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Abstract—This paper describes different algo-
rithms that perform online pathological tremor char-
acterization in terms of acceleration. Two distinct
parametric models are used, an Auto-Regressive (AR)
model and an harmonic model. Both models are
recursively estimated with Extended Kalman Filters
(EKFs). Experimental data was obtained with low
cost sensors and the results are compared in terms of
spectrogram estimation and prediction performance.

I. INTRODUCTION

Pathological tremor is the most common movement
disorder found in human pathology and it may be defined
as an involuntary, approximately rhythmic and roughly
sinusoidal movement [1]. It occurs mainly on the upper
limb and its incidence increases with aging. Although
tremor itself is not life-threatening, it may reduce consid-
erably the patient’s quality of life, especially because the
ability to perform Activities of Daily Living (ADL), such
as inserting the key in the keyhole, is seriously decreased.

Tremor is associated with several pathologies and di-
agnose and quantification by physicians is not straight-
forward. Although subjective methods are widely used,
simple and quantitative methods are desired and may im-
prove treatment effectiveness. In addition, tremor charac-
terization methods are an important tool for the research
conducted about the topic. For those purposes, methods
for offline tremor spectral analysis have been presented,
using both nonparametric and parametric approaches
[2],[3].

As opposed to its offline version, online characteriza-
tion of tremor provides information about the pathologi-
cal movement during the acquisition of measurements. Its
importance, however, does not lie only in the possibility
to study and analyze tremors in real-time. If parametric
methods are used, for example, such algorithms may be
part of Human Machine Interfaces (HMIs) systems spe-
cially designed to filter tremorous movement or in active
orthosis that directly compensate pathological tremor. In
[4], for instance, an harmonic model was assumed and an
adaptive filter, the Weighted Fourier Linear Combined
(WFLC), was designed to model tremor. A similar ap-
proach was described in [5], although the adopted model
was not harmonic, but rather a sum of sines and cosines
of chosen frequencies.
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In this paper, an harmonic model and also an Auto-
Regressive (AR) model are used to characterize patholog-
ical tremor. However, different from [4] and [5], Extended
Kalman Filters (EKFs) are employed to recursively esti-
mate the parameters of both models. The EKF presents
the advantage of explicitly considering the measurement
noise and concurrently performing estimation of the
tremor state. This approach is similar to the two-stage
KF used to estimate the AR models of intracranial
pressure signals in [6].

Regarding experimental evaluation of the proposed al-
gorithms, data was acquired with low cost accelerometers
from patients with pathological tremor. Since the tremor
exact model is unknown, the two methods are compared
in terms of spectrogram estimation and RMS prediction
error.

The paper is organized as follows: in the following
section the problem is properly formulated and the
framework shared by the two models is defined. Section
III describes the models and the estimation procedure
and the last two sections present the experimental results
and the conclusions, respectively.

II. PROBLEM FORMULATION

Online pathological tremor characterization is treated,
in this work, as the problem of estimating the pathologi-
cal involuntary quasi-periodic and nonstationary tremor
signal from the noisy measurements of a motion sensor
(an accelerometer, in the present case). Concurrently, the
parameters of a tremor model must be estimated. It is
considered that frequency, amplitude and phase of the
signal may slowly vary throughout time. This tremor
model estimated at every instant may be used to provide
online estimates of its spectrogram and to predict the
tremor future state.

A set of considerations have been made at this stage of
the research which are planned to be suppressed in future
developments. First, a single-joint tremorous movement
has been measured by a triaxial accelerometer mounted
on the patient’s hand. Hence, this paper does not address
the problem of multi-articulation tremor. Also, it is
considered that the movement measured by the sensor
is due only to tremor motion. Further developments
of the proposed algorithms will include the ability to
track higher frequency components of the signal and then
filter voluntary motion, which presents lower frequency
components. Lastly, a simple model for the sensor is

30th Annual International IEEE EMBS Conference
Vancouver, British Columbia, Canada, August 20-24, 2008

978-1-4244-1815-2/08/$25.00 ©2008 IEEE. 1753



considered:

s̃k = sk + νs,k, (1)

where νs is an additive white Gaussian noise, s is the
tremor signal, s̃ is the measured tremor signal corrupted
with noise and k is a multiple of T , the sampling period.

III. MODELS AND ONLINE ESTIMATION

A. AR model

AR models are extensively used to model signals from
which a priori knowledge is not available. In general,
they can be used to model arbitrary time-series, if an
increasing model order is considered. The AR model of
a nonstationary signal is given by

sk =
H
∑

h=1

ah,ksk−h, (2)

where ah,k are the parameters and H is the model order.
From the estimated model at an instant k, the cor-

responding Power Spectrum Density (PSD) and k-step
ahead predictions may be computed. The instantaneous
PSD have to be computed for all evaluated frequencies
ω at every instant k. It may be given by [7]

Pω,k =
σs̃T

1 + ‖
∑H

h=1
ah,ke−ihωT ‖2

, (3)

where σ2

s̃ is an estimate of the signal noise variance. The
k-step ahead predictions are computed with Eq. (2).

B. Harmonic model

Every periodic signal may be represented by an har-
monic model, which is also often referred as Fourier
series model. In the case of quasi-periodic signals, an
approximation may be achieved with harmonic models.
Since a nonstationary signal is considered, the following
rectangular model is adopted:

sk =

H
∑

h=1

[

ah,k sin

(

h

k
∑

t=1

ωt

)

+

bh,k cos

(

h

k
∑

t=1

ωt

)]

, (4)

where ωt is the fundamental frequency at instant k,
ah,k and bh,k are the coefficients and H the number of
harmonics, the model order.

For the harmonic model, the computation of the corre-
sponding PSD and k-step ahead predictions are straight-
forward. The PSD is given by spikes on the fundamental
frequency ωk and its harmonics. The amplitude of each
spike is given by

Phωk,k =
‖bh − iah‖

2

4
. (5)

It is also a simple procedure the computation of the
k-step ahead prediction, since for prediction purposes
the system is considered stationary within the prediction
horizon. Hence, it is enough to apply Eq. (4) with ωt =
ωk, for t ≥ k.

C. EKF

Since online pathological tremor estimation must be
performed and tremor itself is considered a slowly time-
varying signal, recursive estimation algorithms must be
applied. Different filters were evaluated, like the WFLC,
proposed by [4] for harmonic models, and the Recursive
Least-Squares (RLS) for AR models, but finally the
chosen algorithm was the EKF. The main reason for
this choice is that the EKF explicitly considers both
the model and the measurement uncertainties and also
estimates recursively and concurrently both the noise-
corrupted tremor signal measured from the motion sensor
and the model parameters. In addition, it becomes easier
to compare the two different models if a common frame-
work is used for both of them. Also, initial evaluations
have shown that the EKF presents better performance
in terms of RMS prediction error when compared to the
referred algorithms in the context of tremor characteri-
zation.

The KF is the optimal state estimator for linear sys-
tems that present additive Gaussian process and mea-
surement noise. However, both estimation problems on
this work are nonlinear. Hence, a modification of the
KF for nonlinear systems, like the EKF, where Kalman
equations are applied to the first-order linearization of
the nonlinear system [8], must be used.

The filter states are the estimated tremor signal ŝk

and the model parameters. For the states related to the
tremor signal estimation, the models are given by Eqs.
(2) and (4). Considering that the model parameters vary
slowly, they are modeled as random walks. For the AR
model the state vector may be given by

[

sk sk−1 · · · sk−H a1,k · · · aH,k

]T
, (6)

and for the harmonic model, in which the estimated
tremor signal depends only on the model parameters, by

[

sk a1,k · · · aH,k b1,k · · · bH,k ωk

]T
. (7)

In the correction phase, the measurement from the
motion sensor, s̃k, is used to update the estimated tremor
signal and the model parameters. Since the tremor signal
is being estimated by the filter, the available information
is a direct measurement of sk.

The main parameters of the filter are the process
covariance matrix, Q, and the measurement variance,
r. Variances related to the assumed model are lower for
imprecise models, while variances related to parameters
are proportional to the time-varying nature of those
parameters. As to the variance r, it is considered equal
to the variance σ2

s̃ .
The EKF is a recursive estimation algorithm and

therefore an initial estimate of the model parameters is
needed. For the case of the AR model, no a priori knowl-
edge is considered about the tremor signal. Concerning
the harmonic model, however, the initial estimate of the
fundamental frequency is critical. Initial values distant
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from the actual fundamental frequency may not only slow
down the convergence of the parameters, but may also
decrease the quality of the final estimate.

IV. EXPERIMENTAL RESULTS

The acquisition system described in [9] was used
to acquire data from patients diagnosed with different
pathological tremors. The results presented in this paper,
however, concern only data obtained from one patient
diagnosed with Parkinson’s Disease (PD) using a triaxial
accelerometer (Analog Devices ADXL330) mounted on
the patient’s hand.

Two data sets were used. In a first experiment the
patient was told to maintain a resting position. It can be
seen on Fig. 1(a) that the pathological motion is almost
stationary. In a second experiment the patient performed
a common clinical test for tremor evaluation (drawing a
spiral) resulting in a tremor signal with distinct features
(Fig. 1(b)).

About the algorithms, the same filter parameters and
initial conditions were used for both simulations when-
ever possible. It was not the case, naturally, for the
variances related to parameters of different models, since
they have distinct physical meanings. Also, in order to
validate the robustness of the algorithm before different
conditions, for different data sets the algorithm configu-
ration was also kept unchanged.

Two main metrics were applied in order to evaluate
the algorithms performance. First, the spectrogram esti-
mated with the Short-Time Fourier Transform (STFT)
was compared with the spectrograms estimated by the
two different models, according to Eqs. (3) and (5). Also,
the signal k-step ahead prediction and its RMS error
was compared to the naive assumption in which the
predicted state is equal to the present state. To compute
RMS error, s̃ is used instead of s, since the later is not
available.

The experimental results for both data sets are illus-
trated on Fig. 1 and on Tab. I. Based on the smaller
RMS errors obtained, a 4th-order harmonic model and an
AR model with H = 35 were chosen for comparison. It
can be seen that both methods provided satisfactory and
coherent spectrogram estimates. About the predicted
tremor states, they presented small phase delay and the
errors were considerably lower than the naive approach,
as expected. A comparison between the AR model and
the harmonic model may be conducted based on the pre-
diction performance. Although in both data sets no great
variation on frequency was observed, this preliminary
analysis shows that regarding this performance index the
AR model generally outperforms the harmonic model.

Some other remarks could be made to compare both
models. AR models have the advantage that no a priori

knowledge is needed about the signal. However, adapta-
tion of harmonic models may be faster, specially for high
variable tremors and when compared to high order AR

TABLE I

Experimental results. Values are in m/s2 and %.

Data set/ Estimation 1-step pred. 5-step pred.
Method RMS error RMS error RMS error

1st

AR 0.014 2.7 0.103 19.9 0.139 29.6
Harm. 0.020 3.9 0.132 25.6 0.157 30.4
Naive − − 0.249 48.2 0.888 171.9

2nd

AR 0.041 13.6 0.134 38.0 0.199 56.5
Harm. 0.048 11.6 0.149 42.3 0.193 54.7
Naive − − 0.172 48.8 0.465 131.9

models. Also, spectrogram and predictions computations
are simpler with harmonic models.

V. CONCLUSIONS

This paper has presented and compared two differ-
ent models used to perform online pathological tremor
characterization. The method may be used not only
to provide online tremor information to the physician,
but also for applications of different natures, like active
compensation of upper limb pathological tremor.

AR and harmonic models were briefly described, as
well as the applied recursive estimation algorithm, the
EKF. The performance of the proposed approach was
evaluated with experimental data and both models pre-
sented satisfactory results in terms of spectrogram esti-
mation and k-step ahead prediction errors. The analysis
of the RMS prediction error based on the presented data
shows that the AR model outperforms the harmonic
model with respect to this performance index. However,
the use of harmonic models may still be justified in some
applications.
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Fig. 1. Results from the first set of data (a) and from the second set (b). The upper graphics shows the measured acceleration, s̃.
Following, the estimated spectrograms with the STFT, with the AR model and Eq. (3) and with the harmonic model and Eq. (5). The
bottom graphics shows the 5-step ahead prediction error of the naive prediction (gray), the AR model (red) and the harmonic model
(green).
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