Universidade de Brasília

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

169536 - Tópicos em Controle e Automação:

Controle de Processos

Lista de Exercícios 1

Para os exercícios abaixo considere (exceto se especificado ao contrário):

- Variáveis que variam no tempo são indicados com o respectivo argumento (f(t), por exemplo);
- Os processos em estado não-estacionário (regime transiente) encontram-se em estado estacionário (regime permanente) em t=0 $(f(0)=\overline{f},T(0)=\overline{T},\ldots);$
- Para padrão de notação, denote as variáveis de desvio ou incrementais como $\tilde{f}(t) = f(t) \overline{f}$, $\tilde{T}(t) = T(t) \overline{T}$, etc;
- Os líquidos nos tanques com agitação (conforme ilustração) encontram-se bem misturados e portanto os fluxos de saída possuem as mesmas propriedades do líquido do tanque (temperatura, concentração);
- As perdas de calor para a vizinhança são consideras desprezíveis;
- Os tangue são abertos e as saídas são livres para a atmosfera;
- Considere como conhecidos a área ou o volume dos reservatórios (tanques).
- 1. No diagrama P&ID mostrado na Figura 1.
 - (a) Identifique todos os instrumentos.
 - (b) Quais são as medições efetuadas no Tanque 1?
 - (c) Quais são as medições efetuadas no Tanque 2?
 - (d) Quais malhas de controle são observadas?
- 2. O fluxograma de recuperação de um produto farmacêutico é apresentado na Figura 2. Trata-se de um processo de múltiplas unidades, com reciclo e sem reação química no estado estacionário. Denominando o produto farmacêutico como F e a água como A, calcule os valores das variáveis indicadas com "?" na Tabela 1.

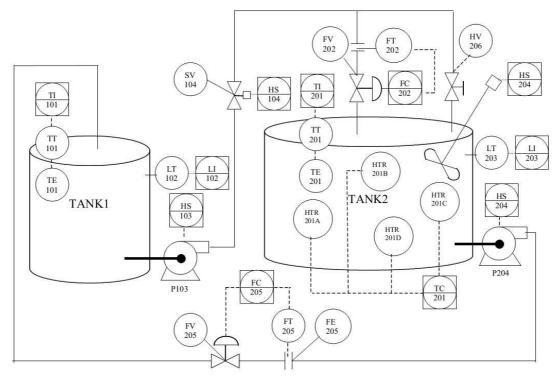


Figura 1: Diagrama de tubulação e instrumentação (P&ID) de dois tanques segundo simbologia e terminologia da norma ISA 5.1.

Tabela 1: Valores das correntes de fluxos.

Corrente F	Corrente C	Corrente P	Corrente R	Corrente W
F = 120 Kg/h	C=? Kg/h	P=? Kg/h	R =? Kg/h	W=? Kg/h
Composição mássica (x):	Composição mássica (x):	Composição molar (y):	Relação mássica (x_F/x_A) :	Composição mássica (x):
25% em F	70% em F	70% em F	0,4Kg F	100% em A
75% em A	30% em A	30% em A	Kg A	
MM(F)=60			MM(A)=18	

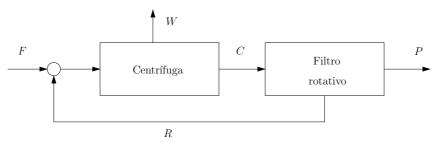


Figura 2: Fluxograma de recuperação de produto farmacêutico.

Observação:

- Massa molar de um produto A: MM(A) = massa de 1 mol de A
- Composição ou fração mássica de um produto A numa mistura:

$$x_A = \frac{\text{massa de A}}{\text{massa total}}$$

• Composição ou fração molar de um produto A numa mistura:

$$y_A = \frac{\text{mols de A}}{\text{mols total}}$$

• Relação mássica de um produto A em relação a um produto B numa mistura:

$$\frac{x_A}{x_B} = \frac{\text{massa de A}}{\text{massa de B}}$$

3. Trocadores de calor são equipamentos muito utilizados na indústria de controle de processos. Considere o reservatório de aquecimento mostrado na Figura 3. Um fluxo de processo esta sendo aquecido no reservatório por um aquecedor elétrico. A proporção da transferência calorífica, $\dot{Q}(t)$, para o fluido de processo está relacionado ao sinal, m(t), por

$$\dot{Q}(t) = am(t).$$

Você pode supor que o reservatório de aquecimento esta bem isolado (não troca calor com as vizinhanças), que o fluido esta bem misturado no reservatório e que a capacidade calorífica, c_p , e a densidade do fluido, ρ , são constantes. Desenvolva o modelo matemático que descreve como a temperatura de entrada, $T_e(t)$, o fluxo de processo, f(t), e o sinal, m(t), afetam a temperatura de saída, T(t). Depois determine as funções de transferência e desenhe o diagrama de blocos para este processo. O volume do reservatório é V.

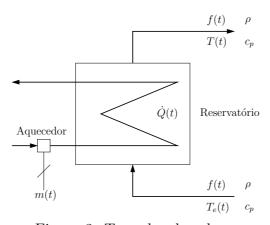


Figura 3: Trocador de calor.

4. Considere o processo de mistura mostrado na Figura 4. Deseja-se entender como os fluxos $(f_1(t) e f_2(t))$ e as concentrações do produto $A(c_{a_1}(t) e c_{a_2}(t))$ de entrada afetam o nível do tanque (h(t)) e a concentração de saída $(c_a(t))$. Desenvolva o modelo matemático (equações diferenciais) que descreve o processo e determine as funções de transferência relacionando $H(s) e C_a(s)$ com as demais variáveis do problema $(F_1(s), F_2(s), F(s), C_{a_1}(s) e C_{a_2}(s))$. Em geral as densidades são funções da concentração e temperatura mas usualmente (mas nem sempre) essa dependência é fraca. Assuma que as densidades são similares e constantes $(\rho_1 = \rho_2 = \rho)$.

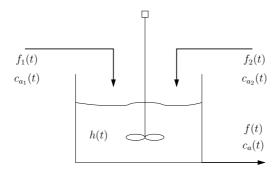


Figura 4: Tanque de mistura com agitação.

5. Considere o mesmo processo de mistura do exercício anterior considerando as válvulas de controle e a bomba conforme mostrados na Figura 5. Para uma dada vazão fixa da bomba f_b , considerando a corrente 2 contendo somente o produto A e supondo que é possível a leitura somente do nível h(t) e da concentração $c_a(t)$, explique como seria possível implementar estratégias de controle do do nível h(t) e da concentração de saída $c_a(t)$ de forma que funcionem concomitantemente. Fundamente sua explicação com base nas funções de transferência obtidas no exercício anterior.

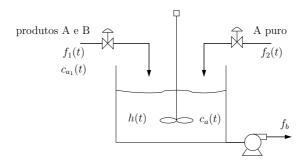


Figura 5: Controle de tanque de mistura com agitação.

6. Considere o tanque com fluxo de reciclo (recirculação) mostrado na Figura 6. Objetivase estudar a dinâmica do nível, h(t), de acordo com o fluxo de entrada, $f_e(t)$, e a abertura das válvulas, m(t). Considere a densidade, ρ , a área do tanque, A, e a vazão da bomba, f_b , como sendo conhecidas e constantes. A abertura das válvulas é determinada por $m(t) \in [0, 1]$.

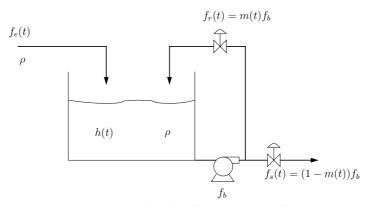


Figura 6: Tanque de nível com recirculação.

(a) Obtenha o modelo matemático do processo (equações diferenciais).

- (b) Obtenha as funções de transferência relacionando o nível H(s) com o fluxo de entrada $F_e(s)$ e o sinal das válvulas M(s). do processo.
- (c) Desenhe o diagrama de blocos.
- (d) Calcule os graus de liberdade do processo.
- (e) Em relação a malha de controle de nível do tanque h(t):
 - i. Proponha uma estratégia de controle por realimentação.
 - ii. Desenhe os transmissores, elementos finas de controle e controladores da estratégia de controle proposta usando a simbologia e terminologia da norma ISA 5.1.
 - iii. Quais seriam as variáveis medidas, as variáveis manipuladas e as variáveis de distúrbio para essa estratégia? Recalcule os graus de liberdade.
- 7. Considere o tanque aquecido com agitação mostrado na Figura 7. Objetiva-se estudar a dinâmica do nível (h(t)) e da temperatura (T(t)). Considere como sendo conhecidos e constantes: a densidade (ρ) , a área do tanque (A), a capacidade calorífica à pressão constante (c_p) (em líquidos $c_p \approx c_v$, capacidade calorífica à volume constante) do tanque, a capacidade calorífica à pressão constante (c_p) do líquido que troca calor, a condutância térmica $(U, \dot{Q} = U(T_v(t) T(t)))$, a constante de vazão da válvula (C'_v) .

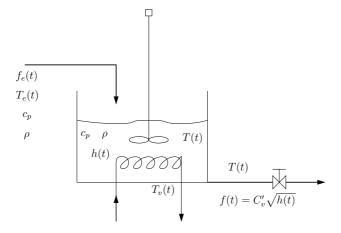


Figura 7: Tanque de aquecimento com agitação.

- (a) Obtenha as equações diferenciais do processo (escreva o balanço de energia completo, com todos os termos, e mostre quais termos podem ser desprezados)
- (b) Ache as funções de transferência relacionando H(s) e T(s) com as demais variáveis do problema.
- (c) Desenhe o diagrama de blocos.
- (d) Calcule os graus de liberdade do processo.
- (e) Indique quem são as variáveis de estado (menor conjunto de variáveis que determina o estado de um sistema dinâmico).
- (f) Quais poderiam ser os objetivos de controle e quem seriam as variáveis controladas (CV's).
- (g) Em relação a malha de controle de temperatura do tanque (T(t)):

- i. Proponha uma estratégia de controle por realimentação e uma estratégia de controle antecipatório.
- ii. Desenhe os transmissores, elementos finas de controle e controladores de cada estratégia de controle proposta usando a simbologia e terminologia da norma ISA 5.1.
- iii. Quais seriam as variáveis medidas, as variáveis manipuladas e as variáveis de distúrbio em cada estratégia? Recalcule os graus de liberdade.
- iv. Considerando a estratégia de controle antecipatório (assuma $T_v(t)$ como a única variável manipulada), qual seria a equação que fornece a temperatura necessária de $T_v(t)$ em função dos valores de $T_e(t)$ e $f_e(t)$ para manter a temperatura T(t) em \overline{T} ?
- (h) Em relação a malha de controle de nível do tanque (h(t)):
 - i. Proponha uma estratégia de controle por realimentação.
 - ii. Desenhe os transmissores, elementos finas de controle e controladores da estratégia de controle proposta usando a simbologia e terminologia da norma ISA 5.1.
 - iii. Quais seriam as variáveis medidas, as variáveis manipuladas e as variáveis de distúrbio para essa estratégia? Recalcule os graus de liberdade.
 - iv. Considerando $f(t) = mC'_v \sqrt{h(t)}$, em que $m \in [0, 1]$ é dado pela abertura da válvula, qual seria o valor mínimo que a constante de vazão da válvula (C'_v) teria que assumir considerando o valor máximo de fluxo de entrada como sendo $f_{e_{max}}$ e o valor mínimo de controle do tanque como sendo h_{min} ?
- (i) Escreva o balanço de energia do líquido refrigerante (ou aquecedor) que troca calor com o reservatório? Considere o fluxo como sendo $f_v(t)$, a densidade como ρ_v , a capacidade calorífica c_{p_v} , a temperatura de entrada como T_{v_e} e a temperatura de saída $T_v(t)$ (considere $T_v(t)$ para a troca de calor com o reservatório, $\dot{Q} = U(T_v(t) T(t))$).
- 8. Considere o processo mostrado na Figura 8. A velocidade do fluxo de massa de líquido através dos reservatórios é contante (\dot{m}_e) . São considerados constantes a densidade ρ , os volumes dos tanques V e as capacidades caloríficas dos tanques e dos fluxos c_p . Deseja-se saber como a temperatura de entrada $T_e(t)$ e a transferência de calor $\dot{Q}(t)$ afetam a temperatura de saída $T_3(t)$. Para esse processo, desenvolva o modelo matemático, determine as funções de transferência relacionando $T_3(t)$ a $T_e(t)$ e $\dot{Q}(t)$, e desenhe o diagrama de blocos.

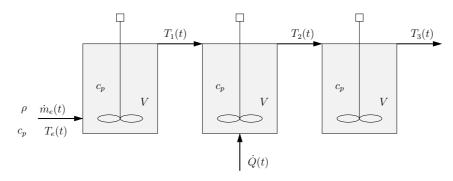


Figura 8: Tanques em série.

9. Desenvolva o modelo matemático para o sistema de tanques mostrados na Figura 9. As densidade do fluido ρ é constante e são conhecidas as áreas dos tanques A_1 , A_2 e A_3 . O fluxo da bomba, f_5 , é contante e independe do nível $h_3(t)$. O fluxo $f_1(t)$ é determinado pelo ambiente externo. Os demais fluxos, $f_2(t)$, $f_3(t)$ e $f_4(t)$, são proporcionais às correspondentes pressões hidrostáticas da coluna de líquido (considere os coeficientes de vazão C_{v_2} , C_{v_3} e C_{v_4} para as válvulas respectivas aos fluxos $f_2(t)$, $f_3(t)$ e $f_4(t)$). Apresente a função de transferência relacionando o nível $H_3(s)$ com o fluxo de entrada $F_1(s)$.

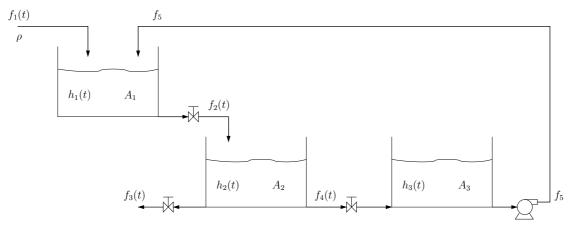


Figura 9: Tanques de nível em série.

10. Desenvolva o modelo matemático (equações diferenciais) para o sistema de tanques com aquecimento mostrados na Figura 10. As densidade do fluido ρ , as capacidades caloríficas à pressão constante c_p , as áreas dos tanques A_1 , A_2 e A_3 . são constantes e conhecidas. O fluxo $f_e(t)$ e a temperatura $T_e(t)$ são determinados pelo ambiente externo. Os demais fluxos, $f_1(t)$, $f_2(t)$ e $f_3(t)$, são proporcionais às correspondentes pressões hidrostáticas da coluna de líquido (considere os coeficientes de vazão C_{v_1} , C_{v_2} e C_{v_3} para as válvulas respectivas aos fluxos $f_1(t)$, $f_2(t)$ e $f_3(t)$). (Obs.: para este exemplo não é necessário encontrar as funções de transferência).

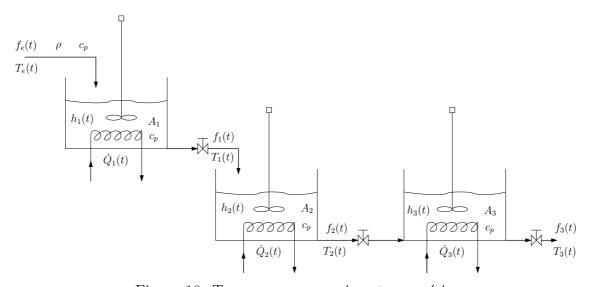


Figura 10: Tanques com aquecimento em série.