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Abstract— The present work proposes a different approach
for the conical scan, a technique used to track the spacecraft
position during the communication. The conical scan causes a
variation of the received signal power and uses it to estimate
the spacecraft position. The proposed technique applies the
Kalman filter as the estimator and presented better results
than the traditional one in non ideal scenarios. The proposal
is evaluated by computer simulations and compared to others
tracking techniques.

I. INTRODUCTION

Most of the spacecrafts must communicate with a ground
station. The communication at the Ka-band have gained
attention due to its availability and larger bandwidth when
compared to C, X, and Ku-bands [1], [2]. The Ka-band
is used in a variety of missions, for example deep space
missions [3], [4], low earth orbit (LEO) satellites [5], and
geostationary orbit satellites [6]. The main problem of em-
ploying high frequency systems is the antenna narrow beam
width [7], which requires a better pointing accuracy. The
spacecraft trajectory is usually predictable, so the antenna
pointing reference can be set previously [8]. Unfortunately,
there are cases in which the predicted trajectory differs from
the real trajectory [9]. Also, disturbances like temperature
gradient, wind forces, gravity forces, and manufacturing
imperfections affect the beam pointing [10], [11]. All these
effects make the beam position different than the pointing
measured by the encoders, so they need to be compensated
[11]. The spacecraft position relative to the beam can be
estimated using radio frequency (RF) sensing techniques as
feedback, for example monopulse and scanning techniques
[12].

Monopulse techniques offer excellent results, but they are
more complex than scanning techniques [13], requiring a
specific hardware, carefully designed and manufactured, as
described in [14], [15]. Scanning techniques are simpler and
cheaper to implement, adding a movement to the original
antenna path. The addition of small harmonic movements
varies the received signal power. This approach is restricted

to carriers that do not contain amplitude modulation [9]. The
analysis of the variation allows for to estimate the spacecraft
position relative to the beam. Among three scanning tech-
niques, conical, Lissajous, and rosette, the conical is a good
choice due to the simplicity to implement without loss of
performance [8]. The conical scan (conscan) is used in radar
systems [16], missile tracking [17], spacecraft applications
in deep space [13], [18], and spacecrafts in LEO [19].
Concerning the spacecraft applications, different methods
were employed to solve the conscan problem. The work [20]
applies least mean squares (LMS) batch estimator to solve it,
and it is the most used approach for the problem. The report
[21] tests the usage of the Kalman filter (KF) to estimate
the spacecraft position, so the estimation can be performed
in each sampling instant. Considering different sources of
uncertainty, nonlinear techniques results are studied in [22].

The present work proposes a different solution for the
conscan in spacecraft applications, applying the Kalman filter
(KF) with three main differences than the proposal in [21].
The measurement function is mathematically manipulated
instead of linearized by the Taylor series, one of the state
variables is related to the carrier power, and the state vector is
extended by its first-order time derivative. This modifications
make the filter more robust to spacecraft movements and
carrier power variations. In this way, some assumption made
by the other techniques become unnecessary. The proposal
increases the computational cost of the technique, but it is
not a limitation, since the algorithm runs on the ground
station computer. For now, the work is evaluated just in
simulations, but it will be tested in the antenna to be built,
at the University of Brasilia, in Brazil.

The work is divided as follows. Section II presents the
traditional conscan technique, using the LMS technique. In
Section III, the proposed approach is presented, modeling the
problem in a different way and applying the KF to estimate
the spacecraft position. The simulation results are presented
in Section IV. Finally, the conclusions are discussed in
Section V.
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Fig. 1. Representation of the scan movement.

II. CONICAL SCAN

The traditional conscan technique will be explained in
this section, and all the theory presented about it is based
on [8], otherwise it will be explicitly cited. The conscan
consists in the addition of harmonic movements in both
axes, azimuth and elevation, making the antenna to perform
a circular pattern while follows the spacecraft, as represented
in Fig. 1. The antenna scan movement is circular with
radius r and angular velocityω. The radius of the scan
must be small, so it does not significantly interfere with
the communication. A good choice of the radius depends
on the antenna characteristics, usually selected to decrease
the maximum signal power up to0.1 dB. The definition
of the scanning angular velocity depends on the hardware
capability, and the scan period is usually between30 and
120 seconds. The antenna sample rate periodTs depends on
the capability of the antenna RF hardware.

In Fig. 2, the frame of reference is presented. The origin
represents the original antenna path,sk the spacecraft posi-
tion, ŝk the estimated spacecraft position,ak the antenna
position during the scan, andek is the difference vector
between the spacecraft and the antenna positions. The sub
index k refers to thek-th sample performed at the time
tk = k Ts.

In the frame of reference, the antenna position is given by

ak =

[

r cosωtk
r sinωtk

]

, (1)

and

ek = sk − ak =

[

ea,k
ee,k

]

=

[

sa,k − r cosωtk
se,k − r sinωtk

]

(2)

The sub indexese anda refer to elevation and azimuth axes,
respectively.

The received powerpk can be approximated by

pk = p0,k exp

(

−µ
ǫk

2

h2

)

+ vk, (3)
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Fig. 2. Pointing reference system.
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Fig. 3. Relation between the carrier power and the pointing error.

wherep0,k is the carrier power,µ = 4 ln 2 is a constant,h
is the antenna beam width,vk is an additive Gaussian white
noise, andǫk2 is the squared total error, given by

ǫk
2 = ek

Tek = sk
T sk − 2ak

T sk + r2. (4)

Fig. 3 shows the relation between the received power and
the axes pointing error. Due to the harmonic movements, the
received power varies in a sinusoidal shape during the scan,
with the amplitude depending on the spacecraft position.

During a scan period, the traditional technique considers
the spacecraft position constant, from now on denoted by
s. This assumption is acceptable if the measurements are
sampled in small intervals of time and the distance between
the spacecraft and the ground station is long enough, making
the spacecraft position varies slowly. The carrier power is
considered constant as well, so it will be denoted byp0.

The first-order Taylor expansion is applied to make (3)
linear, becoming

pk = p0

[

1− µ
ǫk

2

h2

]

+ vk. (5)

Replacing (4) in (5), it becomes



pk = pm +
2 p0 µ r

h2
(sa cosωtk + se sinωtk) + vk, (6)

wherepm is the mean received power during the scan, given
by

pm = p0

[

1−
µ

h2

(

r2 + sT s
)

]

, (7)

and it is computed using the mean of the received mea-
surements during a scan period. The difference between the
received power and the mean power is given by

dpk = pk − pm = g sa cosωtk + g se sinωtk + vk, (8)

where

g =
2 p0 µ r

h2
. (9)

Making mk = g [cosωtk sinωtk], (8) can be rewritten as

dpk = mk s+ vk. (10)

Gathering measurements during a scan period, the space-
craft position can estimated using LMS, and it is given by

ŝ =
[

(

MTM
)

−1

MT
]

dp, (11)

whereM anddp are vectors, with stored values ofmk and
dpk, respectively.

Although it is a very used technique, the conscan has
some drawbacks. Depending on the sampling rate and on
the scan period, the spacecraft position and carrier power
sometimes can not be considered constants during the scan
period, and the conscan with the LMS estimator can not
be used. The necessity of waiting for a full scan cycle can
become a restriction, as described in [24] for example.

III. PROPOSED TECHNIQUE

The proposed technique employes the KF to estimatesk.
The theory about the discrete KF can be found in many
textbooks, for example [23]. The author of [21] proposed a
conscan technique based on the KF, but in a different way. In
[21], the the state vector is the spacecraft position, considered
constant and disturbed by a Gaussian white noise in each
sampling instant. The measurement equation is (8), and the
author considers the carrier power constant during the scan
period. The present work does not approximate (3) by the
Taylor series, instead of that, a mathematical manipulation
is performed, avoiding linearization errors. The proposition
tracks not only the spacecraft position, but also a variable
related to the carrier power. Also, the state vector is extended
by its first-order time derivatives, becoming more robust to
variations of the state vector dynamics.

Disregardingvk and considering (3) a deterministic func-
tion, the logarithmic function can be applied to it, so it
becomes

ln pk = ln p0,k − µ
ǫk

2

h2
. (12)

All the uncertainty about the model must be assigned to
the Gaussian white noisewk with zero mean and covari-
anceW . Replacing (4) in (12), and considering the model
uncertainty, (12) becomes

ln pk = ∆k +
2µr

h2
(sa,k cosωtk + se,k sinωtk) +wk, (13)

where

∆k = ln p0,k −

µ

h2

(

sa,k
2 + se,k

2 + r2
)

. (14)

The variance ofwk can be taken experimentally, defined as

W = σ2

p. (15)

The state vectorxk is composed of∆k, sa,k, andse,k, and
it is extended by the first-order time derivatives of the state
variables, represented bẏ∆k, ṡa,k, and ṡe,k, respectively.
The state vector is

xk =
[

∆k ∆̇k sa,k ṡa,k se,k ṡe,k
]T

. (16)

The evolution function is modeled as

xk =

















1 Ts 0 0 0 0
0 1 0 0 0 0
0 0 1 Ts 0 0
0 0 0 1 0 0
0 0 0 0 1 Ts

0 0 0 0 0 1

















xk−1 + qk−1. (17)

In this equation,qk−1 is a Gaussian white noise vector,
with covariance matrixQ. The time derivative variables are
modeled as constants disturbed by random noise.

The standard deviation of the spacecraft position depends
on the application, modeled as the maximum drift in one
period, and the standard deviation of∆ depends on the
sensor standard deviationσp. The variances of the state
variables time derivatives are modeled100 times smaller than
the respective variables variances.

The covariance matrix

Q = diag
(

σ2

∆, 10−2σ2

∆, 10−2, 10−4, 10−2, 10−4
)

(18)
was set empirically for the simulation, where

σ∆ = σp. (19)

The measurement function is linear concerning the state
variables, and it can be written as

ln pk = Ck xk +wk, (20)

where

Ck =
[

1 0 2µr
h2 cosωtk 0 2µr

h2 sinωtk 0
]

. (21)



Using the proposed formulation, the state vector can be
estimated in every sampling period using the KF.

The filter directly estimates the spacecraft position, but not
the carrier power. Using (14), the carrier power can be com-
puted using the estimated state. Employing this technique,it
is possible to estimate the spacecraft position and the carrier
power, even if the measurement is not available.

The initial state vector assumes the same initial carrier
power as the traditional technique, so it is

x̂0 =
[ (

ln p0 −
µ r2

h2

)

0 0 0 0 0
]T

. (22)

The initial covariance matrix̂P0 does not have a deter-
ministic way to be defined, but it must denote a great level of
uncertainty, considering reasonable values for the variables.
In this case, it was defined as

P̂0 = diag (10 ln p0, 10 ln p0, 1, 1, 1, 1) . (23)

IV. SIMULATIONS AND RESULTS

Simulations were performed in order to evaluate the pro-
posed technique. As a normal assumption in the literature
about scanning techniques, it is considered that the antenna
can perfectly follow the reference position. The proposed
technique is tested for different cases, similar to the ones
presented in [8], [21]. A summary of the tests is presented in
Table I. Despite being theoretical tests, they help to visualize
the performance in situations different than the perfect one,
for example when the spacecraft suddenly varies its position
(Test B), when the spacecraft real position varies faster than
the predicted (Test C), and when there is a wrong assumption
about the carrier power (Test F).

TABLE I

SIMULATION CASES.

Test ID ‖sk‖ p0,k

A Constant Constant

B Step Constant

C Ramp Constant

D Constant Ramp

E Ramp Ramp

F Constant Constant and different than the real one

The tests parameters areω = π/16 rad/s,p0 = 4.14·10−13

W, Ts = 1 s, r = 5.9 mdeg,h = 65 mdeg, andσp = 1.9356,
except forp0 when it drifts. The results for tests root mean
squared (RMS) error can be seen in Table II, whereTT refers
to the traditional technique described in Section II,KF1 to
the algorithm proposed in [21], andKF2 to the algorithm
proposed here.

The proposed technique has smaller RMS error than the
others techniques, except in Test A, the most unlikely to
happen since it is an ideal situation. The proposed technique
result for the Test A is worse than the others due to the
model, which considers the state vector time derivatives. Any

TABLE II

RMS ERROR RESULTS FOR̂sk IN THE TESTS WITH ALL MEASUREMENTS.

Test TT [mdeg] KF1 [mdeg] KF2 [mdeg]

A 6.48 17.54 18.39

B 10.11 12.04 5.31

C 7.52 7.06 1.60

D 17.38 9.47 3.02

E 23.31 1.58 0.98

F 9.54 20.69 4.57

variation in these variables increases the estimation RMS
error because the spacecraft position is constant during the
simulation. The technique has a characteristic of handling
with the spacecraft position variation and wrong assumption
of the carrier power. For the Tests B, C, D, E, and F, when
compared to the traditional technique, the RMS error is
reduced in approximately47%, 78%, 82%, 95%, and52%,
respectively. As visual example, the results for the Tests B,
C, E, and F can be seen in Fig. 4, Fig. 5, Fig. 6, and Fig.
7. All the results showed the proposed technique robustness
against changes in the beam pointing, and adaptability when
compared to the others.

The task of tracking the carrier power was also accom-
plished, even when it drifts (Test , as presented in Fig. 8.

V. CONCLUSIONS

A different approach for the conscan method was proposed
in order to improve the technique. The nonlinear equation
relating the spacecraft position and the received power is
not linearized by the Taylor series. Instead, a mathematical
manipulation is applied to the exponential function, making
the measurement model linear with respect to the state
variables, and avoiding linearization errors. Since the model
is linear, the KF is used to track the spacecraft position
considering dynamics that the eventual technique does not
consider.

There are two main advantages of the proposed technique,
performance and cost. The tests showed that the proposed
technique had a better performance when compared to the
others in most of the tested situations. The assumption
of constant carrier power during the scan was avoided,
and, more than that, the carrier power was estimated. The
assumption of constant spacecraft position, which was a
limitation for some missions, was also avoided, and the
spacecraft position could be estimated in each sampling
instant. The proposed technique may replace the monopulse
based techniques in some missions, since the monopulse is
a more expensive and complex technique category.

The characteristic of handling with the spacecraft position
and carrier power variations decreases the performance in
the ideal scenario, but such a scenario is unlikely to occur,
but maybe it can be solved using different adjustments of
the covariance matrix, which were not tested so far. The
technique increases the computational cost because there are
matrix calculations in each sampling instant, but since the
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Fig. 4. Results of Test B.
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Fig. 5. Results of Test D.
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Fig. 6. Results of Test E.
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Fig. 7. Results of Test F.
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algorithm runs on a ground station computer, it is not a
limitation.

As future works, it is important to evaluate the technique
in practical tests, since it was only simulated so far. Some
tests are intended to be performed in the satellite ground
station that will soon be built at the University of Brasilia,
Brazil. Since the proposed technique can be used instead
of the monopulse based techniques, a comparison must be
made between them. It is proposed, also as future work, to
evaluate the usage of the estimator presented here as part
of the feedback in the antenna control system, allowing to
reduce the costs of the encoders.
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