Teoria das Comunicações

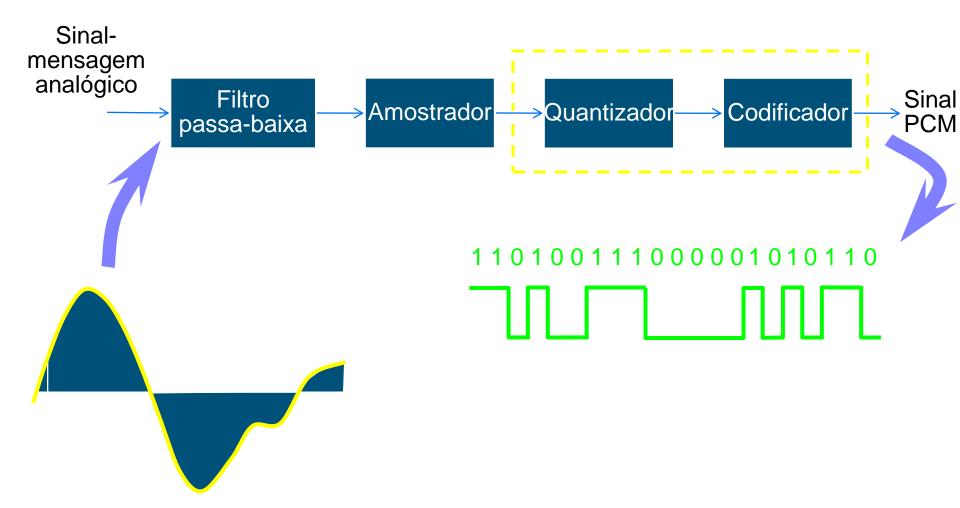
4.1

PCM (Pulse Code Modulation)

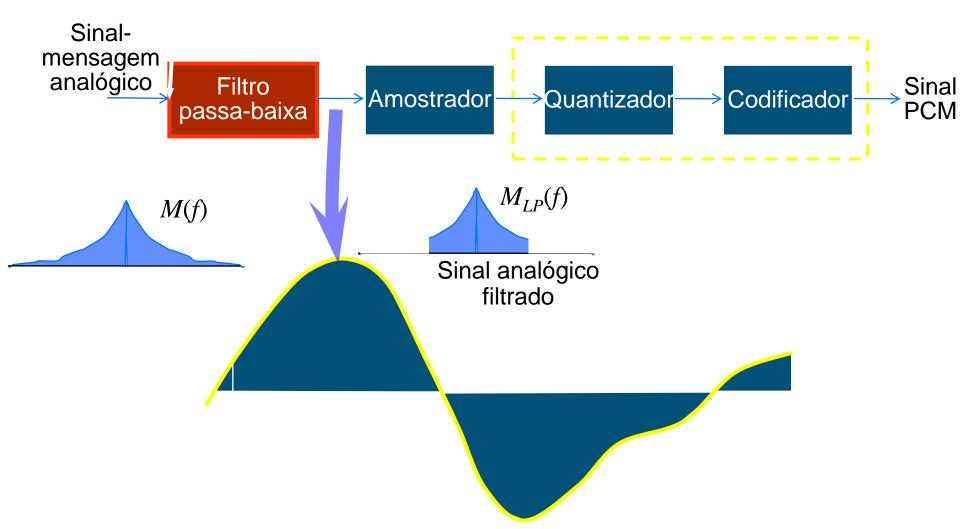
PCM (Pulse Code Modulation)

- É na verdade um esquema para digitalização de sinais analógicos
 - Inventado 1937
- Usado em
 - CDs (arquivo .wav)
 - Telefonia fixa digital
- Por que digitalizar??
 - Maior resistência a ruído
 - Possibilidade de repetidores regenerativos
 - Maior flexibilidade de hardware digital (software)
 - Processamento digital de sinais
 - Comutação
 - Taxas de erro podem ser reduzidas a qualquer valor arbitrário
 - Em troca de banda e/ou potência
 - Possibilidade de encriptação
 - Maior eficiência espectral
 - Multiplexação mais eficiente e flexível
 - · Flexibilidade de mídia
 - Armazenamento (quase) sem perda
 - CUSTO mais baixo \$\$\$\$\$

Digitalização de sinais usando o esquema PCM

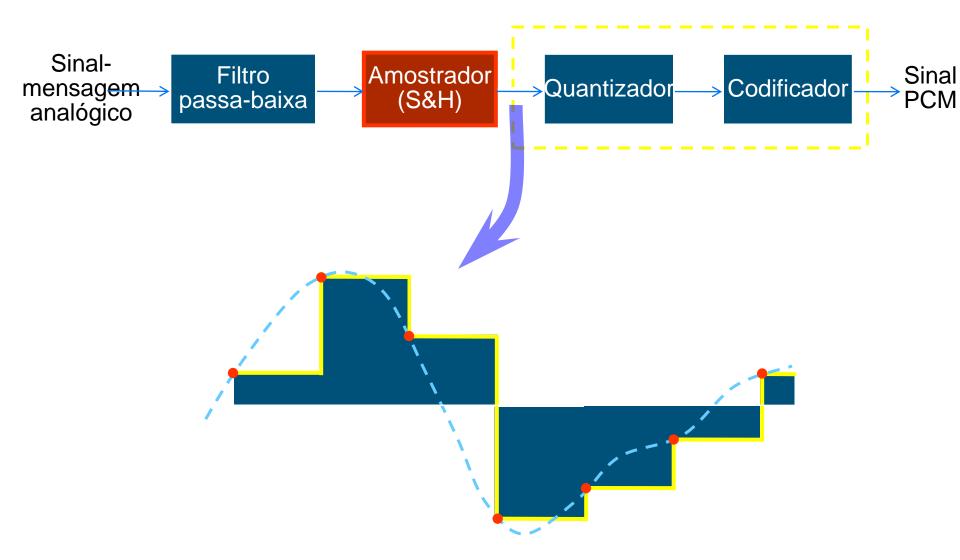


Filtragem anti-aliasing

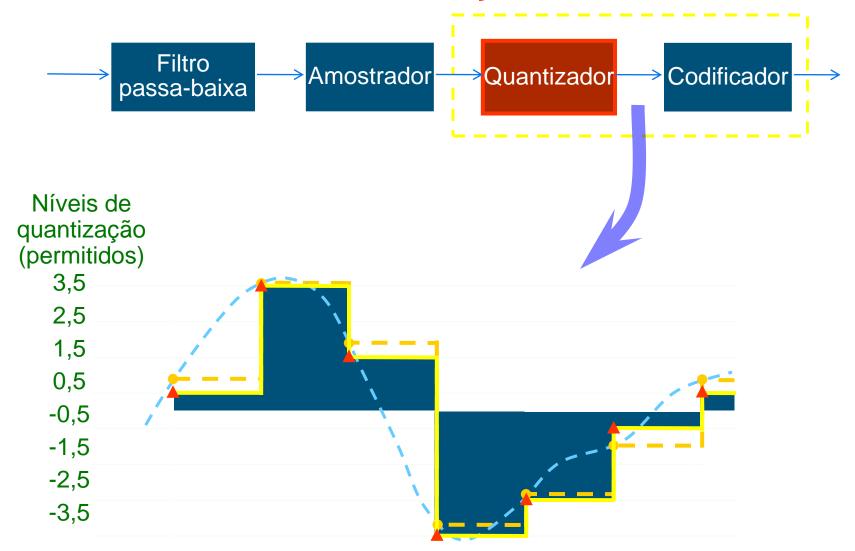


Filtragem é necessária, pois todo sinal realizável tem banda infinita

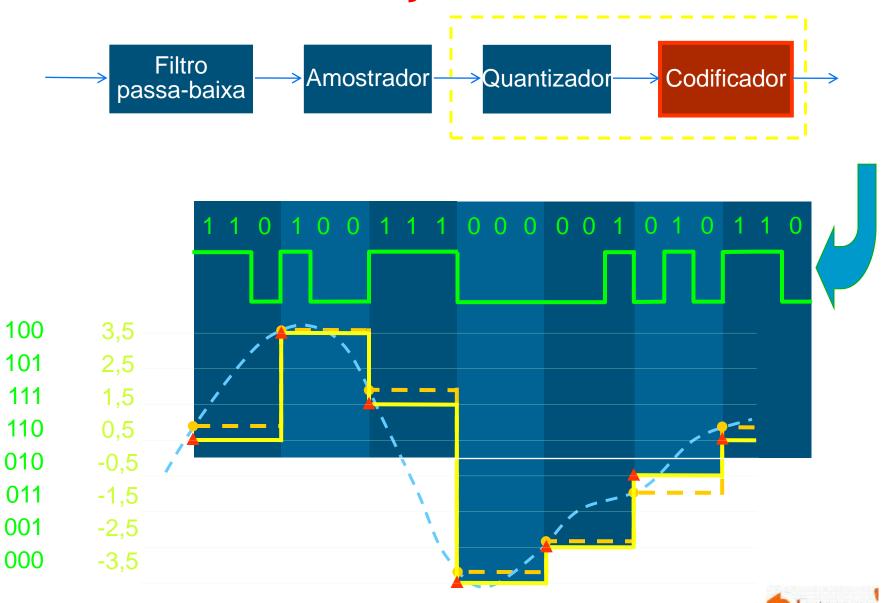
Amostragem



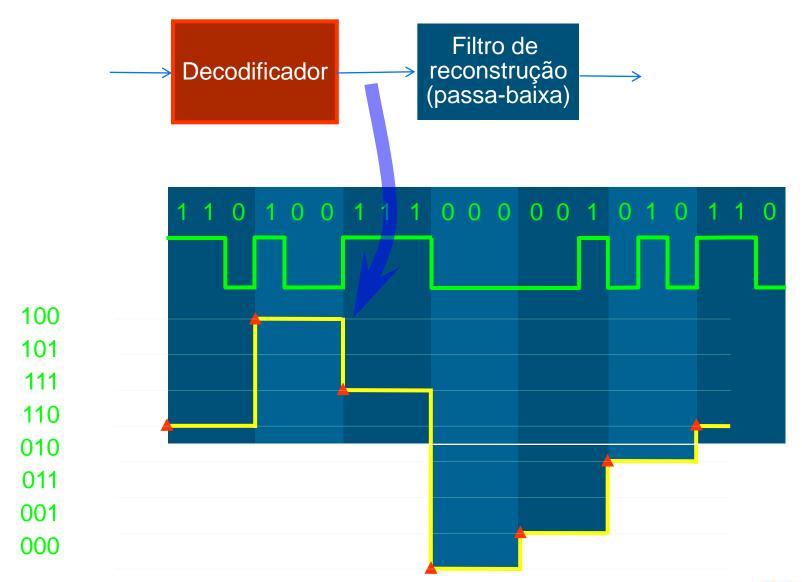
Quantização



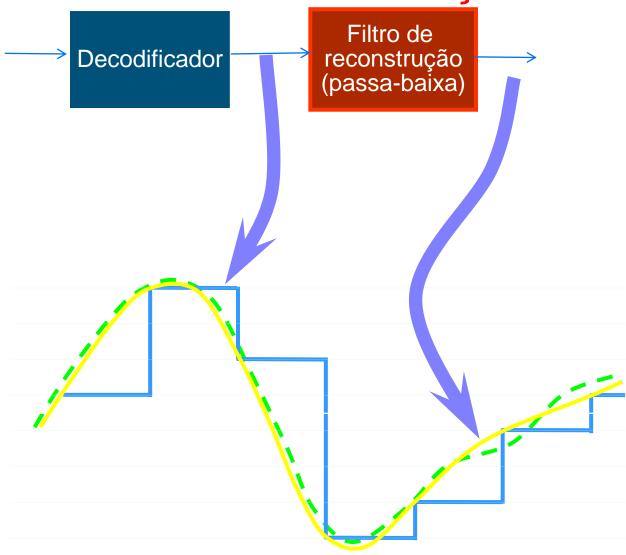
Codificação



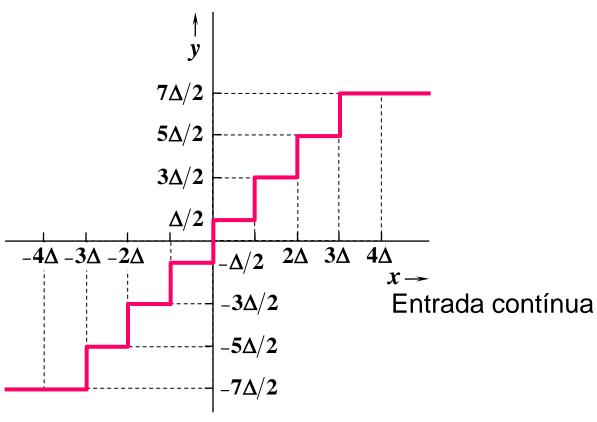
Receptor PCM – decodificador



Receptor PCM – filtro de reconstrução



Quantização



Quantização uniforme

Amostra analógica
$$x(kT_s)$$
 Quantizador $x(kT_s) = \hat{x}(kT_s) = Q[x(kT_s)]$ Amostra quantizada

$$X_{\min} = -m_{p}$$

$$X_{0} \quad x_{1} \quad x_{i-1} \quad x_{i} \quad y_{i} \quad x_{i+1} \quad x_{i+2} \quad x_{L-1} \quad x_{L}$$

$$X_{max} = m_{p}$$

$$X_{max} = m_{p}$$

Número de níveis de quantização: L

Tamanho do passo (ou degrau) do quantizador: $\Delta v = x_i - x_{i-1} = y_i - y_{i-1}$

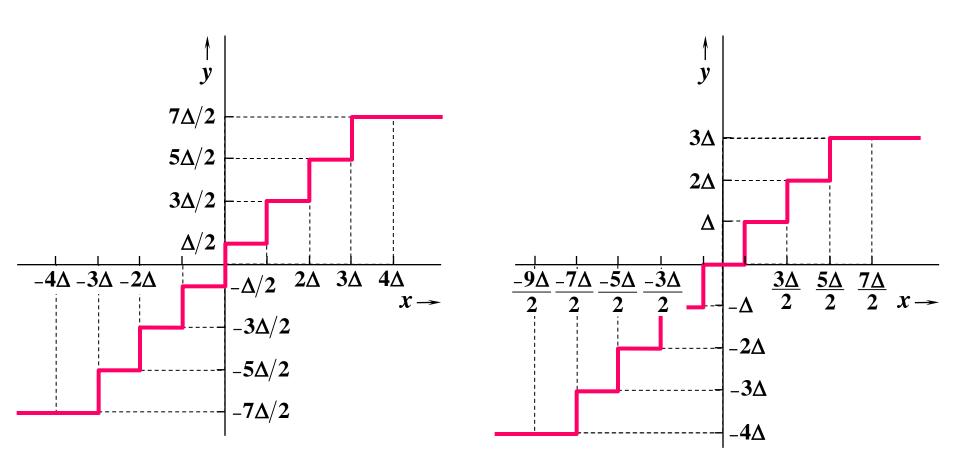
Níveis de quantização:
$$y_i = \frac{x_i + x_{i+1}}{2}$$
, $i = 1,2,...,L$ $\Delta v = \frac{X_{\text{max}} - X_{\text{min}}}{L} = \frac{2m_p}{L}$

Precisamos de $n = \lceil \log_2 L \rceil$ bits/amostra

Na prática, na maioria das vezes, $L=2^n$, $n \in \mathbb{N}^*$

departamento de engenharia elétrica

Característica de transferência de um quantizador uniforme



Característica de um quantizador uniforme do tipo *midrise*.

Característica de um quantizador uniforme do tipo *midtread*.

Desempenho: razão sinal-ruído de quantização

x(t): sinal-mensagem original

 $x(kT_s)$: k-ésima amostra de x(t)

 $\hat{x}(kT_s)$: versão quantizada de $x(kT_s)$

 $\hat{x}(t)$: sinal-mensagem reconstruído usando as amostras quantizadas de x(t)

Erro e ruído de quantização

Erro de quantização
$$q(kT_s) = \hat{x}(kT_s) - x(kT_s) \quad \implies \hat{x}(kT_s) = x(kT_s) + q(kT_s)$$

 $q(t) = \hat{x}(t) - x(t)$ $\Rightarrow \hat{x}(t) = x(t) + q(t)$

Ruído de quantização

Razão sinal-ruído de quantização:

$$RSR_q = \frac{\text{Potência média de } x(t)}{\text{Potência média de } q(t)} = \frac{\langle x^2(t) \rangle}{\langle q^2(t) \rangle}$$

Cálculo de $\left\langle q^2(t) \right\rangle$

Potência média do ruído de quantização

Usando o interpolador ideal podemos escrever:

$$x(t) = \sum_{k=-\infty}^{\infty} x(kT_s) \operatorname{sinc} \left[f_s(t - kT_s) \right] \qquad \hat{x}(t) = \sum_{k=-\infty}^{\infty} \hat{x}(kT_s) \operatorname{sinc} \left[f_s(t - kT_s) \right]$$

$$\therefore, \quad q(t) = \hat{x}(t) - x(t) = \sum_{k=-\infty}^{\infty} \left[\hat{x}(kT_s) - x(kT_s) \right] \sin\left[f_s(t - kT_s) \right]$$

$$= \sum_{k=-\infty}^{\infty} q(kT_s) \sin\left[f_s(t - kT_s) \right]$$

$$= q(kT_s)$$

$$\therefore, \quad \left\langle q^{2}(t) \right\rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q^{2}(t) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left\{ \sum_{k=-\infty}^{\infty} q(kT_{s}) \operatorname{sinc} \left[f_{s}(t-kT_{s}) \right] \right\}^{2} dt$$

Potência média do ruído de quantização

$$\begin{split} \left\langle q^2(t) \right\rangle &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left\{ \sum_{k=-\infty}^{\infty} q(kT_s) \operatorname{sinc} \left[f_s(t-kT_s) \right] \right\}^2 dt \\ &= \lim_{T \to \infty} \frac{1}{T f_s} \sum_{k=-\infty}^{\infty} q^2(kT_s) = \lim_{N \to \infty} \frac{1}{N+1} \sum_{k=-N/2}^{N/2} q^2(kT_s) \end{split}$$
 Explorando a ortogonalidade das funções sinc
$$= \operatorname{valor} \operatorname{quadrático} \operatorname{médio} \operatorname{de} q(kT_s)$$

= valor quadrático médio de $q(kT_s)$

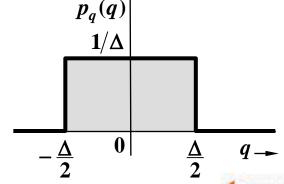
$$= E[q^{2}(kT_{s})]$$

$$= \int_{-\infty}^{\infty} q^{2} p_{q}(q) dq$$

$$= \frac{\Delta^{2}}{12} \qquad \text{Se } X_{\min} = -X_{\max},$$

$$= \frac{X_{\max}^{2}}{2L^{2}} \qquad \Delta = \frac{2X_{\max}}{L}$$

Assumindo que $-\Delta/2 < q < \Delta/2$ (i.e., $X_{\min} \le x(t) \le X_{\max}$ para $\forall t$) e que a distribuição probabilística de q é uniforme nesse intervalo, ou seja:



Razão sinal-ruído de quantização (uniforme)

$$RSR_q = \frac{\text{Potência média de } x(t)}{\text{Potência média de } q(t)} = \frac{\left\langle x^2(t) \right\rangle}{\left\langle q^2(t) \right\rangle} = \frac{\left\langle x^2(t) \right\rangle}{\Delta^2/12}$$
 Se $X_{\text{min}} = -X_{\text{max}}$,
$$\Delta = \frac{2X_{\text{max}}}{L}$$
 Essa estimativa para RSR_q assume que não há sobrecarga do quantizador, isto é

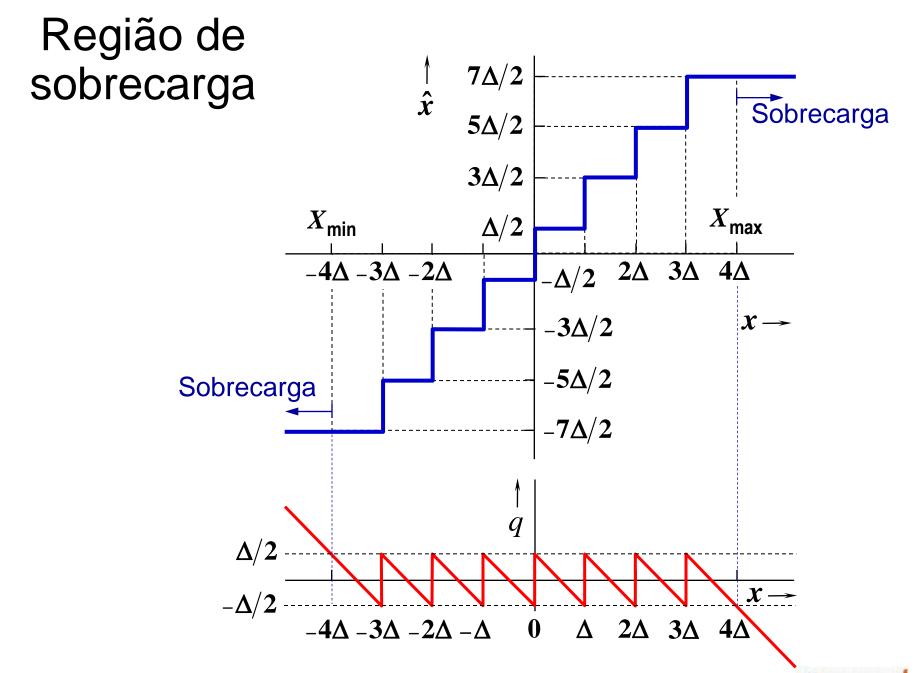
Essa estimativa para RSR_q assume que não há sobrecarga do quantizador, isto é, assume que $X_{\min} \le x(t) \le X_{\max}$ para todo t.

$$RSR_{q}|_{dB} = 10\log\left[3L^{2}\frac{\langle x^{2}(t)\rangle}{X_{\text{max}}^{2}}\right]$$

$$= 6,02n + 4,77 + 10\log\left[\frac{\langle x^{2}(t)\rangle}{X_{\text{max}}^{2}}\right]$$

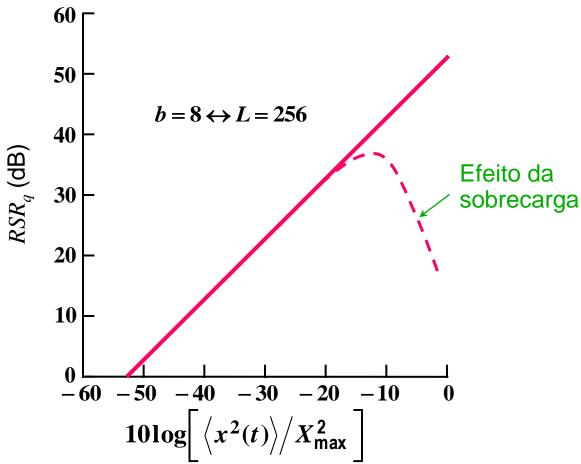
$$L = 2^{n}$$

Portanto, para cada bit adicional na palavracódigo, a RSR_q aumenta de \cong 6 dB (isto é, é quadruplicada). Teoria das Comunicações



Razão sinal-ruído de

quantização
$$RSR_{q}\big|_{dB} = 6.02n + 4.77 + 10\log\left[\frac{\left\langle x^{2}(t)\right\rangle}{X_{\text{max}}^{2}}\right]$$



Razão sinal-ruído de quantização

$$RSR_q\Big|_{dB} = 6.02b + 4.77 + \langle x^2(t)\rangle_{dB} - 10\log(X_{\text{max}}^2)$$

Portanto, se P_x diminuir (ou aumentar) K dB, a RSR_q também diminuirá (ou aumentará) de K dB, se b e $X_{\rm max}$ não forem alterados.

Contudo, a equação acima só é válida quando $|x(t)| \le X_{\max}$, caso contrário, haverá sobrecarga do quantizador e, nessa condição, um aumento em P_x também causará diminuição da RSR_q , uma vez que a sobrecarga aumentará.

Exemplo: quantização de sinais de voz

$$RSR_q \Big|_{dB} = 6.02n + 4.77 + 10 \log \left[\frac{\langle x^2(t) \rangle}{X_{\text{max}}^2} \right]$$

fdp laplaciana:

$$p(x) = \frac{1}{\sqrt{2}\sigma_x} e^{-\frac{\sqrt{2}|x|}{\sigma_x}}$$

Sinais de voz: fdp laplaciana

$$\langle x^2(t) \rangle = E[x^2(t)] = \sigma_x^2 + \mu_x^2 = \sigma_x^2$$

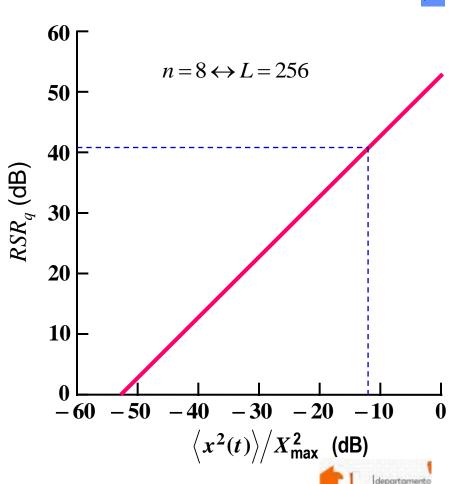
Regra prática:
$$X_{\max} = 4\sigma_x = 4\sqrt{\left\langle x^2(t) \right\rangle}$$

 $\approx 0.35\%$ das amostras $\notin [-X_{\text{max}}, X_{\text{max}}]$

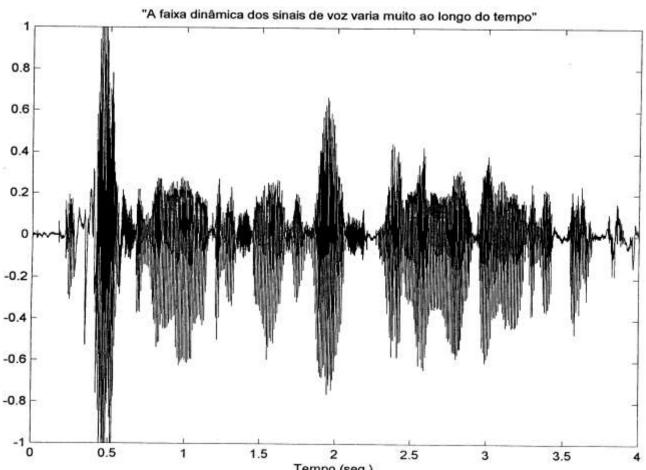
$$10\log(\sigma_x^2/X_{\sf max}^2) \cong -12\,{\sf dB}$$

$$RSR_q\Big|_{dB} = 6,02b - 7,27$$

$$RSR_q \Big|_{AB} \cong 41 \, dB$$
, para $n = 8$



Quantização não Uniforme - Motivação



A potência média do sinal de voz na entrada de um codificador PCM da rede telefônica pode variar de 40 dB (10.000).

Redução da RSR com a redução de σ_{x}

Se
$$\sigma_x = \sqrt{\langle x^2(t) \rangle} = \frac{X_{\text{max}}}{4}$$
,

$$10\log(\sigma_x^2/X_{\sf max}^2)\cong -12\,{\sf dB}$$

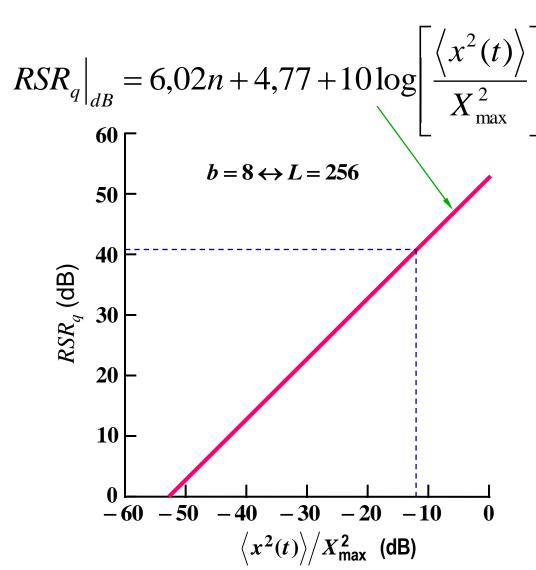
$$RSR_q\Big|_{dB} \cong 41 \, \mathrm{dB}$$

Contudo, se

$$\sigma_x = \sqrt{\langle x^2(t) \rangle} = \frac{X_{\text{max}}/4}{\sqrt{10.000}},$$

$$10\log(\sigma_x^2/X_{\sf max}^2)\cong -52\,{\sf dB}$$

$$RSR_q\Big|_{dR} \cong 0.9 \text{ dB}$$



Erro de quantização relativo

$$x = 1,0$$
 \Rightarrow $\hat{x} = 1,1$ \Rightarrow $|q| = 0,1$ (10%)
 $x = 10,0$ \Rightarrow $\hat{x} = 10,1$ \Rightarrow $|q| = 0,1$ (1%)

$$|q| \le \frac{\Delta}{2} \leftarrow q_{\text{max}}$$
 independe da magnitude de x

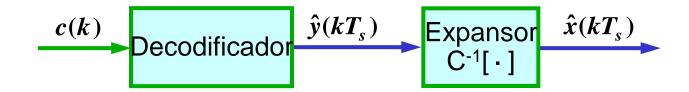
IDEAL:

$$\frac{|q|}{|x|} 100\% \le \beta\% \quad \leftarrow \quad q_{\text{max}} \text{ relativo (ou percentual)} \\ \text{independe da magnitude de } x$$

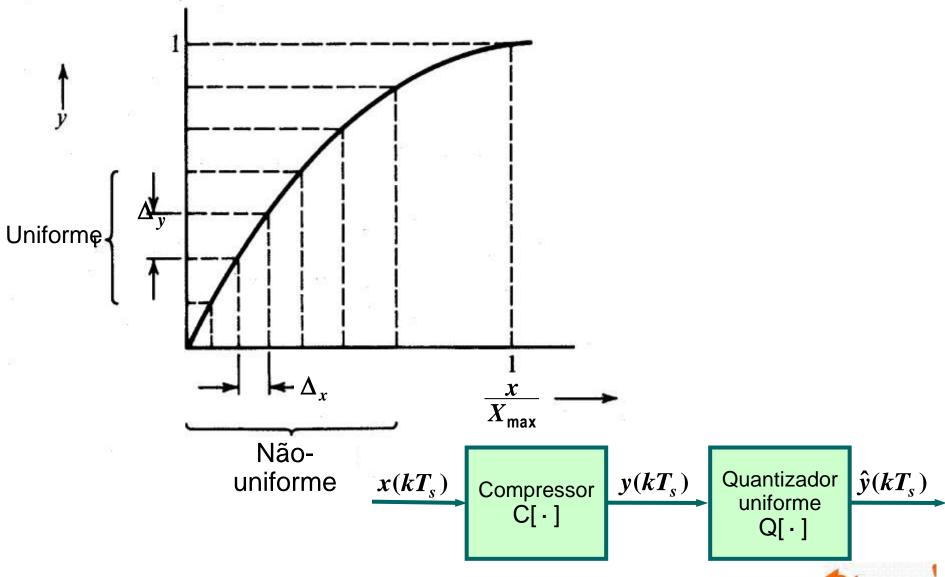
QUANTIZADOR NÃO-UNIFORME

Quantização não-uniforme baseada em compansão

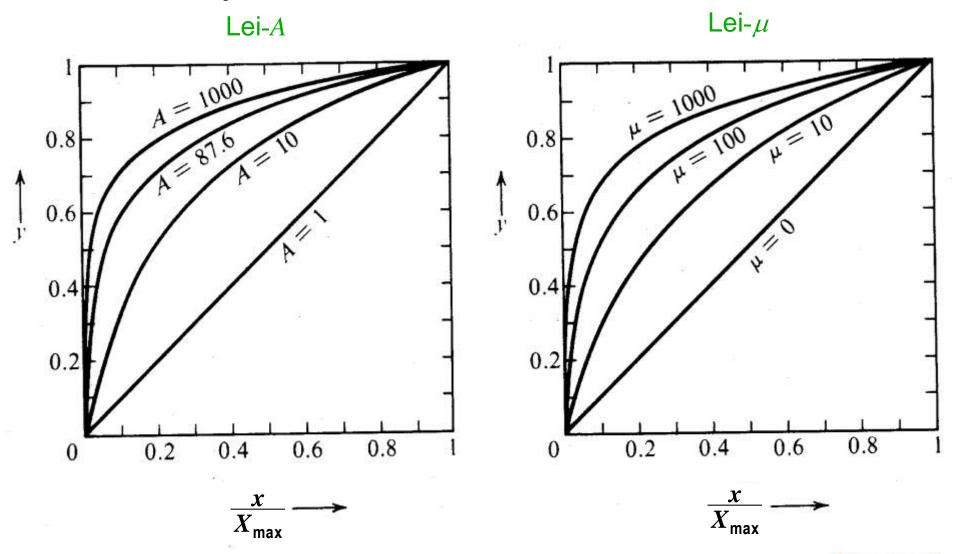
<u>com</u>pressão + ex<u>pansão</u> = compansão



Quantização não-uniforme baseada em compansão



Características de compressão



Sistema PCM Lei-µ

$$C(x) = \frac{X_{\text{max}}}{\ln(1+\mu)} \ln\left(1 + \ln\frac{\mu|x|}{X_{\text{max}}}\right) \operatorname{sgn}(x), \qquad 0 \le \frac{|x|}{X_{\text{max}}} \le 1$$

$$RSR_{\text{lei-}\mu} = 6.02n + 4.77 - 20 \log[\ln(1+\mu)]$$

$$-10\log\left[1+\left(\frac{X_{\text{max}}}{\mu\sigma_x}\right)^2+\sqrt{2}\left(\frac{X_{\text{max}}}{\mu\sigma_x}\right)\right] \quad (dB)$$

$$\approx 6.02n + 4.77 - 20 \log[\ln(1+\mu)] \text{ (dB)} \quad \text{para} \quad \mu >> \frac{X_{\text{max}}}{\sigma_x}$$

$$\frac{\max(\Delta)}{\min(\Delta)} = \mu + 1$$

Valor usado nos E.U.A. e Japão : $\mu = 255$

Sistema PCM Lei-A

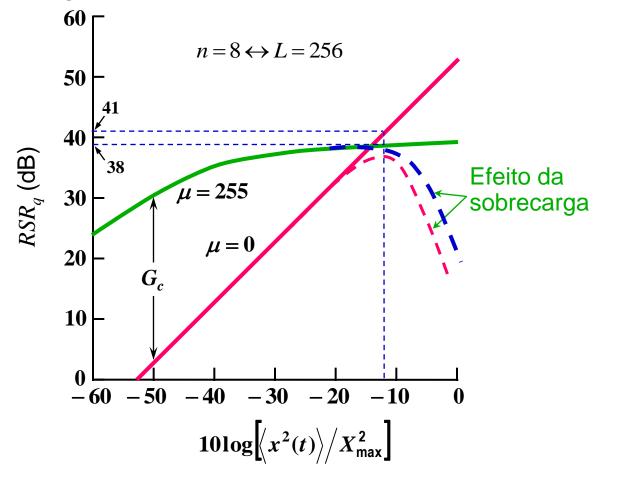
$$C(x) = \begin{cases} \frac{A}{1 + \ln A} |x| \operatorname{sgn}(x), & 0 \le \frac{|x|}{X_{\text{max}}} \le \frac{1}{A} \\ \frac{X_{\text{max}}}{1 + \ln A} \left(1 + \ln \frac{A|x|}{X_{\text{max}}}\right) \operatorname{sgn}(x), & \frac{1}{A} < \frac{|x|}{X_{\text{max}}} \le 1 \end{cases}$$

$$RSR_{\text{lei-}A} \cong 6,02n + 4,77 - 20 \log[\ln A] \text{ (dB)} \quad \text{para} \quad A >> \frac{X_{\text{max}}}{\sigma_x}$$

$$\frac{\max(\Delta)}{\min(\Delta)} = A$$

Valor padronizado pelo ITU-T: A = 87,6

Razão sinal-ruído de um sistema baseado em compansão



Taxa de bits do PCM

$$R_b = f_s \times n$$

Taxa de bits (bps) PCM

Taxa de ámostragem (amostras por segundo)

Número de bits por amostra

Ex.: Sinal de voz com banda telefônica, Quantizador uniforme

B_m	3.300 Hz			
f_{s}	8 kHz			
n	12 bits			
L	4.096 níveis			
R_b	96 kbps			

$$RSR_q \Big|_{dB} = 6.02n - 7.27$$

 $\cong 65 \text{ dB},$
quando $\sigma_x = X_{\text{max}}/4$

Log-PCM: Lei-A ou Lei-μ

Sinal de voz com banda telefônica

B_m	3.300 Hz				
f_{s}	8 kHz				
n	8 bits				
L	256 níveis				
R_b	64 kb/s				

$$RSR_{\text{lei-A}} \cong 6,02b + 4,77 - 20 \log(1 + \ln A)$$
 (dB)
 $\cong 38,2$ (dB) $A = 87,6$

$$RSR_{\text{lei-}\mu} \cong 6.02b + 4.77 - 20 \log[\ln(1 + \mu)]$$
 (dB)
 $\cong 38.1$ (dB)

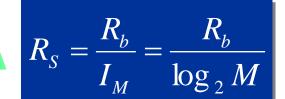
Largura de banda de transmissão requerida pelo PCM

Por um canal <u>não-ruidoso</u> com uma largura de banda de transmissão de B_T Hz é possível transmitir, sem erro, no máximo $2B_T$ elementos de informação (ou símbolos) independentes por segundo

Largura de banda de transmissão mínima teórica requerida para transmitir R_s símbolos por seg.

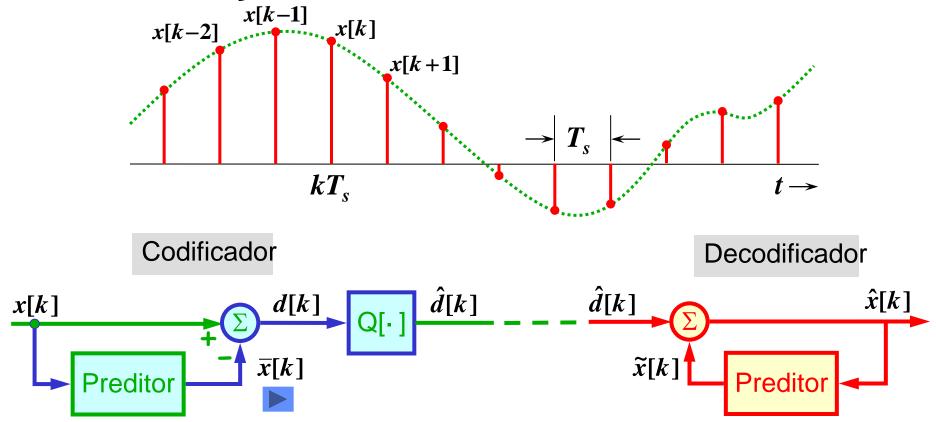
$$(B_T)_{\text{min-teo}} = \frac{R_s}{2}$$
 Hz

$$(B_T)_{\text{min-teo}} = \frac{R_b}{2I_M} \text{ Hz}$$
$$= \frac{R_b}{2\log_2 M} \text{Hz}$$



Para codificação binária $R_s = R_b$

Codificação PCM diferencial – DPCM



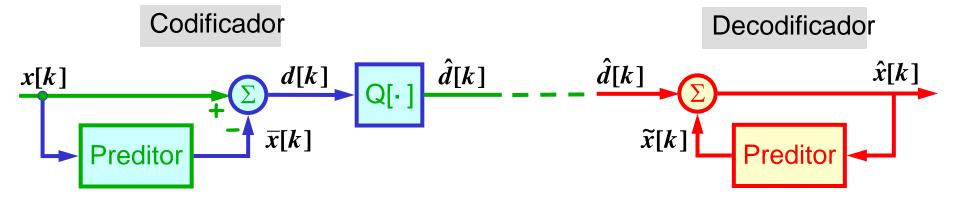
$$\hat{x}[k] = \tilde{x}[k] + \hat{d}[k]$$

$$\hat{x}[k] = x[k] + e[k]$$

e[k] = ?

e[k]: erro de reconstrução

Codificação PCM diferencial – DPCM



$$\hat{x}[k] = \tilde{x}[k] + \hat{d}[k]$$

$$\hat{x}[k] = \tilde{x}[k] + d[k] + q[k]$$

$$\hat{x}[k] = \bar{x}[k] + \varepsilon[k] + d[k] + q[k]$$

$$\hat{x}[k] = x[k] + q[k] + \varepsilon[k]$$

$$\hat{x}[k] = x[k] + e[k]$$

$$\hat{d}[k] = d[k] + q[k]$$

$$\tilde{x}[k] = \bar{x}[k] + \varepsilon[k]$$

$$\bar{x}[k] + d[k] = x[k]$$

$$\hat{e}[k] = q[k] + \varepsilon[k]$$

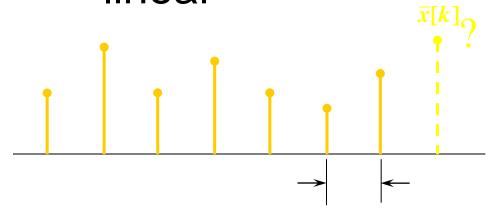
$$\widetilde{x}[k] = \sum_{i=1}^{p} a_i \widehat{x}[k-i]$$

$$\neq$$

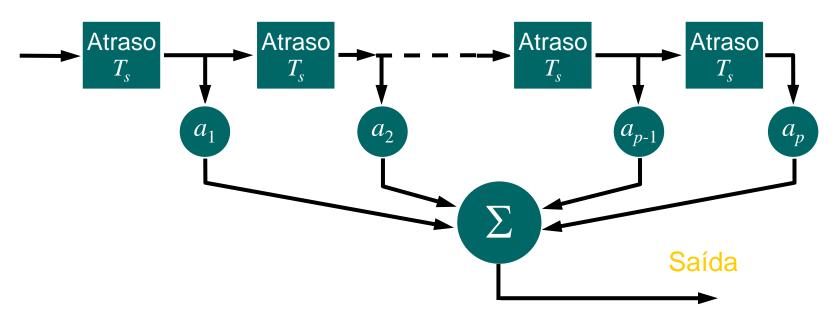
$$\overline{x}[k] = \sum_{i=1}^{p} a_i x[k-i]$$

Esse componente do erro de reconstrução pode assumir valores

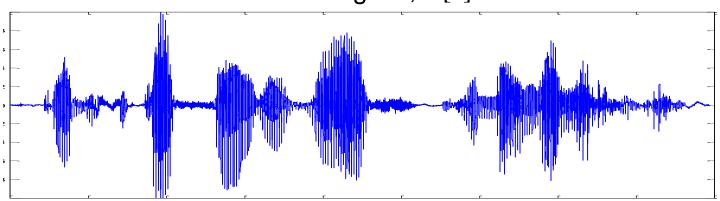
Filtro transversal usado como preditor linear



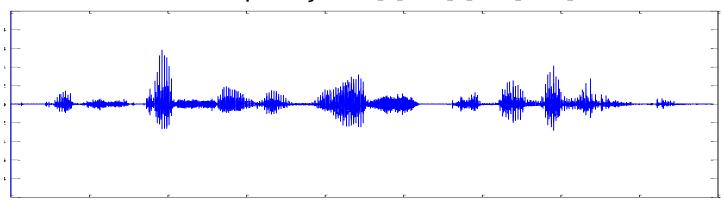
Entrada



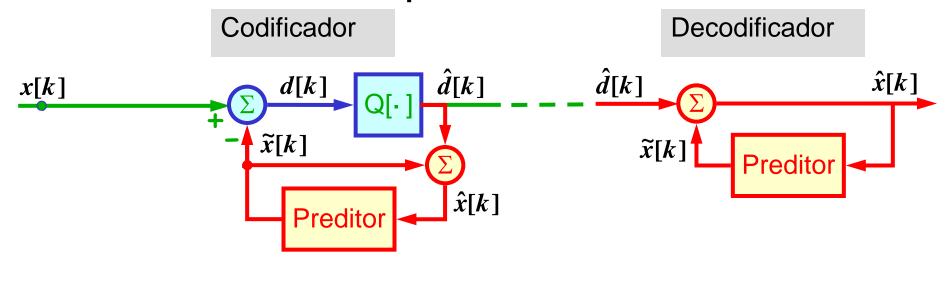
Efeito da predição na faixa dinâmica das amostras



Erro de predição, d[k] = x[k] - x[k-1]



Sistema DPCM prático



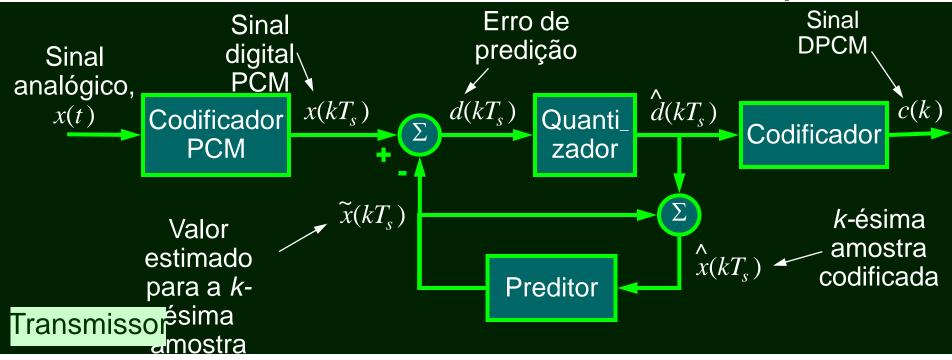
$$\hat{x}[k] = \tilde{x}[k] + \hat{d}[k]$$

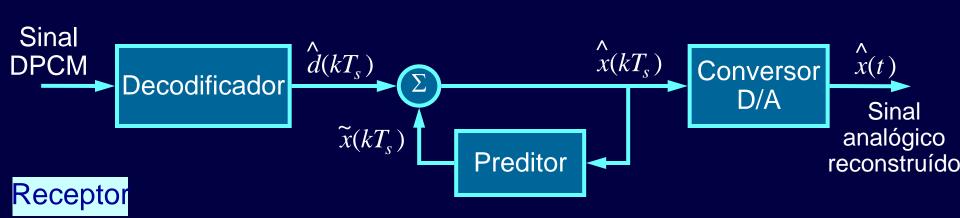
$$\hat{x}[k] = \tilde{x}[k] + \hat{d}[k] + q[k]$$

$$\hat{x}[k] = x[k] + q[k]$$

erro de reconstrução de $\hat{x}[k] = q[k] =$ erro de quantização de d[k]

Sistema DPCM: transmissor e receptor





Ganho de predição

$$RSR_q = \frac{\left\langle x^2(t) \right\rangle}{\left\langle q^2(t) \right\rangle} = \frac{P_x}{P_q}$$

Quantizador uniforme:

$$P_q = \frac{\Delta^2}{12}$$

$$P_{q,\mathsf{PCM}} = rac{\Delta_{\mathsf{PCM}}^2}{12} = rac{\left(2X_{\mathsf{max}}/L
ight)^2}{12}$$

$$au$$
 $P_{q, extsf{DPCM}} = rac{\Delta_{ extsf{DPCM}}^2}{12} = rac{\left(2D_{ extsf{max}}/L
ight)^2}{12}$

$$RSR_{q, \text{PCM}} = \frac{P_x}{P_{q, \text{PCM}}}$$

$$RSR_{q,\mathsf{DPCM}} = rac{P_x}{P_{q,\mathsf{DPCM}}}$$

$$G_p = \frac{RSR}{RSR}$$

$$G_p = \frac{RSR_{q, \mathrm{DPCM}}}{RSR_{q, \mathrm{PCM}}} = \frac{P_{q, \mathrm{PCM}}}{P_{q, \mathrm{DPCM}}}$$

$$P_{q,\mathsf{DPCM}}$$

$$= \frac{X_{\max}^2}{D_{\max}^2} \cong \frac{P_x}{P_d}$$

$$G_p = \frac{RSR_{q, \text{DPCM}}}{RSR_{q, \text{PCM}}} = \frac{P_x}{P_d}$$

Ganho de Predição

Ganho de predição =
$$G_p$$
 = $\frac{\text{Potência de }x(t)}{\text{Potência de }d(t)}$ = $\frac{P_x}{P_d}$ = $\frac{\sigma_x^2}{\sigma_d^2}$

No caso de sinais de voz, esse ganho é de 4 a 11 dB. Isso permite que o número de bits por amostra em um sistema DPCM seja 1 a 2 bits menor que aquele requerido pelo PCM para propiciar a mesma RSR. Para uma taxa de amostragem de 8 kHz, isso significa uma economia de 8 a 16 kbps.

Um ganho maior do que o mencionado pode ser obtido se o preditor e o quantizador do esquema DPCM forem adaptativos. Nesse caso, o esquema é denominado ADPCM (adaptive differential pulse-code modulation). Um ADPCM que despende 32 kbps pode propiciar praticamente a mesma qualidade de um PCM lei-A que despende 64 kbps.

Padrões ITU-T para telefonia fixa

Padrão	Esquema	Taxa de amostragem	Bits por amostra	Taxa de bits	Qualidade (MOS ^{&})	Ano de conclusão
G.711	Log- PCM	8 kHz	8 bits	64 kbps	4,3	1972
G.721 \$	ADPCM	8 kHz	4 bits	32 kbps	4,1	1984

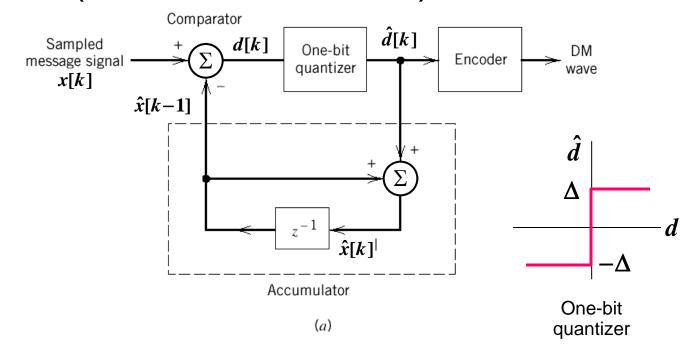
5 (excelente), 4 (boa), 3 (satisfatória ou razoável), 2 (ruim) e 1 (muito ruim)

^{\$} Atualmente o padrão G.721 faz parte do padrão G.726

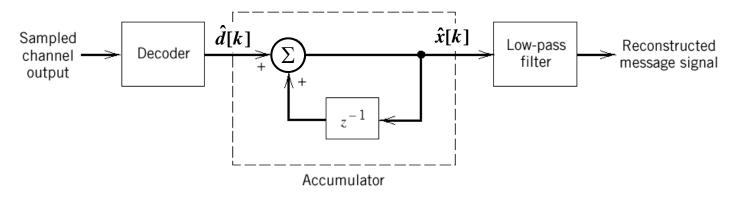
MOS: mean opinion score (escore médio de opnião) — é uma medida subjetiva da qualidade de um sinal de voz, com uma escala de cinco pontos:

Sistema DM (delta modulation)

(a) Transmissor

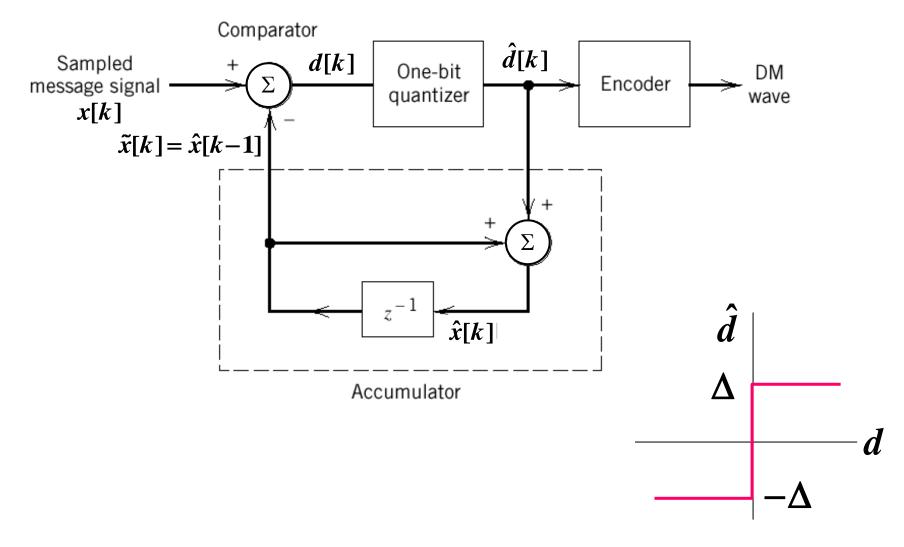


(b) Receptor



(b)

Transmissor DM



Quantizador de um bit

Ilustração da modulação delta (delta modulation – DM)

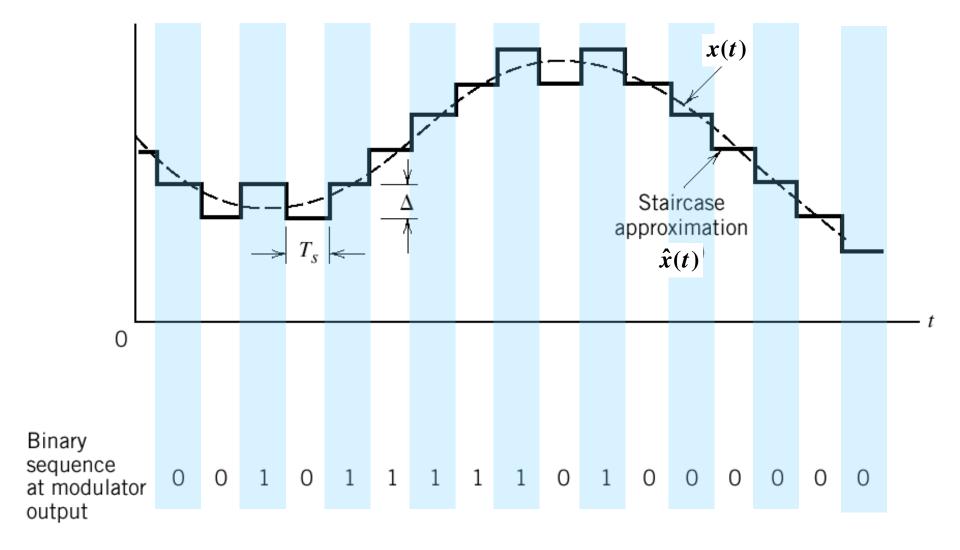


Ilustração dos dois tipos de erro de quantização na modulação delta

