustafsson, 1997) that this drawback 
can be circumvented by constructing a modified basis of 
functions with real-valued impulse responses consisting of a 
linear combination of the complex-valued functions 
generated by (7). 

When all the poles of (7) are real-valued and equal to 
each other, that is, ,i i pβ β= =  one obtains the Laguerre 
basis, which can be written in the z-domain as (Fu and 
Dumont, 1993; Oliveira e Silva, 1994; Belt and den Brinker, 
1995; Tanguy et al., 1995): 
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with { :| | 1}p p∈ <  denoting the Laguerre pole. By setting 
p = 0, the Laguerre functions simplify to an ordinary pulse 
basis Ψi(z) = z–(i–1), which implies that the model in (6) 
reduces to the classical FIR model (Ljung, 1999). 

Another important OBF realisation, which has also been 
shown to be a particular case of the unifying construction 
(7) (Ninness and Gustafsson, 1997), is obtained by 
cascading an all-pass filter with a pole at β and an all-pass 
filter with a pole at ,β  in such a way that the pairs of 
conjugate poles are equal to each other for any value of i, 
that is, { ,  ,  ,  ,  ...}.β β β β  The result is the two-parameter 
Kautz functions, defined in the z-domain as (Wahlberg, 
1994; Tanguy et al., 2002; Heuberger et al., 2005): 
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where scalars α1 and α2 are real-valued parameters 
satisfying | α1 | < 1 and | α2 | < 1. These parameters are 
related to the pair of Kautz poles ( ,  )β β  as 

( )1 (1 ) ,,α βββ β= +  (10) 

2 ,α ββ= −  (11) 

Laguerre and Kautz bases are preferred when modelling 
systems with first- and second-order dominant dynamics, 
respectively. Systems with more complex dominant 
dynamics are better represented using models based on 
GOBF because the mathematical description of such bases 
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involves multiple poles (modes). Although the term 
generalised OBF is originally due to the formula by  
Van den Hof et al. (1995) and Heuberger et al. (1995), this 
term will be used generically hereafter to refer to 
orthonormal bases of functions with multiple modes. 

It is important to notice that the insertion of dynamics 
into the orthonormal filters in (7) allows the incorporation 
of prior knowledge about the dynamics of the system 
(Ninness and Gustafsson, 1995, 1997; Nelles, 2001). In fact, 
if the parameterisation of the basis is set close to the 
dominant modes of the system, then an accurate 
approximation can be obtained with fewer coefficients (see 
Section 3). 

It is also worth noting that, as discussed previously,  
the OBF defined in (7) have complex-valued inverse  
Z-transforms when they are designed with complex-valued 
poles. This drawback can be circumvented by constructing a 
modified basis of functions with complementary pairs of 
real-valued impulse responses (Ninness and Gustafsson, 
1997). Particularly, let us consider the basis functions  
in (7) parameterised by real-valued poles only, that is, 

i i ipβ β=  for i = 1, 2, …. In this case, one has: 
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Then, let us initially consider an OBF-based model with the 
first n – 1 basis functions {Ψ1(z), Ψ2(z), …, Ψn–1(z)} 
parameterised by their respective n – 1 real-valued poles, 
given by the set {p1, p2, …, pn–1}, precisely as in (12). 
According to Ninness and Gustafsson (1997), if it is  
desired to include a complex-valued pole βn into this  
set of poles, then two modified functions ( )n z′Ψ  and 

( )n z′′Ψ  with real-valued impulse responses must be 
constructed as a linear combination of Ψn(z) and Ψn+1(z)  
in (7). In this case, the new set of functions will be 
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where nβ ∈  is the complex-valued pole included in the 
GOBF and λ′, γ′, λ″, γ″ are real-valued parameters that 
relate to βn as follows: 
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There exist infinite solutions for the choice of the  
real-valued parameters λ′, γ′, λ″, γ″ satisfying (14) to (16). 
Any choice of such parameters satisfying these equations 
will assure the orthonormality of the basis (Ninness and 
Gustafsson, 1997; Ziaei and Wang, 2006). 

If it is desired to include an additional pair of complex 
conjugate poles 1 1,  n nβ β+ +  into the GOBF, two additional 
functions 1( )n z+′Ψ  and 1( )n z+′′Ψ  with real-valued impulse 
responses must be constructed as a linear combination of 
Ψn+2(z) and Ψn+3(z) in (7) (Ninness and Gustafsson, 1997). 
In this case, the new set of functions will be 
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1 1,  ,  ,  }.n n n nβ β β β+ +  After some algebraic manipulations, 
one obtains the two new functions given by: 
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where ρ′, μ′, ρ″, μ″ are real-valued parameters that relate to 
βn+1 in the same way as λ′, γ′, λ″, γ″ relate to βn. To 
include an arbitrary number of pairs of complex conjugate 
poles into the GOBF, the reasoning presented previously is 
repeated. 

The OBF are recursive, which means that the ith function 
can be written in terms of the (i – 1)th one. It is then possible 
to describe the dynamics of the set of orthonormal functions 
using a state-space representation. In this case, the model in 
(6) can be represented as follows: 

( 1) ( ) ( ),k A k u k+ = +l l b  (19) 

( )ˆ( ) ,( )y k k= lH  (20) 

where the state vector l(k) = [l1(k) ⋅⋅⋅ ln(k)]T is composed by 
the outputs of the orthonormal filters and H  is the static 
mapping given by the linear combination of these states, 
that is: 

( )
1

( ).( )
n

i i
i

c l kk
=

=∑lH  (21) 

The matrices A and b in (19) depend solely upon the 
orthonormal basis. A description of these matrices is found 
in the literature for Laguerre and Kautz, for instance 
(Dumont and Fu, 1993). 



126 G.H.C. Oliveira et al.  

Once the basis pole is chosen (see Section 3), the model 
becomes completely determined by the coefficients c(⋅) of 
the orthonormal series in (21). If the impulse response of the 
system is available, these coefficients can be computed 
analytically by using (5). Note that the impulse response of 
a BIBO-stable system necessarily vanish (or asymptotically 
tends to zero) with time, which allows the truncation of 
equation (5). Although this non-parametric approach is 
simple and mathematically well founded, it may not, 
however, be effective in practical problems since the 
impulse response of the system is usually not available.  
A more efficient approach involves considering the 
coefficients ci as parameters to be estimated numerically 
using I/O data from the system, which can be performed in a 
simple way using, for example, a least-squares algorithm 
(Ljung, 1999). 

Finally, it is worth remarking that, although no transport 
delay is explicitly represented in the previous model 
description, the orthonormal functions are able to represent 
dynamics with this characteristic (Mäkilä, 1990; Fu and 
Dumont, 1993). Nevertheless, any information available 
about the real delay of the system can be explicitly 
incorporated into the model, which allows reducing the 
number of functions and filters necessary for modelling the 
system with any prescribed accuracy. This feature can be 
obtained by replacing u(k) with u(k – τd) in (19), where τd is 
the estimated delay. 

2.2 Robust identification 

In certain cases, a single linear model cannot adequately 
represent a complex system. The presence of external 
disturbances, for example, can rule out obtaining a single set 
of parameters that ensures the model will be a good 
representation of the system. To deal with such cases, the 
usual procedure consists of incorporating uncertainties 
associated with the model parameters. Models with 
parametric uncertainties are the basis of many control 
algorithms, the so-called robust algorithms. Robust 
controllers using OBF-based models are described in the 
literature (Oliveira et al., 2000; Araújo and Oliveira, 2009). 
In OBF-based models, such as those in equations (19) to 
(21), the problem of identifying models with uncertain 
parameters has been addressed in the linear case (Wahlberg 
and Ljung, 1992; Akçay and Ninness, 1998) and in the 
Wiener and Hammerstein cases (Figueroa et al., 2008; 
Biagiola and Figueroa, 2009). 

Next, two approaches are presented for the robust 
estimation of the parameters in OBF-based models and their 
corresponding uncertainties (Oliveira, 1997; Oliveira et al., 
1998, 2000). These approaches assume that the model 
uncertainty can be expressed as follows: 

1

ˆ( ) ( ) ( ).
n

T
i i

i

y k c l k k
=

= =∑ lc  (22) 

Defining ci(εi) as the model uncertain parameters, one 
obtains: 
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=
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where ε is a vector whose ith element is εi, which, in turn, 
represents the uncertainty relative to the parameter ci.  
The uncertain parameters ci(εi) characterise the process 
dynamics. 

The first approach involves a set of I/O data measured 
from the system and the use of robust identification methods 
based on the unknown-but-bounded-error (UBBE) approach 
(Milanese and Belforte, 1982). The second approach 
considers prior knowledge of the uncertainty of the model 
associated with the impulse response of the process. An 
algorithm based on this latter approach for computing the 
uncertainty bounds is presented in the literature (Moreira, 
2006). 

In the context of robust control, the representation of 
model uncertainties is often approximated by geometric 
shapes within the space formed by the parameters, for 
example, polytopes, orthotopes, or ellipsoids (Walter and 
Piet-Lahanier, 1990; Favier and Arruda, 1996). The 
approaches discussed here represent the space of the 
parametric uncertainties as an orthotope, that is, the model’s 
uncertainty is associated with the maximum and the 
minimum values for each parameter, i.e., ci(εi) ∈ [ci,min, ci,max]. 
The robust identification problem with Laguerre models 
using ellipsoidal approximations has already been 
investigated (Wahlberg and Ljung, 1992). 

The UBBE robust identification problem is formulated 
as follows. Let the model of a certain process be given by 
(22). For a given set of parameters ci, the error between the 
model and process outputs is given by 

ˆ( ) ( ) ( ),e k y k y k= −  (24) 

where y(k) is the process output and ˆ( )y k  is the model 
output for the set of parameters ci. Then, consider that e(k) 
satisfies 

[ ]min max( ) min ( ), ( ) ,e k e k e k∈  (25) 

where emin(k) and emax(k) are, respectively, the lower and 
upper bounds of the model error at the time instant k. These 
bounds are assumed to be known or can be determined from 
experimental data. These bounds can even be arbitrarily 
chosen but this approach involves the following two risks: 

1 if the bounds are underestimated, the problem of the 
robust identification of the parameters can have no 
solution 

2 if the bounds are over-estimated, the solution can be 
very conservative. 

So, given an initial set S* defined so as to contain all  
the possible values for the parameters ci, the robust 
identification problem consists of finding a subset of S*, 
given by S, containing values of ci that are consistent with 
equations (22), (24), and (25). The solution of this problem 
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is the identification of a set S having feasible values for the 
parameters ci of model (22). 

Let N be the number of input u(k) and output y(k) 
measurements available from the process. From the  
state-space representation of the orthonormal basis, the 
vector l(k) in (19) can be calculated for k = 1, …, N. Then, 
using a set of available I/O measurements and considering 
an exact representation of the polytope generated by S, one 
obtains the following: 

{ min max: ( ) ( ) ( ) ( ) ( ),
1, ..., },

TS y k e k k y k e k
k N

= − ≤ ≤ +

=

lc c  (26) 

and c(ε) in (23) represents all the vectors c such that c ∈ S. 
Based on the definition of the set S in (26), the  

bounds of the uncertain parameters c(ε) can be calculated 
using different robust identification algorithms found  
in the literature (Milanese and Belforte, 1982; Mo and  
Norton, 1990; da Silva, 1995; Akçay and At, 2006).  
The computation of the polytope generated by S can  
become complicated as the number N of measurements 
increases. This drawback is circumvented in Milanese and 
Belforte (1982), where an algorithm for determining an 
approximation in the form of an orthotope O exterior to S, 
i.e., S ⊂ O, has been proposed. In this algorithm, e(k) is 
assumed to be such that | e(k) | ≤ emax and every pair of 
bounds, ci,min and ci,max, of the range of the uncertain 
parameter ci(εi) is associated with a linear programming 
problem. The constraints of this problem are the domain of 
c(ε), that is, S. Therefore, the computation of the orthotope 
O exterior to S requires solving 2n linear programming 
problems, each one with 2N constraints. 

The second approach of robust identification (Oliveira, 
1997) considers a set of M realisations of the impulse 
response that represents the uncertainty of the process, i.e., 
hm(k), m = 1, …, M. Assuming that the space formed by the 
uncertain parameters of the model is an orthotope, then each 
ci(εi) coefficient can be represented by means of a median 
value c  and an absolute value of the maximum deviation 
(εi) with respect to the median value. Mathematically, one 
has: 

( ) ,i i i i ic c cε ε= + Δ  (27) 

with | εi | ≤ 1, that is, ci(εi) ∈ [ci,min, ci,max]. Using equation 
(5), each impulse response of the process can be associated 
to a given model as: 

,
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k
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∞

=
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Thus, from each element ci,m (m = 1, …, M), the bounds 
[ci,min, ci,max] of each parameter i are given by: 
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It is worth remarking that the positive characteristics of the 
identification of OBF models cited previously are still valid 
in the context of robust identification presented in this 
section. One of these characteristics is that there is no need 
of predefining the order or delay of the process, which 
represents an advantage when compared to ARX or 
ARMAX models. Furthermore, compared to the FIR 
models, the reduction in the number of parameters  
to be estimated also reduces the complexity of the  
robust identification algorithm. Extensions of this latter 
methodology (Oliveira, 1997; Moreira, 2006) toward  
non-linear models have already been addressed (da Rosa, 
2009). 

3 Design of OBF 

As discussed in Section 2, the OBF are complete on  
ℓ2[0, ∞), which leads to two fundamental implications. The 
first one is that the number of functions in a truncated basis, 
n, represents a trade-off between the accuracy and 
parsimony of the model. The actual value for n required to 
provide an accurate approximation, however, also depends 
on the complexity of the specific problem at hand. Dynamic 
systems with multiple dominant modes, for example, 
typically require models with a larger number of functions. 
The second implication regarding the completeness of the 
basis is that the parameterisation of the set of functions is 
not critical. This condition means that for any stable basis 
pole β, there exists a corresponding number n of functions 
providing a certain capability of approximation. For a given 
number of functions, the underlying problem is how to 
select the poles that parameterise the basis functions so as to 
maximise the model’s accuracy. 

Often, a basis functions can be constructed from a given 
collection of rational orthonormal functions and the problem 
of selecting the best orthonormal rational basis from such a 
collection can be addressed (Bodin et al., 2000). When 
properly selected, the poles of an orthonormal basis can 
increase the speed of convergence of the series that 
approximates the model dynamics, thus allowing a 
reduction of the number of basis functions and, accordingly, 
an improvement of the estimator properties in identification 
problems (Van den Hof et al., 1995; Heuberger et al., 1995). 
In addition, the sensitivity of the estimators to measurement 
noise is affected by the poles. In this context, Ninness et al. 
(1999) presented accurate expressions for the estimate of the 
variance errors that highlight the role of orthonormal bases 
in system identification and the importance of appropriate 
procedures for pole selection. 

The choice of the best Laguerre poles has been 
extensively addressed and is well established in the 
literature. The first study concerning this subject (Clowes, 
1965) optimised the performance of models based on 
Laguerre functions in the case of linear continuous-time 
systems. Later (Masnadi-Shirazi and Ahmed, 1991), the 
problem of selecting Laguerre poles in discrete-time linear 
systems was investigated by minimising the error between  
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the impulse response of the system and the corresponding 
Laguerre model. This strategy’s main drawback is that it 
requires finding the roots of high-order polynomials. In Fu 
and Dumont (1993), Tanguy et al. (1995), and den Brinker 
and Sarroukh (2004), different energy errors are minimised 
for obtaining analytical formulas for optimal Laguerre 
poles, whose solution is only valid for first-order Volterra 
models (linear models). In the context of non-linear 
systems, an analytical optimisation of Laguerre bases for the 
orthonormal series expansion of Volterra models was 
initially derived in the context of second-order models 
(Campello et al., 2001) and further extended to any order 
models (Campello et al., 2004; Kibangou et al., 2005; 
Campello et al., 2006). The list of works dealing with the 
Laguerre pole location also includes the derivation of 
optimality conditions for linear truncated Laguerre networks 
(Oliveira e Silva, 1994, 1995a). These conditions are of 
great theoretical interest but can, however, result in 
complicated computations in practical cases. 

Particularly for Laguerre bases, whose functions are 
completely parameterised by a single real-valued pole (the 
Laguerre pole), the computation of optimal poles can be 
seen as a scalar optimisation problem. Despite the important 
theoretical results with regard to analytical approaches to 
the optimisation of the Laguerre poles, this optimisation  
can be carried out by performing a search within the 
feasibility interval (−1, 1) (Oliveira et al., 2003). The main 
disadvantage of such an approach is that, for each 
evaluation of the objective function associated with a 
particular value of the pole, all the remaining model 
parameters – the static mapping H  in (20) – need to be  
re-estimated. Depending on the problem and the sort of 
linear and non-linear OBF model adopted, the consequence 
is a high computational cost. 

As the Laguerre bases involve rational transfer functions 
with a single real-valued pole, they are preferred for 
representing well-damped dynamic systems. Systems with 
poorly damped dynamics, however, typically cannot be 
accurately approximated with a small number of Laguerre 
functions. In other words, such functions are not very well 
suited to approximate signals with strong oscillatory 
behaviour (Oliveira e Silva, 1995b; Tanguy et al., 2000; 
Heuberger et al., 2005). This drawback has led to an 
increasing interest in the two-parameter Kautz functions, 
introduced by Kautz (1954). These functions can better 
approximate systems with oscillatory behaviour because 
they are parameterised by a pair of resonant poles. 
Optimality conditions for the approximation of truncated 
linear models are derived (Oliveira e Silva, 1995b;  
den Brinker et al., 1996) by minimising the error between 
the impulse response of a given system and its Kautz 
approximation. In the context of pole location, a  
sub-optimal analytical choice of Kautz poles was proposed 
for discrete-time linear systems (Tanguy et al., 2002) and 
the corresponding non-linear counterpart was later 
addressed for Volterra models (da Rosa et al., 2007). More 
recently (da Rosa et al., 2008), an analytical solution for one 
of the parameters related to the Kautz poles was derived 

when any-order Volterra kernels are decomposed into a set 
of independent orthonormal bases, each of which is 
parameterised by an individual pair of conjugate Kautz 
poles associated with the dominant dynamic of the kernel 
along a particular dimension. This is an extension of a 
previous method (da Rosa et al., 2007), where the solution 
involves a single Kautz basis for expanding a given kernel 
along all its dimensions. 

In contrast to the analytical methods, a different 
approach to the pole location problem can be adopted that 
utilises numerical procedures for optimisation. In this 
context, numerical procedures for selecting OBF poles in an 
iterative manner have been proposed (Hacioğlu and 
Williamson, 2001; Ngia, 2001; Favier et al., 2003; 
Kibangou et al., 2003, 2005; Patwardhan and Shah, 2005; 
da Rosa et al., 2009). Recursive algorithms for the 
estimation of the coefficients and poles of Kautz and 
Laguerre filters based on a separable non-linear  
least-squares method have been presented (Ngia, 2001).  
A general optimisation formulation that conceptually 
embodies both the optimality and convergence requirements 
has been suggested in Patwardhan and Shah (2005), but no 
strategy has been provided for determining the search 
directions to be followed by the optimisation algorithm. The 
main difficulty comes from the fact that the relations 
between the model output and the OBF parameters (poles) 
are governed by dynamic equations. The use of the gradient 
descent technique is proposed in the literature (Hacioğlu and 
Williamson, 2001), but the gradient formulation and the 
corresponding search directions are roughly approximated 
by means of instantaneous (static) estimates of their partial 
derivatives. A method for the precise determination of 
search directions based on the analytical recursive 
computation of the derivatives of the output of the 
orthonormal basis filters with respect to their poles has been 
proposed (da Rosa et al., 2009). Such derivatives can then 
be used as part of an optimisation method to obtain exact 
search directions for the OBF poles that fully encompass the 
dynamic nature of these parameters. An application of this 
approach to the modelling of a real world magnetic 
levitation system with non-linear behaviour is presented in 
(Oliveira et al., forthcoming). 

Regardless of the sort of model adopted, that is, the 
shape of the mapping H  in (20), a simple but effective 
heuristic for selecting the parameterisation of the 
orthonormal functions consists of using prior knowledge 
about the dominant dynamics of the system (Ninness and 
Gustafsson, 1995, 1997). Such a heuristic can often be 
selected by analysing the time or frequency response of the 
system (Zervos and Dumont, 1988; Wahlberg and Ljung, 
1992). 

4 Simulation example 

In this section, the system identification using the 
techniques described in Section 2.2 is illustrated through a 
case study. It is related with the computational simulation of 
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a continuous stirred tank reactor (CSTR) polymerisation 
process. 

The identification of a simulated CSTR polymerisation 
is considered, particularly an isothermal process that uses 
toluene as solvent (Doyle et al., 1995). The number average 
molecular weight (NAMW) of the resulting polymer, y(t) 
[kg/kmol], is controlled by manipulating of the rate of flow 
of the substance initiator, u(t) [m3/h]. A four-state model of 
this non-linear process is given by Maner et al. (1996) and 
Doyle et al. (2002): 
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The differential equations in (30) are simulated using as 
initial conditions the nominal operation conditions, given by 
x1(0) = 5.506774, x2(0) = 0.132906, x3(0) = 0.0019752,  
x4(0) = 49.3818, u(0) = 0.016783, and y(0) = 25000.5 
(Doyle et al., 1995; Maner et al., 1996). The process is 
simulated from t = 0 up to t = 32 hours, with the input u 
being a sequence of steps of the same duration and random 
amplitude uniformly distributed within the operational 
interval [–0.6, 0.8]. The data set is sampled using a 
sampling period of T = 0.03 hours and normalised in order 
to avoid numerical problems during the model estimation. 
This data set is then split into two parts: one half (16 hours) 
intended for estimation of the (N)OBF models of this 
process and the other half intended for validation of the 
resulting model. The first 1/2 hour of each set is used 
exclusively to recover the right Laguerre states. These states 
are unknown (and set equal to zero) at t = 0 because, in 
practice, the values of the input signal anterior to the data 
available for identification are usually unknown. 

This section presents the identification of the CSTR 
polymerisation process using a linear OBF model with 
parametric uncertainties, as described in Section 2.2, and the 
two approaches described therein are adopted. Although the 
approach of obtaining a set of linear models via robust 
identification is directed primarily toward the representation 
of linear systems in the context of modelling non-linear 
systems, this approach can also be seen as the achievement 
of a set of linear approximations of the process at different 
set points. 

In the second approach for robust identification 
presented in Section 2.2, one needs to get a set of the 
system’s impulse responses. For the process of CSTR 
polymerisation described by the equations in (30), this set of 
impulse responses can be obtained by exciting the system 
with impulses of different amplitudes and later dividing the 
output signals by the amplitudes of the corresponding 
impulses. The goal is to recover the dynamic response of the 
process when it is excited by signals with different energies  
 

in such a way that the amplitude of the input signal has no 
influence on the result. Thus, if in addition to being 
deterministic the process is also linear, the set of impulse 
responses will be identical. Clearly, this is not the case in 
Figure 1, which displays the responses of the CSTR to 
impulses having amplitudes within the normalised range  
[–0.6, 0.8], with sampling of 0.1. 

As already discussed in Section 3, the method proposed 
by Fu and Dumont (1993) computes the optimal Laguerre 
pole from the impulse response of the (linear) system. The 
process described by the equations in (30) is non-linear and 
so the application of such method with six Laguerre 
functions generates a set of optimal poles (one pole for each 
impulse response) whose mean value is 0.56. Therefore, 
with six Laguerre functions parameterised at p = 0.56, the 
use of equations (28) and (29) leads to a linear model with 
uncertain parameters ci(εi) lying in the interval [ci,min, ci,max] 
given by: 

min max
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c c  (31) 

Next, an example of implementing of the first methodology 
for robust identification discussed in Section 2.2 (UBBE) is 
presented. In this case, a set of I/O estimation data is used 
with a maximum prediction error equal to emax = 0.15. For 
the sake of comparison, the pole value of the Laguerre pole 
(p = 0.56) and the number of Laguerre functions (n = 6) are 
the same as the ones adopted in the previous approach. 

Figure 1 Set of normalised impulse responses of the CSTR. 
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So, using the state-space representation in (19), as well as 
the hypotheses (25) and (26), the method of robust 
identification proposed in Milanese and Belforte (1982) 
leads to a linear model with uncertain parameters ci(εi) lying 
in the interval [ci,min, ci,max] given by: 
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min max
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From the preceding results, notice that the two strategies are 
capable of generating bounds of uncertainty for the 
parameters of the orthonormal model. When the two sets of 
results reported are compared, however, the method based 
on UBBE generates a larger orthotope (uncertainties more 
conservative than in the method based on the impulse 
response). Consequently, a more conservative control law 
will be generated by the robust control algorithm (e.g., see 
Oliveira et al., 2000). Another issue concerning this method 
is the selection of the maximum prediction error, which is 
usually hard to compute. Nevertheless, an important 
advantage is that the type of information required, i.e., the 
set of I/O data, is similar to that used by least squares 
algorithms for the estimation of linear systems. In this 
aspect, it is important to note that real world dynamic 
systems neither always react properly nor even admit 
operationally simulations involving the excitation via 
impulses. This property makes it difficult to obtain the 
information that is the basis for the computations of the 
method based on this sort of system. 

5 Conclusions 

An overview of the state-of-the-art in the areas of 
identification of dynamic systems using OBF models has 
been presented. This so-called OBF structure presents many 
advantages when compared to dynamic structures with 
traditional regressors, such as the absence of output 
recursion, the orthonormality of the elements of the 
regression vector, the ability to deal with time delays, 
tolerance of unmodelled dynamics and others. 

The mathematical foundations of the OBF models  
have been discussed in the context of system identification 
based on linear models with uncertain parameters (robust 
identification). Moreover, a widespread bibliographical 
compilation about the identification of linear OBF models 
have been presented, including works comprising all the 
approaches mentioned previously. Practical aspects of 
modelling have also been presented and illustrated through a 
case study involving CSTR polymerisation. This work is 
followed by its part II, with issues regarding non-linear 
system identification using OBF models. 
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