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Abstract— The use of computers as a communication tools is a general concept in society, but the use of the
PC by a impaired person is often a challenge. Augmentative and alternative communication (AAC) devices can
empower these subjects by the use of their remaining functional movements, including head movements. Currently
computer vision AAC solutions present limited performance in the presence of involuntary body movement or
spasticity (stiff or rigid muscles). Our work proposes a novel human computer interface (HCI) based on the
functional head movements of each user. After calibration, a HMM classifier represents the desired functional
movement based on the velocities components of the estimated head position. New segmented movements are
then classified in valid or invalid based on the HMM. Valid segments can generate mouse “click” events that can
be used with scanning virtual keyboards, enabling text editing, and within scanning based software that can
control mouse functions.
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Resumo— O uso de computadores como uma ferramenta de comunicação é um conceito geral na sociedade,
mas o uso de um PC por uma pessoa com deficiência é na maioria das vezes um desafio. Dispositivos de co-
municação alternativa e aumentativa (CAA) podem potencializar estes sujeitos pelo uso dos seus movimentos
funcionais residuais, inclusive movimentos de cabeça. Atualmente, solucões de CAA baseadas em visão compu-
tacional apresentam performance limitada na presença de movimentos involuntários ou espasticidade (músculos
tensos e ŕıgidos). Nosso trabalho propõe uma nova interface homem-computador (IHC) baseada nos movimentos
de cabeça funcionais de cada usuário. Após calibração, um classificador HMM representa o movimento funcio-
nal desejado baseado nos componentes de velocidades da estimativa de posição da cabeça. Novos movimentos
segmentados são então classificados em válidos ou inválidos baseados na HMM. Segmentos válidos podem gerar
eventos de “click”de mouse que podem ser utilizados com teclas virtuais com varredura, permitindo a edição de
textos, e com softwares baseados em varredura, o controle do ponteiro do mouse.

Palavras-chave— Comunicação alternativa e aumentativa, visão computacional, rastreamento de cabeça,
HMM.

1 Introduction

The use of PC is generalized in society. With
them, people can communicate and work easier
and faster. Unfortunately, some persons with im-
pairments cannot use mouse or keyboard as they
were designed. In order to control the computer,
the user must have dexterous finger movements
and large amplitude of hand and arm movements.
Several medical conditions imply in the lack of
control or even lost of upper body movement.

Solutions that permit the use of a computer
by an impaired person may be called Augmenta-
tive and Alternative Communication (AAC) de-
vices.Each individual will have its own cognitive
and physical limitations that will guide the choice
of one or several AAC devices(Higginbotham
et al., 2007). Mechanical switches, alternative
mouses and scanning virtual keyboards are the
most used solutions to ease the use of a computer,
but when the individual has only functional head
and facial movements, computer vision systems
are good alternatives (Tai et al., 2008).

These computer vision human computer inter-
faces (HCI) can be divided in marker or markerless
solutions.

The markerless solutions can track the eye

gaze or the head movement and its features. Spe-
cialized hardware is needed to track the eye move-
ment, as in (Tobii PCEye, n.d.) (Dynavox Eye-
Max, n.d.).Their drawback is that the user must
have a good sitting position and avoid gross head
movements, so individuals with dystonia, spastic-
ity, or tremors have difficulty in using these de-
vices continuously.

Markerless systems that track the head move-
ment and its features usually use a conven-
tional webcam. The main goal is to track
the head and estimate the corresponding cur-
sor movement(HeadMouse, n.d.) (CameraMouse,
n.d.).

In (Gorodnichy and Roth, 2004) the authors
used a convex-shaped nose feature to track the
nose position in a frame. Nose features are also
used in (Varona et al., 2008), where the eyes are
tracked using the eyes histogram and a mean-
shift algorithm. A head tracking system that
does not use facial features is presented in (Pallejà
et al., 2008), the optical flow from two consecu-
tive frames is computed and used to identify head
movement(left-right, up-down) as well as eye blink
and mouth opening. In the authors latest work
(Pallejà et al., 2011), the user’s face is detected
by the algorithm designed by Viola & Jones (Viola



and Jones, 2004) implemented in the OpenCV li-
brary (OpenCV, n.d.), and the head tracking is
performed with a face template matching routine.

In (Gorodnichy and Roth, 2004) – (Pallejà
et al., 2011) the fine control of the head is manda-
tory, prohibiting its usage by persons that suf-
fer from involuntary movements or an impairment
that interfere on the head movement.Our work
presents a novel approach where a markerless head
tracking system is implemented and can be suited
to recognize the functional head movement of the
user. Our initial intention is to give an alternative
to impaired persons to use the computer, even if
they do not have a fine control of the head move-
ment.

In view of the described limitations, our
method uses a histogram based tracking algorithm
to track the head position in every frame, and a
HMM classifier identifies the last segmented move-
ment as a functional one, based on the previous
training sequence. This paper is organized as fol-
lows: section 2 presents the methods that were
implemented. In section 3, experimental results of
both online and offline implementations. Finally,
section 4 presents a conclusion of our work.

2 Methods

In this section are presented the methods used to
accomplish the tasks below: face detection, face
tracking and “click” movement detection.

Figure 1: System’s work-flow diagram.

2.1 Face detection

In order to initialize the system, a person must
be positioned in front of the camera and his face
must be recognized. The Viola & Jones (Viola and
Jones, 2004) face detecting algorithm creates a
cascade of Haar-like feature classifiers.In OpenCV
(OpenCV, n.d.) there are some already trained
classifiers to recognize face, eyes and other trained
images. The one that we selected has the con-
figuration file haarcascade frontalface alt.xml. It’s
main drawback is that this selected classifier had
been trained with face samples that were always
vertical, then, if the user turns his head in the
direction of the shoulders the classifier won’t find

him at some point of this movement. That’s one
of the main reasons that we still need a tracking
algorithm to handle all possible head movements.

2.2 Face tracking

With a sample of the head image acquired by the
face detection routine, the features of the target
can be acquired by the system. However, in order
to permit the tracking of gross and fine head move-
ments, our work does not rely in spatial features.
In (Feng et al., 2008), the authors develop a simi-
larity function that takes in account the histogram
of both target and target searching area. Their in-
tention is to minimize the influence of background
pixels that are present in the target image that
may bias the localization or even generate a mis-
matching error, as occur using the commonly used
Bhattacharyya coefficient.

This new similarity function is called poste-
rior probability measure (PPM).Considering the
histograms of the target model, target candidate
and search area as q, p and s, the PPM similarity
function ϕ(p, q) is as follows:

ϕ(p, q) =
1

m

mu∑
u=1

puqu
su

, (1)

where mu is the number of bins in every his-
togram, and m is the number of pixels in the tar-
get model.

The suppression of pixels that represent the
background creates a similarity function that has
a more distinct sharper peak, even when the target
model holds some portion of the background (Feng
et al., 2008).

Another main feature of the PPM is that it
can be treated in a pixel-wise manner, fastening
the implementation. From equation 1, can be
found the pixel-wise equation below:

ϕ(p, q) =
1

m

m∑
j=1

qu(j)

su(j)
. (2)

In Eq.(2), j is the pixel index of the target candi-
date, qu(j) and su(j) are the values of the current
pixel color in both histograms. The target model
histogram needs to be calculated only once, and
the histogram of the searching are must be calcu-
lated in every new frame.

With the PPM as similarity function, the tar-
get tracking can be done with the mean-shift al-
gorithm (Comaniciu et al., 2003), where the new
estimate of the target position is a weighted con-
tribution of every pixel.

ωj =
qu(j)

su(j)
, (3)

ŷ(i+ 1) =

∑m
j=1 xj(i)ωj∑m

j=1 ωj
. (4)



In Eq.(4), xj is the position of the jth pixel in the
target candidate.

2.3 “Click” movement detection

As mentioned above, our goal is to create a sys-
tem that is able to identify functional commands
from head movement to create “click” events. We
reckon that every user may have a unique func-
tional head movement, then our system needs to
be able to learn motions models during a calibra-
tion phase, and then classify motion candidates as
modeled motions or not.

2.3.1 Horizontal threshold

An initial work had been done where the learned
motion was represented by the horizontal ampli-
tude of the movement(LARA Videos - Webcam
Virtual Keyboard, n.d.).

First, the initial head position estimate is gen-
erated with (Viola and Jones, 2004). With the
position of the largest face detected in the first
frame, the system saves the head image to calcu-
late its histogram. It was implemented an image
histogram of the three RGB components with 16
bins for each component. In figure 2a the initial
head position is the red square, and the initial
search region is the blue square. For every new

(a) (b) (c)

(d) (e)

Figure 2: Screenshots from the online software.
From 2a to 2e we have the following events: ini-
tialization with face detected (red square), ref-
erence update (green square), calibration move-
ment, thresholds lines updates, “click”.

frame t, the histogram of the search area at t−1

will be calculated and the implemented mean-shift
algorithm, as in Eq.(4), will generate the new head
position estimate, then the search area will be up-
dated.

In order to calculate a horizontal movement
of the estimated head independent of the initial
head position, a moving reference was created. It’s
position is updated with the mean of a circular

buffer of 30 elements. The points are added to
the buffer only when the current head speed is
less than 50 pixels/s.

Since the start of the tracking, the system is
measuring the largest difference between the cur-
rent head position and the moving reference. This
value is stored and shown by the red line in fig-
ure 2b. When a desired “click” movement is per-
formed, like in figure 2c, this line changes its posi-
tion holding the horizontal amplitude of the move-
ment, as in figure 2d. With a keyboard command
this calibration is finished and the system can gen-
erate “click” events.

In order to create a threshold that could fa-
vor movements without the same maximum am-
plitude stored in calibration, the “click” threshold
(yellow line) is 20 pixels closer to the moving refer-
ence. In figure 2e there is an example of a classified
“click” movement.

2.3.2 HMM classifier

The next step was to implement a two stage clas-
sification as in (Lin and Kulic, 2011) and (Feng-
Shun Lin and Kulic, 2012). First the “click” can-
didates are segmented using a specified pattern
of a sequence of velocity peaks and zero velocity
crosses (ZVC) (Fod et al., 2002). Since our clas-
sification system was designed to work with the x
and y velocities (two DOF), it is difficult to cre-
ate a segmentation routine based on the individual
ZVCs. Our approach was to create an auxiliary
variable that could combine both measurements
(Fod et al., 2002). Its formula is presented below:

z = v2x + v2y. (5)

Eq.(5) has difficulties in registering zero value,
then a threshold (3000) was specified based on
experiments. The moments in the sequences were
this threshold was crossed were labeled as ZVC.
A valid segmenthad at least three ZVC and with
peaks detected between the ZVCs pairs. The fig-
ures 3 and 4 show the segmentation process with
more detail.

The selected segments candidates are pre-
sented to a trained hidden Markov model (HMM)
that represents the functional head movement.
The HMM can give a probability of the candi-
dates had been generated by the model, and with
a trained threshold the “click” events can be gen-
erated.

3 Experiments

In this section are presented our experiments with
the presented movement classification approaches.
First the already implemented system with the
threshold approach runs and collects the kine-
matic data of the target and “click” moments.
This software were designed with C++ language



and uses the OpenCV 2.4 library (OpenCV, n.d.).
Then the recorded data are used offline with
MATLAB and a HMM toolbox (Murphy, n.d.).
Finally the classification values of both are ana-
lyzed with two validating movement sequences.

3.1 HMM training

There were collected one training sequence of five
desired “click” movements, and two validating se-
quences. The first one has another five different
valid “click” movements, the second one has only
two valid movements and other five invalid ones
(two inverted “click” movements, two horizontal
translations, one circular head movement). The
x and y velocities data collected in the training
sequence are segmented as mentioned in section
2.3.2. The ZVC points obtained with Eq.(5) and
the established threshold (3000) can be seen in fig-
ures 3 and 4. With the segmented movements,
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Figure 3: Training sequence segmented.
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Figure 4: First segment of the training sequence.

their observation pdfs need to be estimated for
later use in the HMM. We had found a good es-
timate creating clusters of (vx, vy) pairs with the
k − means algorithm. The number of possible
clusters was set to four, since it gave a good prob-
ability estimation. The mean and covariance val-
ues of each cluster population were calculated and
used to estimate bi-variate Gaussian pdfs to rep-
resent the observation probability for the desired

clusters. Calculating the value for the estimated
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Figure 5: Created clusters for the training se-
quence with estimated bi-variate Gaussian 3σ re-
gions.

pdfs during the first training segment, we gener-
ate the figure 6. From figures 5 and 6, the cre-
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Figure 6: Pdf values during the first training seg-
ment.

ated clusters can be easily interpreted as different
stages in the valid “click” movement, then it was
decided that a four stage HMM could be trained
to represent the valid desired motion. This four
stage HMM had initially random values for the ini-
tial states probabilities π0, and transition matrix
A0. The observation pdfs for each stage are ini-
tial bi-variate Gaussians estimated for each clus-
ter i, Ni(µ0,Σ0). The HMM was trained using
the training sequence segments and the generated
π1, A1, Ni(µ1,Σ1) were obtained the with the
Baum-Welch algorithm (Rabiner, 1989).

The final values of π1 and A1 are:

π1 =


0
0
0
1

 ,A1 =


0.85 0 0 0.15
0 0.86 0.14 0
0 0.22 0.78 0
0.2 0 0.2 0.6

 . (6)

The results in Eq.(6) are expected from figure 6.
The state 4 has initial probability of one and the
possible state transitions are: 1 → 4, 2 → 3, 3 →
2, 4 → 1 and 4 → 3.

To complete the HMM classifier design, a log-
likelihood (LL) threshold is need in order to clas-



sify segments in valid or invalid. In figure 7 the LL
values are plotted from the five training segments.
Based in these values, a threshold of −300 were
chosen, values below the threshold are considered
invalid “click” segments. With the trained HMM
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Figure 7: LL values of the training segments.

classifier, we can implement the classification of
the segmented movements of the two validating
sequences.

3.2 Data analysis

The first validation data was presented to the
HMM classifier. It can be seen from the figure
8 that all valid “click”movements previously clas-
sified by the position threshold were also classi-
fied by the HMM classifier, the only difference is
that the HMM classifier signals the “click” event
at the end of the segment.The figure 9 shows the
LL values for the segments. The second vali-
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Figure 8: “Click” events generated by both classi-
fiers.

dation data was presented to the HMM classifier
and the valid movements were again correctly ob-
served, and above all, the invalid movements that
were classified as valid by the horizontal thresh-
old classifier were considered invalid by the HMM
classifier. Figures 10 and 11 show these results. In
11 the red dots correspond to LL values of invalid
segments. It also can be seen that the number
of segments in figure 11, six elements, is less than
the performed ones, seven. The inverted “click”
movements are correctly segmented and presented
to the classifier, but the horizontal translations
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Figure 9: LL values of the validating segments.

10 15 20 25 30 35
−400

−200

0

200

400

s

pi
xe

l/s

Validation segments

 

 
v

x

v
y

10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

s

cl
ic

k

Comparing click events

 

 

clickThreshold
clickHMM

Figure 10: “Click” events generated by both clas-
sifiers.
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Figure 11: LL values of the validating segments.

and the circular head movement are too different
from the desired movement, and then they are in-
correctly segmented.This example shows how the
segmenting algorithm acts like an initial classifier
sorting the most similar candidates to the valid
movement template. With fewer candidates, the
HMM classifier does not halts the system, making
it feasible for a future online implementation as in
(Feng-Shun Lin and Kulic, 2012).

4 Conclusion

In order to implement a AAC system that relies
only in the images captured by a webcam, we have
designed a method that tracks the user head move-
ment without the use of markers. The user’s head
movement can be either fine or gross, our solution



must learn the functional movement that may be
unique for each person. This novel head track-
ing system could be well suited for patients with
dystonia or spasticity that usually have to use me-
chanical switches mounted in their wheelchairs or
beds.

Our online solution has a horizontal threshold
approach, which is a simple solution for represent-
ing the amplitude of the functional movement. In
(LARA Videos - Webcam Virtual Keyboard, n.d.)
this software was used for text editing, showing its
capabilities, but requiring yet a fine head move-
ment control.

Our initial solution for a more reliable move-
ment classifier was to design a segmentation rou-
tine capable of trimming the received data into
segmented candidates, and then using these seg-
ments into a HMM classifier, previously trained
with the desired functional movement. This ap-
proach was implemented offline in MATLAB and
had shown promising results, both classification
ration (100%) and false positive ratio (0%) were
satisfied.

Our future work will focus in implementing
the segmentation routine and the HMM classi-
fier online and test then with different functional
movements and user disabilities.
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J. (2011). Implementation of a robust abso-
lute virtual head mouse combining face de-
tection, template matching and optical flow
algorithms, Telecommunication Systems .
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