

6.º TESTE - 1/2014

Em um esquema de transmissão binário transmite-se bits a uma taxa de 1 Mbps. Responda aos itens a seguir:

1) Qual a largura de banda do sinal banda básica composto por pulsos retangulares de largura completa e

Questão 1_

	de codifi	cação polar.			·	
(a) 0.25 MHz;	(b) 0.5 I	MHz; (c)	4 MHz;	(d) 1 MHz;	(e) 2 MHz.
2) Qual a la	argura de banda d	o sinal oriundo da ı	multiplicação do si	nal descrito no item 1 p	oor $\cos(2\pi f_c t)$?
((a) 8 MHz;	(b) 2 M	IHz; (c)	4 MHz;	(d) 0.5 MHz;	(e) 1 MHz.
3	,		anda do sinal descr or de decaimento r		ssem usados pulsos q	ue satisfizessem o
(8	a) 2.4 MHz;	(b) 4.8 I	MHz; (c)	0.6 MHz;	(d) 0.3 MHz;	(e) 1.2 MHz.
e cod	al $m(t)$ de la ficado em F 1	PCM com n bits po	or amostra. Respon smissão deste sina	da a cada item.	a do teorema da amost r se desejássemos aur	
(a) 2+	1/ <i>n</i>	(b) 2	(c) $n + 1$	(d) 2 <i>n</i>	(e) 1+2/n	(f) <i>n</i>
(2	•	axa de transmissâ ınciado? (1,0)	no R_b em bits/s do s	sinal resultante da	multiplexação de 10 s	inais digitais como
(a) 10	nB_m	(b) $5nB_m$	(c) nB_m	(d) $20nB_m$	(e) $2nB_m$	(f) $40nB_m$
(3	•	-	anda do sinal form do item anterior? (olares de espectro ves	stigial com r=0.5 a
(a) 7.	$5nB_m$	(b) $10nB_m$	(c) $5nB_m$	(d) $15nB_m$	(e) $20nB_m$	(f) $30nB_m$
(4			tências que um sir lade ao ruído? Ou s		al on-off devem ter de P_{on-off} . (1,0)	forma que ambos
(a) ().5	(b) 2	(c) 1	(d) 4	(e) 0.125	(f) 0.25

Expressões úteis

$$r = \frac{\text{excesso de banda}}{\text{banda mínima teórica}} = \frac{f_x}{0.5 R_b}$$

$$f_x = \mathbf{B}_{\text{transmiss}\tilde{\text{ao}}} - \mathbf{B}_{\text{mínima}}$$

$$2A\operatorname{sinc}(2\pi At) \leftrightarrow \operatorname{rect}\left(\frac{f}{2A}\right)$$

$$A\operatorname{sinc}^2(\pi At) \leftrightarrow \operatorname{tri}\left(\frac{f}{2A}\right)$$

$$rect\left(\frac{t}{A}\right) \leftrightarrow P(\omega) = T_b \operatorname{sinc}(\pi f A)$$

Folha de Gabarito 6.º TESTE - 1/2014

Nome do Aluno:	Matrícula:
Assinatura:	Turma:

Esta folha de gabarito deverá ser entregue assinada e preenchida ao final do teste ao professor ou ao aplicador. Em cada questão, para cada item, marque, PREENCHENDO O CÍRCULO CORRESPONDENTE, um e apenas um dos campos. A marcação de mais de um campo ou a não-marcação será contada como zero na questão. A correta marcação do gabarito é de inteira responsabilidade do aluno.

Questão	Item	Α	В	С	D	E	F
1	1	0	0	0	0	0	0
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
2	1	0	0	0	0	0	0
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
	4	0	0	0	0	0	0