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1 Introduction 

The dynamic of several systems can be well reproduced by 
using linear models. However, when linear models are not 
able to represent, with quality, the dynamic of the  
system under study, it becomes necessary to use non-linear  
models. These models are usually constructed using the  
well-known non-linear auto-regressive with exogenous 
(NARX) inputs structure, in which the system output in a 
given discrete-time instant is represented in terms of past 
input and output (I/O) values (Sjöberg et al., 1995; Nelles, 
2001), as in polynomial models (Leontaritis and Billings, 
1985). As discussed in the first part of this paper, NARX 
autoregressive aspect generally increases the sensitivity of 
the model quality regarding the choice of the model order. 
Non-linear finite impulse response (NFIR) models are 
models where the system output in a given discrete-time 
instant is represented only in terms of past samples of the 
input (Sjöberg et al., 1995; Nelles, 2001). The absence of 
output recursion in such NFIR models, however, has the 
drawback of usually requiring a large number of terms in 

the regression vector, especially when representing slow 
dynamics. This relation is exponential for most general-
purpose non-linear models, as will be seen in subsequent 
sections. Models without output feedback that circumvent 
this drawback are the so-called non-linear orthonormal  
basis functions (NOBF) models (Sjöberg et al., 1995; 
Nelles, 2001). 

This paper is a continuation of the Part I, where this 
issue is tackled for linear models and models with uncertain 
parameters. Now, an overview of the state of the art in the 
identification of dynamic systems using Non-linear OBF 
models is presented. 

The outline of this paper is as follows. Section 2 
discusses briefly the problem of identifying linear dynamic 
systems using an OBF-based framework. Section 3 presents 
the identification of non-linear systems, providing different 
possible realisations of NOBF-based models. Section 4 
compares the approaches reported in the previous sections. 
Section 5 discusses the design of OBF that parameterise the 
corresponding models. Section 6 describes a case study 
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involving an isothermic polymerisation process. Finally, 
Section 7 addresses the conclusions. 

2 Orthonormal basis functions 

The use of orthonormal filters to represent signals and 
systems has a long history, since the pioneering proposals of 
Takenaka (1925) and Wiener (1958). Discrete-time OBF 
can be generated by cascading different all-pass filters of 
order one or two, as follows (Ninness and Gustafsson, 1997; 
Heuberger et al., 2005): 
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where βi are stable poles of the orthonormal basis (βi ∈ C :  

| βi | < 1) and iβ  denotes the complex conjugate of βi. The 
functions in (1) are the so-called Takenaka-Malmquist 
functions (Heuberger et al., 2005). The corresponding 
realisations in the time-domain, ψi(k), are given by the 
inverse Z-transform of (1) and satisfy the orthonormality 
property. The set {ψi} is complete on ℓ2[0, ∞) if and only if 

( )
1

1 ii
β

∞

=
− = ∞∑  (Ninness and Gustafsson, 1997; 

Heuberger et al., 2005), so any finite energy signal 
(including absolutely summable functions) can be 
approximated with any prescribed accuracy by linearly 
combining a certain finite number of such functions. In 
general, functions ψi(k) are complex-valued, although this is 
physically unrealistic in system identification problems. It is 
shown (Ninness and Gustafsson, 1997) that this drawback 
can be circumvented by constructing a modified basis of 
functions with real-valued impulse responses consisting of a 
linear combination of the complex-valued functions 
generated by (1). 

The most popular orthonormal bases are the Laguerre 
and the Kautz ones (Broome, 1965; Heuberger et al., 2005). 
Laguerre and Kautz bases are preferred when modelling 
systems with first- and second-order dominant dynamics, 
respectively. Systems with more complex dominant 
dynamics are better represented using models based on 
GOBF because the mathematical description of such bases 
involves multiple poles (modes). Although the term 
generalised orthonormal basis functions is originally due to 
the formula by Van den Hof et al. (1995) and Heuberger  
et al. (1995), this term will be used generically hereafter to 
refer to orthonormal bases of functions with multiple 
modes. 

The OBF are recursive, which means that the ith function 
can be written in terms of the (i – 1)th one. It is then possible 
to describe the dynamics of the set of orthonormal functions 
using a state-space representation. In this case, the OFB 
linear model can be represented as follows (Oliveira et al., 
2011): 

1( 1) 1( )  ( ),k A k u k+ = +b  (2) 

( )ˆ( ) 1( ) ,y k k= H  (3) 

where the state vector l(k) = [l1(k) … ln(k)]T is composed by 
the outputs of the orthonormal filters and H is the static 
mapping given by the linear combination of these states, 
that is: 

( )
1

1( ) ( ).
n

i i
i

k c l k
=

=∑H  (4) 

The matrices A and b in (2) depend solely upon the 
orthonormal basis. A description of these matrices is found 
in the literature for Laguerre and Kautz, for instance 
(Dumont and Fu, 1993). 

Once the basis pole is chosen (see Section 5), the model 
becomes completely determined by the coefficients c(·) of 
the orthonormal series in (4). If the impulse response of the 
system is available, these coefficients can be computed 
analytically. Although this nonparametric approach is 
simple and mathematically well founded, it may not, 
however, be effective in practical problems since the 
impulse response of the system is usually not available. A 
more efficient approach involves considering the 
coefficients ci as parameters to be estimated numerically 
using I/O data from the system, which can be performed in a 
simple way using, for example, a least-squares algorithm 
(Ljung, 1999). 

Finally, it is worth remarking that, although no transport 
delay is explicitly represented in the previous model 
description, the orthonormal functions are able to represent 
dynamics with this characteristic (Mäkilä, 1990; Fu and 
Dumont, 1993). Nevertheless, any information available 
about the real delay of the system can be explicitly 
incorporated into the model, which allows reducing the 
number of functions and filters necessary for modelling the 
system with any prescribed accuracy. This feature can be 
obtained by replacing u(k) with u(k – τd) in (2), where τd is 
the estimated delay. 

3 Non-linear system identification 

The main idea of the OBF-based linear models presented in 
Section 2, where the static mapping H in (3) is given by a 
linear combination of its arguments, is the expansion of the 
impulse response of the system on an orthonormal basis. 
One question that arises is whether the linear mapping H 
can be substituted by a non-linear mapping so as to obtain a 
model capable of also representing non-linear dynamics. In 
this case, the model would be described by linear dynamics 
that relate the input u(k) to the orthonormal states li(i) 
followed by a non-linear static mapping relating these states 
and the output ˆ( ),y k  that is, a Wiener-type model (Rugh, 
1981; Nelles, 2001; Campello and Oliveira, 2007). This 
section discusses non-linear implementations for the 
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operator H. Such implementations are of particular interest 
in this context because, among other reasons, they can be 
interpreted from a mathematical viewpoint. 

The shape of the static mapping (H) provides a specific 
realisation of a model with a (N)OBF structure. All the non-
linear realisations considered in this paper can be described 
such that this mapping is represented in a formulation that is 
linear in the parameters, as follows: 

(1( )) ( ) ,Tk kλ ζ=H  (5) 

where ζ ∈ Rμ×1 is the parameter vector to be estimated and 

λ(k) ∈ Rμ×1 is a regression vector that depends solely on the 

orthonormal states l(k). The linear model, for example, can 
be represented using this formulation by setting μ = n,  
ζ = [c1  cn]T, and λ(k) = l(k). Alternatively, one can insert 
an additional term c0 capable of representing a non-null 
constant level in the system output by simply setting  
ζ = [c0 c1  cn]T and λ(k) = [1 l(k)T]T. In this case, the 
model is called affine and the number of elements of the 
parameter vector will be μ = n + 1. 

3.1 Volterra models 

Discrete-time Volterra models assume that the system 
admits the following polynomial description of order N 
(Schetzen, 1980; Rugh, 1981; Doyle et al., 2002): 
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where u(k), y(k), and hη(k1, …, kη) are the input, the output, 
and the ηth-order kernel, respectively. Moreover, εη is a 
truncation limit beyond which the kernel hη is assumed to be 
null in each dimension. This representation is a 
straightforward generalisation of order N from the linear 
model FIR. In this context, the kernel hη is an ηth-order 
generalisation of the unit-impulse response function of the 
FIR model. It is also a specific realisation of the input-
output functional ( )( ) { ( )} ,ky k u ττ =−∞= G  where G is a 
generic non-linear operator. In Boyd and Chua (1985), it is 
shown that truncated Volterra models, such as those in (6), 
can approximate with desired accuracy any non-linear 
system that meets the following requirements: 

1 the operator G is causal, continuous, time-invariant, and 
has fading memory 

2 the input u(k) is (upper and lower) bounded. 

These requirements comprise a wide class of real-world 
systems. 

The estimation of Volterra kernels for modelling  
non-linear systems has been investigated for decades 
(Eykhoff, 1974; Billings, 1980; Schetzen, 1980; Rugh, 
1981; Doyle et al., 2002). The main drawback is that the 

kernels are, in principle, non-parameterised functions whose 
measurement is possible only if their individual 
contributions can be separated from the total system 
response (Schetzen, 1980). A straightforward approach can 
be derived if the elements of the Volterra kernels, that is, the 
coefficients hη(k1, …, kη), are treated as individual 
parameters to be estimated. In this case, the Volterra  
model (6) is linear in these parameters and classical 
estimation algorithms such as recursive least squares can 
then be applied. This approach, however, usually makes the 
model over-parameterised. It is therefore important to 
reduce its parametric complexity before estimation to 
improve numerical conditioning while decreasing the 
variance of the estimated parameters. An interesting 
approach to dealing with this problem, suggested by Wiener 
(1958), is to expand the Volterra kernels using OBF 
(Schetzen, 1980; Doyle et al., 2002). This approach is 
discussed below. 

3.1.1 OBF-Volterra models 

The kernels hη in (6) are assumed to be such that  
hη(k1, …, kη) = 0 for kj > εη (∀j ∈ {1, …, η}), which means 
that they are absolutely summable on ℓ2[0, ∞) and thus 
stable. Therefore, the kernels hη can be represented by 
means of OBF. For the sake of simplicity and without any 
loss of generality, the following developments will be 
presented assuming that all Volterra kernels are expanded 
using the same orthonormal basis {ψm}. In this case, the  
η-dimensional expansion of the ηth-order kernel is as 
follows (Schetzen, 1980; Rugh, 1981): 
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where ψi(k) is the ith orthonormal function of the basis and 

1, ,i ic
η…  are the expansion coefficients given by: 
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Note that, for the first-order kernel (η = 1), the previous 
expansion is equivalent to the expansion of the unit-impulse 
response of the convolution linear model as presented in 
Oliveira et al. (to appear). 

From equations (6) and (7), provided that hη(k1, …,  
kη) = 0 for kj > εη, the Volterra model can be rewritten as: 
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where li is the output of the ith orthonormal filter (i.e., the ith 

state) given by 
0

( ) ( ) ( ).i il k u k
τ

τ τ
∞

=
= −∑ ψ  For practical 

reasons, second-order models (N = 2) are usually adopted in 
both academic and real-world problems (Billings, 1980; 
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Dumont and Fu, 1993). Furthermore, equation (7) is, in 
practice, approximated with a finite number nη of functions. 
For instance, considering a Volterra model in which  
the first- and second-order kernels are truncated using n1 
and n2 orthonormal functions, respectively, the model is  
rewritten as: 

1 2 1

1 1 1 2 1 2

1 1 2

0 ,
1 1 1

ˆ( ) ( ) ( ) ( ),
n n i

i i i i i i
i i i

y k c c l k c l k l k
= = =

= + +∑ ∑∑  (10) 

where c0 is an additional zeroth-order coefficient  
inserted only to represent a non-null DC level in the system 
output. Note that, for computational calculations, the 
coefficients c(·) can be considered as parameters to be 
estimated numerically. Hence, since any pair of coefficients 
ci,j and cj,i multiply the same factor li(k)lj(k) in the  
second-order term, both coefficients can be represented by a 
single parameter to be estimated, as suggested in equation 
(10). 

Then, considering the coefficients c(·) as parameters to 
be estimated, the model (9) can be rewritten as in  
equations (3) and (5), where the vectors λ(k) and ζ in (5) are 
defined as: 

1
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The order of the state-space representation in (2) is  
n = max{n1, n2}. In this case, the number of model 
parameters is given by ( )2

2 2 12 2 2.n n nμ = + + +  

3.2 TS fuzzy models 

The Takagi-Sugeno (TS) fuzzy models are established by a 
set of M rules as follows (Takagi and Sugeno, 1985; Yager 
and Filev, 1994; Babuška, 1998): 

( )
1 1

1

: IF   is  AND  AND   is 
      THEN  ( ) , , ,

i i i
n n

i i n

R x X x X
y k f x x=

…
…

 (13) 

where Ri is the ith fuzzy rule, xj ∈ Xj ⊂ R (j = 1, …, n) are 

the input variables (premise variables), yi ∈ Y ⊂ R is the 

output variable, fi (i = 1, …, M) are the functions that relate 
the inputs with the output in the model, and i

jX  are the 

fuzzy sets defined on the universe of discourse Xj of the 
respective variables, that is, : [0,1].i

j jX →X  

The inference of the output value ŷ  from a specific set 
of input values is calculated as the weighted mean of the 
individual outputs of each rule, as follows: 

( )1
1
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, ,
ˆ ,
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where wi is the firing weight of the ith rule, given by 

( ) ( ) ( )1 1 2 2  ,i i i
i n nw X x X x X x= "  (15) 

Sugeno and his co-workers (Takagi and Sugeno, 1985; 
Sugeno and Kang, 1986, 1988; Sugeno and Tanaka, 1991) 
originally proposed the utilisation of affine functions in the 
rule consequents, that is: 

( )1 0
1

, , ,
n

i i
i n j j

j

f x x xθ θ
=

= +∑…  (16) 

This choice allows a simple mathematical interpretation of 
the model as an interpolation of different local affine 
models and implies that the output in equation (14) is linear 
on the parameters 0 , ,  ( 1, , ).i i

n i Mθ θ =… …  Hence, these 
parameters can be estimated using linear estimation 
algorithms. 

Dynamic TS fuzzy models contain exactly the same 
formulation described previously, except that the local 
models are dynamic instead of static models. In principle, 
the local models can hold any structure relating to their 
dynamic topology. For linear local models with a FIR 
structure, for example, one can just redefine the premise 
variables as: x1 = u(k – 1), …, xn = u(k – n), where u(k) is 
the input of the dynamic system at the instant k. 

3.2.1 OBF-TS fuzzy models 

Dynamic NOBF models with static non-linear mapping H 
given by fuzzy models were introduced in Oliveira et al. 
(1999). It can be shown that the proposal in Oliveira et al. 
(1999) is a particular case of a more general framework 
given by a TS fuzzy model with linear local models 
following the OBF dynamic topology (Nelles, 2001; 
Campello, 2002). Particularly, the inputs of the TS model 
are given by the outputs of the orthonormal filters, that is, x1 
= l1(k), …, xn = ln(k), which is equivalent to implementing 
the operator H in (3) and (5) through a TS model. The 
model rules take on the following form1: 

1 1

0 1 1

: IF  ( ) is  AND  AND  ( ) is 

     THEN  ( ) ( ) ( ),

i i i
n n

i i i
n n

R l k X l k X

y k l k l kθ θ θ= + + +

…
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and the output can be rewritten from (14) as 
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where wi is rewritten from (15) as 

( )
1

( ) ,i
i j j

j

w X l k
η

=

=∏  (19) 

The OBF-TS model presented can be easily rewritten in a 
general form given by equations (3) and (5). For this, one 
has to define the vectors ζ and λ(k) in (5) as: 

1 1 1
0 1 0 1          ,

TM M M
n nζ θ θ θ θ θ θ⎡ ⎤= ⎣ ⎦" " "  (20) 

[
]
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1

( ) ( )    ( )  ( ) 

                       ( )  ( ) ,

n
T

M M M n

k k w w l k w l k
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where 
1

( ) 1
M

ii
k wγ

=
= ∑  is the normalisation term in (18). 

In this case, assuming that fuzzy sets in the rules are 
predefined [e.g., by fuzzy clustering approaches (Babuška, 
1998)], the number of the model parameters is given by  
μ = M(n + 1). 

Two main questions arise from mapping H through TS 
fuzzy models: the mathematical interpretation of the model 
and its representational power. For the TS fuzzy model 
described previously, the mathematical interpretation is 
clear: it is an interpolation of M different linear (affine) 
OBF models that share the same dynamics of states (e.g., 
Laguerre functions). The generalised OBF-TS model, a 
more general model where the local OBF have independent 
state representations, that is, each model can have a set of 
orthonormal filters parameterised in different basis 
functions, has been proposed (Campello, 2002; Campello 
and Amaral, 2002a). This structure is more flexible in the 
sense of making complex non-linear dynamic 
representations possible through a smaller set of parameters. 
However, the problem of parameterising the orthonormal 
functions become more complex. Such issue is discussed in 
details in Section 5. 

Concerning the representational capability of the  
OBF-TS models, there are results (Campello, 2002; 
Campello et al., 2004) whose starting point is the capability 
of universal approximation of the fuzzy models (Wang and 
Mendel, 1992; Zeng and Singh, 1994, 1995; Kosko, 1997) 
and the representation capability of the Volterra models 
(Boyd and Chua, 1985) (as discussed in Section 3.1). These 
results show that, if the input is bounded in a closed 
interval, the OBF-TS models can approximate with arbitrary 
precision any causal non-linear dynamic system in discrete 
time that enables an input/output representation through a 
continuous operator and with fading memory. It is important 
to mention that the bounded input hypothesis is essential for 
the utilisation of any fuzzy or neural model, independently 
of its dynamic configuration, because this hypothesis is 
necessary to guarantee a compact input domain for these 
models. This hypothesis is not restrictive in the engineering 
context either. 

3.3 ANNs models 

Artificial neural networks (ANNs) are mathematical models 
based on the human nervous system structure, composed by 
simple processing units (artificial neurons) interconnected 
by a large number of connections (Haykin, 1999). There is a 
large number of publications on ANN, such as Saraswati 
and Chand (2009), and this subject is briefly presented here; 
for more details on this approach, see the classical reference 
by Rumelhart et al. (1986) or Haykin (1999) and refer to 
Narendra and Parthasarathy (1990) or Su and McAvoy 
(1993) for more application-oriented introduction. Different 
classes of ANN have been presented in the literature. In this 
work the class of interest is the feedforward networks which 
implement static maps H : Rm → Rn between vector spaces 

of arbitrary dimensions m and n. The two feedforward 
architectures most widespread are the radial basis functions 
(RBFs) and the multi-layer perceptron (MLP) networks 
(Haykin, 1999). In this work there is a special interest in 
RBF, which are described below. 

The basic architecture of an RBF network (Chen et al., 
1992; Pottmann and Seborg, 1992; Pearson, 1999) is given 
by a weighted sum of M RBFs hi(x) (i = 1, …, M) of the 
input vector x = [x1  xm]T. One of the most usual function 
used in the RBF network is the Gaussian function, that is: 

( ) ( )( )1( ) exp T T
i i i ih −= − − Λ −x x c x c  (22) 

where ci is the vector with the coordinates of the centre of 
the ith function and Λi is a positive-definite matrix n × n 
whose eigenvalues represent the variances of the ith function 
along their characteristic directions (directions of their 
eigenvalues). If Λi is diagonal, then the diagonal elements 
represent the variances of the function over each axial 
direction (Nelles, 2001). 

3.3.1 OBF RBF model 

Let us consider that the consequent of each rule (local 
model) in (17) is reduced to its constant term only, that is, 

0( ) .iy k θ=  In this case, the vectors in (20) and (21) can be 
rewritten as 

1
0 0 ,

TMζ θ θ⎡ ⎤= ⎣ ⎦"  (23) 

[ ]1( ) ( )    .T
Mk k w wλ γ= "  (24) 

Given, further, that the fuzzy sets in the rules are Gaussian, 
one has a special case of the TS model that corresponds2 
precisely to the formulation of a particular type of neural 
network, the RBFs network (Broomhead and Lowe, 1988; 
Haykin, 1999). This same equivalence is verified for fuzzy 
models with simplified relational structures (Campello, 
2002). More details about the equivalence among different 
classes of fuzzy models and neural networks can be found in 
the literature (Hunt et al., 1996; Cho and Wang, 1996). 

Since the RBF networks are universal approximators 
(Haykin, 1999), the approximation capability of the  
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OBF-RBF model is the same as that of the OBF-TS models, 
although the latter usually require a smaller amount of 
parameters to provide the same accuracy. The OBF-RBF 
models also present a mathematical interpretation that is a 
particular case of the OBFTS model. On the other hand, 
OBF neural models proposed in other works (Back and 
Tsoi, 1996; Sentoni et al., 1996, 1998; Balestrino et al., 
1999; Alataris et al., 2000; Vázquez and Agamennoni, 
2001; Arto et al., 2001; Campello et al., 2003) are based on 
the use of other network architectures (e.g., multi layer 
perceptron), that is, an arbitrary implementation of the static 
mapping H through a neural or neuro-fuzzy network. 

4 Comparing the (N)OBF approaches 

Four alternatives have been mentioned so far for the 
implementation of the static mapping H preceding the 
dynamics of states composed of a set of orthonormal filters 
in (N)OBF models: 

1 linear (or affine) combinations 

2 multidimensional polynomials (Volterra) 

3 fuzzy TS models 

4 neural networks. 

Basically, the first approach is limited to the representation 
of linear dynamic systems, with or without parametric 
uncertainties; in this latter case, robust identification 
algorithms are required. 

In regard to the non-linear approaches, it is important to 
highlight some significant structural differences among 
them. In the Volterra case, for example, the non-linearity of 
the static mapping is polynomial, so the only way to 
improve the representational capability of the model is to 
increase the order of the polynomial. The complexity of the 
Volterra models, however, depends exponentially on the 
polynomial order, which usually restricts their application to 
second-order representations of systems with mild non-
linearities (Billings, 1980; Dumont and Fu, 1993). This 
drawback does not occur with realisations performed by 
means of universal approximators, such as fuzzy models 
and neural networks, whose mappings can theoretically take 
on arbitrary continuous forms over a compact domain. In 
such cases, although the number of neurons or fuzzy rules 
needed to obtain a given capability of representation grows 
exponentially with domain dimension – the curse of 
dimensionality (Kosko, 1992) – increasing the accuracy of 
the model becomes possible by means of parametric 
adjustment of the fuzzy sets or membership functions. On 
the other hand, this flexibility requires the use of  
more sophisticated estimation procedures. Although  
both fuzzy and neural approaches present the same 
capability of representation, the former has the advantage of 
mathematical interpretation that, in general, the latter  
does not. 

5 Design of OBF 

An overview on the design of linear OBF models is 
presented in Oliveira et al. (2011). 

6 Simulation examples 

In this section, the system identification using the 
techniques described in Sections 3 and 5 is illustrated 
through two case studies, related with the computational 
simulation of a continuous stirred tank reactor (CSTR) 
polymerisation process and the modelling of a levitation 
magnetic system using an OBF-Volterra model. 

6.1 Example 1: non-linear case 

The identification of a simulated CSTR polymerisation is 
considered, particularly an isothermal process that uses 
toluene as solvent (Doyle et al., 1995). The number average 
molecular weight (NAMW) of the resulting polymer, y(t) 
(kg/kmol), is controlled by manipulating the rate of flow of 
the substance initiator, u(t) [m3/h]. A four-state model of 
this non-linear process is given by Maner et al. (1996) and 
Doyle et al. (2002): 

( )1 1 1 2

2 2

3 1 2 2 3

4 1 2 4

4

3

( ) 10 6 ( ) 2.4568 ( ) ( )
( ) 80 ( ) 10.1022 ( )

( ) 0.00241 ( ) ( ) 0.11219 ( ) 10 ( )
,

( ) 245.978 ( ) ( ) 10 ( )
( )

( )
( )

x t x t x t x t
x t u t x t

x t x t x t x t x t

x t x t x t x t
x t

y t
x t

⎧ = − −
⎪

= −⎪
⎪

= + −⎪
⎨
⎪ = −
⎪
⎪ =⎪⎩

�
�

�

�
 (25) 

The differential equations in (25) are simulated using as 
initial conditions the nominal operation conditions, given by 
x1(0) = 5.506774, x2(0) = 0.132906, x3(0) = 0.0019752,  
x4(0) = 49.3818, u(0) = 0.016783, and y(0) = 25000.5 
(Doyle et al., 1995; Maner et al., 1996). The process is 
simulated from t = 0 up to t = 32 hours, with the input u 
being a sequence of steps of the same duration and random 
amplitude uniformly distributed within the operational 
interval [–0.6, 0.8]. The dataset is sampled using a sampling 
period of T = 0.03 hours and normalised in order to avoid 
numerical problems during the model estimation. This 
dataset is then split into two parts: one half (16 hours) 
intended for estimation of the (N)OBF models of this 
process and the other half intended for validation of the 
resulting model. The first 1/2 hour of each set is used 
exclusively to recover the right Laguerre states. These states 
are unknown (and set equal to zero) at t = 0 because, in 
practice, the values of the input signal anterior to the data 
available for identification are usually unknown. 

This section addresses the identification problem of the 
CSTR polymerisation process using the different models 
with NOBF structure presented in Section 3. The models 
obtained are compared in terms of their accuracy and 
parametric complexity. They are also compared with OBF 
linear models in order to emphasise the difference in 
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performance when using the non-linear models in the 
identification of systems with that characteristic. 

The Laguerre pole p has been chosen experimentally 
based on preliminary tests using an OBF-Volterra model 
with n1 = n2 = 3 orthonormal functions in the first-and 
second-order terms. For the sake of simplicity, the linear 
search procedure described in Oliveira et al. (2003) has been 
adopted, where the feasibility interval (–1, 1) has been 
discretised (sampling of 0.05) and therefore a different 
model is estimated for each value of the resulting set. The 
pole providing the model with the lowest error of prediction 
for data validation is p = 0.75. After selecting the pole, 
various OBF linear and Volterra models containing different 
numbers of Laguerre functions are estimated via least 
squares and then validated using the I/O data available. The 
generation of such data is discussed at the beginning of 
Section 6. A comparison regarding the mean squared error 
(MSE) between the measured system output and the output 
of each model is presented in Tables 1 and 2. 

Table 1 Simulation performance of OBF linear models for 
normalised validation data 

No. lag. funct. n No. paramet. µ MSE 

1 2 0.00325429 
2 3 0.00145855 
3 4 0.00145919 

Table 2 Simulation performance of second-order  
OBF-Volterra models for normalised validation data 

No. lag. funct. 

n1 n2 
No. paramet. µ MSE 

1 1 3 0.00217362 
2 1 4 0.00041545 
3 1 5 0.00041052 
2 2 6 0.00014829 
3 2 7 0.00014383 
3 3 10 0.00014230 

As can be seen in Table 1, the performance of the linear 
model does not improve when using more than two 
functions, partially because of the rigorous selection of the 
Laguerre pole but mainly due to the model’s inability to 
represent the non-linear dynamics of the process. This 
hypothesis is verified graphically in Figure 1, which shows 
the actual output measured from the system for data 
validation jointly with the output predicted by the best 
obtained model (n = 2). It is observed in Figure 1 that the 
model cannot represent the gains of the process. 

Comparing Tables 1 and 2, it becomes clear that the 
inclusion of the second-order term significantly improves 
the model’s performance. Indeed, comparing models with 
similar numbers of parameters, particularly the linear model 
with n = 2 or 3 and the Volterra model with n1 = 2 and  
n2 = 1, one observes that the former model results in an 
error which is three times the latter. Furthermore, for the 

same number of Laguerre functions, specifically two or 
three, the error associated with the Volterra model is 
approximately ten times lower. The improvement obtained 
by the non-linear model can also be seen graphically by 
comparing Figures 1 and 2. The latter shows the output 
measured from the system for data validation jointly with 
the output predicted by the best obtained Volterra model  
(n1 = n2 = 3). 

Figure 1 Output measured from the CSTR (solid line) and 
predicted output of the linear Laguerre model with  
n = 2 (dotted line) for normalised validation data 
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Figure 2 Output measured from the CSTR (solid line) and 
predicted output of the Laguerre-Volterra model with 
n1 = n2 = 3 (dotted line) for normalised validation data 
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In the case of the OBF-TS and OBF-RBF models, the 
design parameters (in addition to the already selected pole  
p = 0.75) are the following: the number n of Laguerre 
functions, the number M of fuzzy rules, the fuzzy sets of the 
premise variables, and the parameter vector containing the 
coefficients of the local models (affine or constant). For the 
sake of simplicity here, let us select a complete fuzzy rule 
basis associated with a partition in the grid of the input 
domain (Passino and Yurkovich, 1997). In this approach, a 
number of reference fuzzy sets are associated with each 
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premise variable (Laguerre states). The corresponding rule 
basis is called complete because it contains all the possible 
rules with regard to the combinations of these referential 
sets. In this case, if α is the number of referential fuzzy sets 
assigned to each premise variable, the number of rules in the 
model is M = αn. Let us adopt, also for simplicity, a 
homogeneous distribution of Gaussian fuzzy sets on the 
universe of discourse of the corresponding variable, that is, 
equidistant centres and widths equal to the distance between 
two consecutive centres. Finally, select α = 2 to avoid a 
large amount of parameters – μ = αn(n + 1) in (20) and  
μ = αn in (23) – to be estimated via least squares. This value 
is sufficient to provide satisfactory results in this 
application, as will be seen below. It is important to mention 
that, before, the number of fuzzy sets per premise variable, 
the shape of these sets, and the rule numbers on the rule 
basis possibly incomplete, could all be optimised through 
different strategies, leading to more parsimonious and 
accurate models (Babuška, 1998; Espinosa et al., 2004). In 
this case, however, the additional effort undertaken at this 
stage needs to be considered in the comparative  
analysis with other models, which is beyond the scope of 
this work. 

From the parametrisation described previously, one now 
defines the number n of Laguerre functions and then 
estimates the coefficients of the local models (affine for the 
TS model and constant for the RBF model) using a least 
squares algorithm. Models having different numbers of 
Laguerre functions are estimated and validated using the set 
of I/O data available. The results regarding the MSE 
between the measured system output and the output of each 
model are shown in Tables 3 and 4. 

Table 3 Simulation performance of OBF-RBF models for 
normalised validation data 

No. lag. funct. n No. paramet. µ MSE 

1 2 0.00375778 
2 4 0.00076868 
3 8 0.00036230 
4 16 0.00038336 

Table 4 Simulation performance of OBF-TS models for 
normalised validation data 

No. lag. funct. n No. paramet. µ MSE 

1 4 0.00213717 
2 12 0.00000520 
3 32 0.00000095 

Comparing Tables 2 and 3 shows that the RBF model 
results in a performance similar to that obtained by the 
Volterra model, but quantitatively worse (to some extent, 
this is justified by the absence of adjustment of the pre-fixed 
fuzzy sets). The TS model, in turn, has more flexible local 
models, thus allowing one to achieve significantly higher 
accuracy, as shown in Table 4. The improvement obtained 
with the TS model can also be seen graphically by 

comparing Figures 3 and 4, which show the measured 
system output (validation data) jointly with the predicted 
output of the RBF (n = 3) and TS (n = 2) models, 
respectively. The TS model with n = 2 is selected because it 
represents a better trade-off between parsimony and 
accuracy when compared to that with n = 3. 

Figure 3 Output measured from the CSTR (solid line) and 
predicted output of the Laguerre-RBF model with n = 3 
(dotted line) for normalised validation data 
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Figure 4 Output measured from the CSTR (solid line) and 
predicted output of the Laguerre-TS model with n = 2 
(dotted line) for normalised validation data 
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Although the exponential growth of the number of 
parameters due to the number of Laguerre functions for both 
RBF and TS models is explicit, this drawback is more 
pronounced for the latter model, as shown in Tables 3 and 4. 
In order to lessen such a drawback, one approach – an 
alternative to those already mentioned previously and which 
does not require abandoning the simplicity of the 
architecture of the complete rules adopted – consists of 
using only a subset of the variables in local models as 
variables in the premise. Specifically for the OBF-TS 
models, whose rules are given in (17), this means taking the 
n Laguerre states in the consequent of the rules and then 
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using only the subset of the first r < n states in the 
antecedents (premise). In other words, it means using only 
one subset of Laguerre states as decision variables on the 
operational region of the system, which can result in no loss 
of performance, depending on the complexity of the 
dynamics involved. For r = 1, for example, the rules are as 
follows: 

1 1

0 1 1

: IF  ( ) is  

      THEN  ( ) ( ) ( ).

i i

i i i
n n

R l k X

y k l k l kθ θ θ= + + +"
 (26) 

For the sake of comparison, Table 5 shows the simulation 
results for the TS model with the simplified rules in (26).  
It can be observed, for example, that although the accuracy 
is significantly lower in this particular case, the model  
with n = 2 represents a trade-off between accuracy and 
parsimony very close to that obtained by the Volterra 
model. 

Table 5 Simulation results of OBF-TS models with simplified 
rules (for normalised validation data) 

No. lag. funct. n No. paramet. µ MSE 

1 4 0.00213717 
2 6 0.00015712 
3 8 0.00015397 

Recent works have presented solutions for the determination 
of OBF-TS models through genetic algorithms or fuzzy 
clustering techniques (Medeiros et al., 2006; Machado, 
2007). Strategies for automatically determining the optimal 
number of states in the premise of the rules in OBF-TS 
models have been investigated (Medeiros et al., 2006) 
which studied the use of non-linear local models in the 
consequent of the rules and the efficient estimation of the 
parameters of these models through local least squares 
algorithms. A non-stochastic approach is proposed 
(Machado, 2007) that uses a mixture of clustering  
validity criteria to automatically determine the number of 
local models and the membership functions based on  
product-space fuzzy clustering of I/O data through the  
well-known fuzzy clustering algorithm by Gustafson and 
Kessel (1979), which computes a fuzzy partition of the data 
into fuzzy hyperellipsoidal clusters. The fuzzy sets of each 
rule can then be obtained by projecting the corresponding 
fuzzy cluster onto the unidimensional domains of the 
premise variables (OBF states in the current work) (Babuška 
and Verbruggen, 1997). Simulations results employing 
Volterra models are presented in da Rosa et al. (2009). 

6.2 Modelling a magnetic levitation system 

The magnetic levitation system considered here, 
schematically shown in Figure 5, consists of upper and 
lower drive coils that produce a magnetic field in response 
to a DC current. Two magnets travel along a precision  
 
 

ground glass guide rod. By energising the lower coil, one of 
the magnets is levitated by a repulsive magnetic force. As 
current in the coil increases, the field strength also increases 
and the height of the levitated magnet is also increased. Two 
laser-based sensors measure the magnet positions. The 
magnets are of an ultra-high-strength rare earth (NeBFe) 
type and are designed to provide large levitated 
displacements (ECP, 1999). 

Let m1 be the mass of the lower magnet, v1 the  
viscous friction coefficient between this magnet  
and air, and g the acceleration of gravity. The movement of 
the lower magnet (Magnet 1) is governed by 

1 1 1 1 12 11 21 1 ,m u um y v y F F F m g+ + = − −�� �  where y1 is the 
position of Magnet 1, Fu11 is the magnetic force from Coil 1 
interacting with Magnet 1, Fu21 is the magnetic force from 
Coil 2 interacting with Magnet 1, and Fm12 is the mutual 
magnetic force between the two magnets. These forces are 
described by the following non-linear equations: 

( )

( )

( )

12 4
2 1

1
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1
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,
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where y2 is the position of Magnet 2, yc is the distance 
between Coils 1 and 2, i1 and i2 are the currents through 
Coils 1 and 2, respectively, and a, b, c, and d are real-valued 
constants. Some results for modelling a laboratory-scale 
plant of the magnetic levitation system described above are 
presented below. 

Figure 5 Sketch of the magnetic levitation system 

 

Experimental data have been acquired by keeping constant 
the DC current applied to Coil 1 of the plant while varying 
the current through Coil 2. The input signal u (current  
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through Coil 2) has been designed as a sequence of steps 
with different amplitudes so as to excite different modes of 
the system. The measured output signal y is taken as the 
position of Magnet 1 (y1). Figure 6 shows the I/O data 
available for estimation of the model. Before estimation, 
these data are sampled using a sampling period of  
0.017 second and are normalised within the interval [–1, 1] 
to avoid numerical problems. Another similar yet 
independent set of data has also been acquired and is 
reserved for further model validation. 

Figure 6 (a) Current through Coil 2 (input signal u) (b) Position 
of Magnet 1 (output signal y) 
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The model adopted here relates the input u(k) and output 
y(k) in Figure 6 by means of a second-order (N = 2) Volterra 
representation with a symmetric second-order kernel, as is 
usual in the literature (Billings, 1980; Dumont and Fu, 
1993). By describing its first- and second-order terms as 
expansions on two independent GOBF bases, the model 
becomes similar to that in (10), i.e.: 

1 2 1

1 1 1 2 1 2

1 1 2

1, , 2, 2,
1 1 1

ˆ( ) ( ) ( ) ( ),
n n i

i i i i i i
i i i

y k c l k c l k l k
= = =

= +∑ ∑∑  (27) 

where li(k) denotes the result of filtering the input signal 
u(k) by the orthonormal function with impulse response 
ψi(k), that is, li(k) = ψi(q) u(k). 

In model (27), only the I/O signals are known. In this 
case, no prior information on the model kernels is available. 
Therefore it is necessary to estimate them from input-output 
data measured from the levitation system in order to obtain 
the optimal GOBF poles. This model uses n1 = n2 = 4 
functions which are independent for each kernel order, thus 
covering two pairs of complex conjugate poles. The 
parameters of the orthonormal basis (see Oliveira et al., to 
appear) are set as 0,γ γ μ μ′ ′′ ′ ′′= = = =  although their  
 
 

choice has no significant effect on the identification 
procedure (Ziaei and Wang, 2006). This example has also 
been simulated by setting 1λ λ ρ ρ′ ′′ ′ ′′= = = =  and similar 
results were obtained. 

The parameters of model (27) are optimised using a 
numerical approach found in the literature (da Rosa et al., 
2009), which consists of simultaneously optimising the pole 
vector p that parameterises the orthonormal basis {ψi} and 
the corresponding coefficient vector ζ in (11). This 
approach involves the analytical computation of gradients 
that can be used as part of an optimisation method to obtain 
exact search directions for the OBF poles. 

To model the magnetic levitation system using this 
method, the initial poles are chosen as 0 0 0

1,1 1,2 2,1β β β= =  
0
2,1 0.5 0.5.iβ= = +  The final values of the poles are shown 

in Table 6. 
The model of the magnetic levitation system can  

now be compared to the actual system output with regard to 
the data samples reserved for model validation. Figure 7 
displays the corresponding model output, ˆ( ),y k  with the 
actual output measured from the system, y(k). It can be seen 
that a nearly exact approximation of this highly non-linear 
system is obtained. The corresponding approximation error 
is illustrated in Figure 8. 

Table 6 Estimated GOBF poles for the magnetic levitation 
system 

Kernel order (η) Optimal poles 

β1,1 = 0.7592 ± i0.2042 1 

β1,2 = 0.7382 ± i0.3713 

β2,1 = 0.8698 ± i0.3242 2 

β2,2 = 0.7215 ± i0.3947 

Figure 7 Actual system output (solid line) and predicted output 
(dotted line) of the model with optimised Kautz poles 
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Figure 8 Predicted error between the system output y(k) and the 
model output ˆ( )y k  for the magnetic levitation system 
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Finally, Table 7 presents a comparison between different 
approaches found in the literature that have been used for 
modelling the magnetic levitation system. All of these cases 
shown in Table 7 have been simulated using the same 
number of basis functions (four). In this comparison, the 
normalised quadratic error (NQE) is defined as: 

[ ]2
1

2
1

ˆ( ) ( )
NQE 10log

[ ( )]

d

d

N

k
N

k

y k y k

y k
=

=

−∑
∑

�  (28) 

where Nd = 680 is the number of available I/O data samples 
reserved for model validation. 

Although these models have the same number of 
parameters (basis functions), it is worth noting that the error 
obtained with the GOBF model is lower than that obtained 
with the Kautz models. 

Table 7 Comparison showing the errors obtained using 
different methods for modelling the magnetic 
levitation system 

Method NQE (in dB) 

Kautz basis 
(da Rosa, 2005) 

–17.4 

multiple Kautz bases 
(da Rosa et al., 2008) 

–22.3 

with Kautz basis 
(da Rosa et al., 2009) 

–26.5 

with GOBF 
(da Rosa et al., 2009) 

–33.2 

7 Conclusions 

An overview of the state of the art in the area of 
identification of non-linear dynamic systems using OBF 
models has been presented. This so-called NOBF structure 
presents many advantages when compared to dynamic 
structures with traditional regressors, such as the absence of 
output recursion, the orthonormality of the elements of the 

regression vector, the ability to deal with time delays, 
tolerance of unmodelled dynamics and others. 

The mathematical foundations of the NOBF models 
have been discussed in the context of system identification 
based on linear models and non-linear models. In the non-
linear case, different approaches have been considered, such 
as Volterra, fuzzy, and neural models. These approaches 
have been discussed comparatively in terms of their 
representational capability, parsimony, complexity of 
design, and interpretability. In sum, all these approaches 
provide the same capability of representation for a wide 
class of non-linear dynamic systems; however, the 
parametric complexity of these models is greater when 
compared to the OBF linear models. In the case of Volterra 
models, for example, the non-linearity is polynomial, so the 
only way to improve the model’s representational capability 
is to increase the polynomial order, which exponentially 
increases the number of parameters to be estimated. The 
fuzzy and neural approaches, in turn, provide more 
flexibility because they allow one to improve the accuracy 
of the model by increasing the number of fuzzy sets or 
activation functions, as well as by means of parametrically 
adjusting these elements. On the other hand, this flexibility 
requires the use of more complex estimation procedures. 
Unlike the linear, Volterra, and fuzzy approaches, in general 
the neural approach does not present a clear mathematical 
interpretation. 

This paper has presented a widespread bibliographical 
compilation about the identification of NOBF models, 
including works comprising all the approaches mentioned 
previously. Practical aspects of modelling have also been 
presented and illustrated through a case study involving 
CSTR polymerisation. 

Extensions of the ideas surveyed in this paper  
towards adaptive, stochastic, and frequency-domain model 
formulations, for instance, are current subjects of active 
research by the authors and many other researchers all over 
the world. 
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Notes 
1 For the sake of simplicity, it is assumed that the local models 

in (17) are linear (affine) and each one has the same order n, 
but both hypotheses can be relaxed in a more general case. 

2 Except for the normalization term γ(k), which does not change 
the analysis, because it can be incorporated into the parameter 
vector to be estimated. 


