
Beating Heart Motion Prediction for Robust Visual Tracking
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Abstract— In the context of minimally invasive cardiac
surgery, robotic assistance has significantly helped surgeons
to overcome difficulties related to the minimally invasive pro-
cedure. Recently, techniques have been proposed for active
canceling the beating heart motion for improving the accuracy
of the surgical gestures. In this scenario, computer vision
techniques can be applied for estimating the heart motion based
solely on natural structures on the heart surface. However,
visual tracking is complicated by the particular lighting condi-
tions and clutter (smoke, liquids, etc) during surgery. Another
challenging problem are the occasional occlusions by surgical
instruments. In order to overcome these problems, we exploit
the quasi-periodicity of the beating heart motion for increasing
the robustness of the visual tracking task. In this paper, a
novel time-varying dual Fourier series for modeling the quasi-
periodic beating heart motion is proposed. For estimating the
series parameters, an Extended Kalman Filter (EKF) is used.
The proposed method is applied in a visual tracking task for
bridging tracking disturbances and automatically reestablish
tracking in cases of occlusions. The efficiency of the prediction
method and the sensible improvements in the visual tracking
task are demonstrated through in vivo experiments.

I. INTRODUCTION

Physiological motion considerably disturbs the precise ex-
ecution of surgical procedures, prolonging the operating time
and increasing costs. In minimally invasive surgery (MIS),
interventions on a beating heart are made possible by the
use of mechanical heart stabilizers. However, considerable
residual motion due to insufficient immobilization exists and
has to be manually compensated by the surgeon. In this
context, robotic assistance could aid surgeons by actively
compensating the beating heart motion, potentially improv-
ing the precision of their gestures. The idea behind active
physiological motion compensation is having the surgical
instruments track the heart motion, allowing for surgeons
to perform their gestures in a virtually stable operating site.

A motion compensation system depends fundamentally on
the accurate retrieval of the heart motion. For this purpose,
tracking the heart using the visual feedback provided by the
laparoscope is the most practical solution. In the literature,
several techniques for tracking the 3D motion of natural
landmarks on the heart surface have been proposed [10],
[12]. However, these techniques do not take into consider-
ation the heart motion in time and lack robustness when
facing the complex heart dynamics, lighting conditions and
appearance changes. To cope with these issues, we exploit
the quasi-periodicity of the beating heart motion and predict
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its future motion using a predictive Extended Kalman Filter
(EKF) based on a time-varying dual Fourier series. The
goal is to bridge tracking failures and reestablish tracking in
case of occlusions (e.g. when the operating site is occluded
by surgical tools, smoke, blood etc). The clinical value
of the proposed method is demonstrated through in vivo
experiments, which attest the sensible improvements in the
visual tracking task.

A. Background

The heart motion modeling and prediction is also useful in
several levels of a surgical robotic assistant design. Notably,
the error feedback alone is insufficient for controlling a
robotic actuator with a sufficiently low tracking error [3].
In the literature, various paradigms for predicting future
positions of a point of interest (POI) on the heart surface have
been proposed. In Franke et al. [6], a generalized linear pre-
dictor was designed for providing future position estimates of
a POI in a robot tracking task. Similarly, Bebek et al. [2] used
a copy of the previous heartbeat cycle synchronized with an
electrocardiogram (ECG) signal for predicting the following
heartbeat cycle. For tracking features on the beating heart
using vision, Ortmaier et al. [8] uses embedded vectors of
previous heart cycles for increasing tracking resilience. A
thorough investigation of the heart motion was performed
by Cuvillon [4], who proposed a motion prediction algorithm
based on a Linear Parameter Variant model that is a function
of the ECG and respiratory signals.

An alternative paradigm also found in the literature for
describing the quasi-periodic heart motion is the Fourier
series model and different approaches for estimating its
coefficients exist. In Ginhoux et al. [7] a known and steady
cardiac rhythm is assumed, whereas Thakral et al. [13]
proposed the estimation of a non-stationary Fourier series
coefficients using Least Mean Squares. A similar approach
has also been proposed by Yuen et al. [14] for tracking
the Mitral valve annulus motion on a single axis. However,
in the methods above, the respiratory and cardiac motions
that comprise the heartbeat are treated separately or only the
cardiac motion is modeled. Alternative approaches have also
been proposed, such as the membrane model presented in
Bader et al. [1] and the motion model based on a combination
of several basis functions proposed by Duindam et al [5], but
experiments using real heart motion are not presented.

In our previous work [9], we introduced an estimation
framework based on the Extended Kalman Filter (EKF),
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which offers the advantage of explicitly modeling the
stochastic uncertainties associated with the heart motion
estimation and the straightforward fusion of external signals
such as the ECG for improved prediction quality. However,
the previous formulation was not capable of predicting the
heart motion for larger prediction horizons, as needed in
case of occlusions by surgical instruments. In this section,
we present an improved motion model based on a time-
varying dual Fourier series that explicitly models the cardiac
and respiratory components that comprise the heart motion.
Details of the design of the predictive EKF are given.
Secondly, we show the improvements in visual tracking using
the proposed prediction method for overcoming tracking
disturbances and automatically reestablish tracking in case of
occlusions. For designing and testing the motion prediction
scheme, we use in vivo porcine beating heart motion data.

B. Beating heart motion dynamics

Here we present the key characteristics of the heart mo-
tion. High-speed images are necessary to properly capture
the heart dynamics [7] and since the acquisition speed in
commercial stereoendoscopes is limited, we used two high
speed 1M75 DALSA cameras attached to Storz endoscopes
mounted with a small baseline to simulate a real stereoendo-
scope. The system was calibrated using standard techniques
[15]. Figure 1 displays the y trajectory of a POI on the
surface of a porcine heart, acquired at 83.3 Hz using artificial
markers attached to the heart surface. The acquisition setup is
illustrated in figure 1. The heart was imaged for 60 seconds in
an open chest configuration with no mechanical stabilization,
which yields a heart motion amplitude considerably larger
than in the MIS scenario. A frequency analysis shows that
the dominant frequencies are situated between 0 - 2Hz,
with significant energy up to 5Hz. These observations match
similar experimental data reported in [2]. Also from the
FFT plot, the two dominant frequencies associated to the
respiratory and cardiac motions can be easily detected (the
peaks corresponding to the harmonics of the two fundamental
frequencies are highlighted).

C. Non-stationary dual Fourier series model

The heart motion can be considered as the sum of the res-
piratory and cardiac motions, which can be represented as a
dual non-stationary Fourier series. Given the 3D coordinates
d = [xd yd zd] of a POI on the heart surface, the motion
dynamics d of each Cartesian coordinate at a given instant t
can be parameterized as:
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where Hr and Hc are the number of harmonics for mod-
eling the respiratory and cardiac components respectively,
ωr and ωc are the respiratory and cardiac frequencies and

Fig. 1. Heart Dynamics (Top left) Markers used to retrieve the beating
heart motion (Top right) In vivo experiment setup (Middle) y motion of
a POI on the heart (Bottom) FFT spectrum of the y coordinate motion.
The main peaks corresponding to the respiratory and cardiac harmonics are
highlighted.

f = [a1, ...,aHr ,b1, ...,bHr ,cr,d1, ...,dHc ,e1, ...,eHc ] is a vector
containing the series coefficients. Note that the number of
harmonics Hr and Hc among the x y z directions may vary
due to differences in their motion complexity. Finally, a
POI has n = 3 · [2 ·(xHr +x Hc) + 1 + 2 ·(yHr +y Hc) + 1 +
2 ·(zHr +z Hc)+1] parameters plus the respiratory and cardiac
frequencies, which are shared among coordinates. At a given
instant t, the computation of q-step future position estimates
using eq. (1) is done by assuming the system is stationary
within the prediction horizon.

D. The Extended Kalman Filter

In our formulation, we employ the Kalman Filter (KF) for
the recursive estimation of the Fourier series parameters. The
KF offers several advantages, such as explicit modeling of
the uncertainties associated with the proposed motion model
and position measurements. Since estimating the Fourier
series parameters is a nonlinear problem, the EKF is used
[11].

The EKF state vector x for estimating the trajectory of
p POIs is composed (p ·n + 2) parameters, where n is the
number of parameters of the Fourier series. It is composed of
the Fourier parameters [fx, fy, fz] for the Cartesian coordinates
of all estimated POIs and the cardiac and respiratory frequen-
cies. When initializing the filter, no a priori knowledge of
the signal is needed and all state vector values are set to
zero except for the two frequencies, for which initial values
(extracted from ECG and ventilation machine) are normally
available in practice.
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In the KF, estimation is divided between the prediction
and correction phases. All parameters are modeled as random
walk processes. In the prediction phase, the a priori estimate
of the filter state x− at an instant k is given by the state
values from the previous instant k-1. This implies that the
error covariance matrix P is propagated according to:

P−(k) = P(k−1)+Q (2)

where Q is the process covariance matrix. When initializing
the filter, we use a process variance related to the respiratory
components σ2

r = 10−5 (with a variance σ2
c = 10−6 for

the offset cr), the cardiac components σ2
c = 10−5 and the

frequencies variance σ2
w = 10−8.

In the correction phase, the available measurements from
the visual tracking algorithm y are used to update the initial
estimates x−, yielding the a posteriori estimate x+. Notice
that the tracking input y is not filtered and therefore no delays
are introduced in the system. The updated state is computed
as:

x+(k) = x−(k)+ (3)

+P−(k)CT (k)(C(k)P−(k)CT (k)+R)−1︸ ︷︷ ︸
K(k)

(y(k)−d(k,x−(k)))

where R is a diagonal matrix containing the measurement
error covariance (the diagonal elements are set to 10−1) and
C(k) is a Jacobian matrix whose lines contain the derivatives
of each motion component (as in equation 1) with respect
to the Fourier series parameters. The matrix K(k) indicated
above in equation 3 is the Kalman gain matrix. As an
example, if we were to estimate only the x component of
one POI, the matrix C(k) would be a 1×(xHr +x Hc + 2)
matrix computed as:

C(k) =
∂d(t,xk)

∂xk

∣∣∣∣
xk=x̂k|k−1

(4)

The updated error covariance matrix is given by:

P+(k) = (I−K(k)C(k))P−(k) (5)

where I is the identity matrix.

II. EXPERIMENTAL RESULTS

A. Predictive filter performance

For evaluating the performance of the proposed prediction
method, we use the experimental data presented in section
I-B. As stated in section I-C, predictions are computed using
eq. (1), considering a stationary system within the prediction
horizon. This idea is illustrated in figure 2, featuring the
estimated Fourier series at an instant t0. Since motion is
estimated on-line with all parameters initialized with zeros,
1.5 respiratory cycle (∼400 samples) is needed for the
model’s parameters to converge. The number of harmonics
for modeling respiration Hr for the x y z directions was set
to 3, while for the cardiac motion Hc = 5 harmonics were
sufficient.

For investigating the prediction performance in time, we
evaluate the prediction error at every instant for 15, 83 and

TABLE I
PREDICTIVE FILTER PERFORMANCE ON in vivo DATA

Horizon average RMS error (mm) average peak error (mm)
0.18 s 0.8076 1.1829

1 s 0.8785 1.6764
3 s 1.0209 2.0496

Fig. 2. Ground truth and estimated Fourier series at an instant t0. For
evaluating prediction performance, we measure the prediction error for a
15, 83 and 250-step horizon prediction (0.18, 1 second and 3 seconds
respectively).

250-step prediction horizons (0.18, 1 second and 3 seconds
respectively). The error is calculated as the Euclidean dis-
tance ||d−p|| between the predicted d and true p positions
of the POI for all xyz coordinates. The root mean square and
peak prediction errors at every motion sample for a given
prediction horizon are measured. The prediction errors are
plotted in figure 3 and quantified in table I. The identification
error, which is the difference between the true position and
the position estimated by the filter at a given instant is also
plotted in figure 3.

The prediction filter must be robust to changes in the
heart rhythm. In order to investigate the filter’s behavior
to amplitude changes, we slowly damp the original heart
motion signal with respect to its mean to 50% of its original
value in all Cartesian coordinates and analyze the behavior
of the filter and the evolution of the prediction errors for
a 1 second prediction horizon. Results are plotted in figure
4. Cardiac arrhythmia may also cause irregular heart motion
and in order to analyze the filter’s performance under such
circumstances, we have simulated a disturbance in the heart-
cycle in all Cartesian coordinates as illustrated in figure 5.
The effects on the prediction error for a 1 second prediction
horizon is plotted in figure 5.

B. Improvements in visual tracking

For evaluating the improvements in visual tracking, we use
images of a porcine beating heart acquired using the same
experimental setup presented in section I-B. For tracking
the beating heart, we use the method described in [9]
(the extension to other tracking methods such as [12] is
straightforward).

The tracking method is based on a Thin-Plate Spline (TPS)
function that models the heart tissue deformation. Tracking
consists in the estimating the optimal TPS parameter vector
h that minimizes the alignment error between a manually
chosen reference image T and both left and right images
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Fig. 3. From top to bottom, the RMS and peak prediction errors for a
15-step, 83-step, 250-step prediction horizon and the identification error,
respectively.

of the stereo pair Il and Ir simultaneously. The parameter
vector h is composed of 3D points that projects on both
stereo cameras and therefore each point can be considered as
a POI in the prediction framework presented before. Figure
6 displays a 128x128 pixel ROI on the heart tracked using
the proposed method, using 6 control points for modeling
the heart surface deformation.

1) Specular reflections: Specular reflections are the direct
reflection of the illumination source on the glossy, wet-like
heart surface. Such reflections saturate the affected pixels,
disturbing considerably the visual tracking task. Figure 7
illustrates a case of tracking under such phenomenon. Al-
though the tracking method automatically removes the af-
fected regions from the estimation of the warping parameters,
certain control points of the TPS mesh whose support region
on the image is more severely affected by this phenomenon
may be poorly estimated. In addition, depending on the
duration of the perturbation, the estimation of the warping
parameters may get stuck in local minima and diverge.

In the motion prediction context, specular reflections can
be considered as occluders since no texture information is
available from the affected areas. If the area affected by
specular reflections goes beyond a critical level, tracking is
suspended. In this context, the predicted heart motion can
be used to bridge such disturbances, which normally last
for approximately 0.12 s (15 frames in the acquisition speed

Fig. 4. (Top) The original heart motion is slowly damped from t0 to t1 to
50% of its original amplitude in all coordinates (due to space limitations only
the z coordinate is illustrated). The dashed line shows the predicted heart
motion at t0. (Bottom) The prediction error plot for a 1 second prediction
horizon indicates the fast filter adaptation to the amplitude change. The
RMS and peak errors are computed as in figure 3, considering all Cartesian
coordinates. The time scale is increased for displaying the settling time.

Fig. 5. (Top) A signal disturbance that resembles an arrhythmia is induced
from t0 to t1 in all coordinates (due to space limitations only the z coordinate
is illustrated). The dashed line shows the predicted heart motion at t0.
(Bottom) The prediction error plots for a 1 second horizon indicate high
prediction errors during the disturbance but the prediction quality is quickly
reestablished past the disturbance. The RMS and peak errors are computed
as in figure 3, considering all Cartesian coordinates. The time scale is
increased for displaying the settling time.

used for the experiments).
2) Occlusions: The proposed motion prediction method

also allows us to tackle the problem of occlusion by surgical
tools. Surgical instruments eventually occlude the operating
site for considerably longer periods of time and the proposed
prediction scheme offers a solution for automatic tracking
reinitialization in such cases.

In figure 8, the result of a simulated 3-second occlusion is
presented, displaying the successful tracking reestablishment
after the event. For simulating the occlusion, the correction
step of the Kalman filter is suspended at an arbitrary instant
t0 and the predicted heart motion at t1 3 seconds later was
used to reestablish tracking. For visualizing the accuracy
of the predicted heart motion, tracking results (the motion
plots of one TPS control point) are also presented throughout
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Fig. 6. (Left) The white mesh represents the TPS surface that models a
selected ROI on the heart. (Right) The 3D shape of a ROI on the heart
surface.

Fig. 7. The endoscopic illumination source reflects on the wet-like surface
of the heart, giving rise to specular reflections that considerably disturb
visual tracking.

the whole sequence for comparison purposes. An important
remark after a visual inspection of the results is that although
the predicted motion is accurate enough to restart tracking, it
cannot be used for motion compensation since the prediction
errors are superior than the precision required for performing
the surgical gesture (which is under 200µm).

C. Discussion of the predictive filter performance

The prediction errors presented in figure 3 reveal the good
performance of the predictive filter, successfully acquiring
the true heart dynamics. In addition, the error values given
in table I indicate that the RMS and peak errors do not in-
crease significantly when the prediction horizon is extended,
suggesting the proposed motion model fits properly the heart
motion. If the prediction horizon is further expanded, the
prediction quality gradually degrades, due specially to small
cardiac frequency variations.

The capacity of the filter to adapt to amplitude variations
was properly displayed by the extreme simulation presented
in figure 4. From the error plots, we can verify that the filter
takes approximately 1s to re-adapt to the signal changes, later
stabilizing in a lower level since the signal’s amplitude was
reduced by 50%.

Next, the simulated arrhythmic heart behavior presented in
figure 5 is the most challenging event for the prediction filter.
In fact, if we analyze the filter parameters in detail we learn
that the abnormal heart behavior is interpreted as a drastic
phase change. Although the error plots show a considerable
large error during the event, the filter successfully copes with

the disturbance, converging quickly past the event. It is also
important to remark that although the simulated arrhythmia
generates a major disturbance in the predictive filter, such
abnormal heart behavior can be easily detected from the heart
electric activity and in practice it do not represent a critical
problem.

Moreover, the relatively high identification error indicates
that the heart motion model describes the coarse heart
trajectory. This is due to the natural variability of the heart
motion, since an increase of the number of harmonics does
not lower this error. In fact, the number of harmonics is
chosen according to the heart motion complexity and for the
heart motion data used in the experiments, an increase of its
number does not improve the performance.

The performance increase obtained with a Kalman filter-
ing framework has been analyzed in previous works [14].
However, the direct comparison with experimental results of
similar techniques proposed in the literature is not possible
since the used experimental database highly influences the
prediction errors, as clearly demonstrated when analyzing
the amplitude changes in the input signal shown in the
experimental section. This is due to the non linearity of the
RMS error measure and the fact that the error amplitude is
dependent on the amplitude of the heart motion.

The heart motion prediction can be further improved
using the proposed formulation by exploring the ECG and
respiratory signals directly in the filter design, as suggested in
section I-D. For instance, the heart electric activity precedes
the mechanical motion and the ECG waves may help predict
more accurately the heartbeat contraction and relaxation
cycles. The EKF framework adopted in this paper provides
an elegant framework for fusing different sources of infor-
mation in a straightforward fashion. Furthermore, the ECG
can also be used for detecting abnormal cardiac behavior
(e.g. arrhythmia). Another aspect of Kalman filtering is the
adequate choice for the filter’s covariance matrices. Although
the values proposed in section I-D were not “fine” tuned
for the experimental database, an adaptive update of the
filter’s uncertainty parameters could better estimate the heart
motion, hence producing better future estimates. Finally, an
increase of the number of harmonics does not significantly
improve the prediction quality. Therefore, their number is
kept small for avoiding unnecessary computations and pos-
sible convergence problems.

III. CONCLUSION

In this paper we proposed a new method for predicting the
beating heart motion based on a time-varying dual Fourier
series model whose parameters are estimated by an Extended
Kalman filter. The proposed prediction method is applied in
a visual tracking task with satisfactory results, successfully
bridging tracking disturbances and reestablishing tracking in
case of occlusions.

Direct applications of the proposed method can be found
in other levels of the surgical robotic assistant such as the
robot controller scheme. Currently, we are working on the

4583



Fig. 8. (Left Top) The mesh illustrates the tracked region of interest on both left and right endoscopic images. (Left Middle) During the simulated
occlusion, tracking is suspended and the predicted trajectory of the several POI that comprise the mesh is displayed as the mesh in red. (Left Bottom)
Tracking is successfully reestablished past the occlusion. (Right) The predicted and tracked heart motion at an instant t0 for the each Cartesian coordinate
of a a given POI in the tracked region.

incorporation of the proposed method in a model predictive
controller for reducing the robot tracking error.
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