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Abstract
The surface electromyographic (SEMG) signal is very convenient for prosthesis
control because it is non-invasively acquired and intrinsically related to
the user’s intention. This work presents a feature extraction and pattern
classification algorithm for estimation of the intended knee joint angle from
SEMG signals acquired using two sets of electrodes placed on the upper leg.
The proposed algorithm uses a combination of time-domain and frequency-
domain approaches for feature extraction (signal amplitude histogram and
auto-regressive coefficients, respectively), a self-organizing map for feature
projection and a Levenberg–Marquardt multi-layer perceptron neural network
for pattern classification. The new algorithm was quantitatively compared with
the method proposed by Wang et al (2006 Med. Biol. Eng. Comput. 44
865–72), which uses wavelet packet feature extraction, principal component
analysis and a multi-layer perceptron neural classifier. The proposed method
provided lower error-to-signal percentage and peak error amplitudes, higher
correlation and fewer error events. The algorithm presented in this work may
be useful as part of a myoelectric controller for active leg prostheses designed
for transfemoral amputees.
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1. Introduction

Surface electromyographic (SEMG) signals provide a non-invasive tool for investigating the
properties of skeletal muscles (Sommerich et al 2000). SEMG signals may be used not
only for monitoring muscle behavior during rehabilitation programs (Monseni-Bendpei et al
2000), but also for mechanical control of prostheses (Englehart and Hudgins 2003). The
SEMG signal is very convenient for prosthesis control because it is intrinsically related to the
user’s intention (Hudgins et al 1993). In such an application, it is important to be able to
correctly predict which movement is planned by the user. A myoelectric control algorithm
should be capable of learning the muscular activation patterns that are used in natural form for
typical movements. It also needs robustness against variations in conditions during operation,
and the response time cannot cause delays that are noticeable to the user (Fukuda et al
2003).

The central component of a pattern-recognition-based myoelectric control algorithm is
the neural network classifier, which must be capable of learning relationships between input
SEMG signals and desired control outputs. Increasing the number of SEMG channels that are
acquired and processed may provide the user with higher accuracy in controlling the intensity
of the contraction (Englehart et al 2001). However, as the number of inputs increases, the
complexity of the network structure grows exponentially, which significantly increases the
convergence time. Data pre-processing is typically used for reducing the amount of data
analyzed by the neural classifier. A common approach is to extract parameters from the data,
such as time-domain features (e.g. mean absolute value, waveform length, number of zero
crossings) (Kelly et al 1990, Hudgins et al 1993), spectral parameters (e.g. auto-regressive
model) (Huang et al 2005, Hargrove et al 2008), time-frequency coefficients (e.g. short-time
Fourier transform) (Englehart et al 2001) and/or time-scale coefficients (e.g. discrete wavelet
transform, wavelet packet decomposition) (Englehart et al 2001, Chu et al 2005, Wang
et al 2006). Further data reduction may be achieved using a feature projection stage between
pre-processing and classification (Englehart et al 2001, Chu et al 2005, Wang et al 2006). This
approach eliminates redundant information, which speeds up the training process. It may also
help mapping the data into small and well-separated clusters, by absorbing signal variations
and noise present in the data’s original vector space.

The data processing and classification techniques discussed above have been successfully
used for myoelectric control by several groups. Kelly et al (1990) proposed an algorithm
capable of discriminating between four motions of elbow and wrist joints from SEMG patterns
measured from one pair of electrodes, using a Hopfield neural network for time-domain
feature extraction, followed by a two-layer perceptron neural classifier. Englehart et al (2001)
designed an algorithm for dexterous and natural myoelectric control of powered upper limbs
using a linear discriminant analysis (LDA) classifier, after principal components analysis
(PCA) dimensionality reduction on a wavelet-based feature set. Chu et al (2005) presented
a pattern recognition algorithm for the control of a multifunction myoelectric hand, using
the wavelet packet transform for feature extraction, a multi-layer neural network classifier
and a linear–nonlinear feature projection composed of PCA and self-organizing feature maps,
respectively. Huang et al (2005) designed a classification scheme based on Gaussian mixture
models for myoelectric control of upper limb prostheses, using feature extraction based on
time-domain statistics, auto-regressive (AR) coefficients and the root mean square of the
signal. Wang et al (2006) proposed an algorithm capable of discriminating between four types
of hand and forearm movements, using wavelet packet feature extraction and PCA feature
projection. Zhao et al (2006) designed a control algorithm capable of recognizing six different
hand motion patterns, using a multi-layer perceptron neural network classifier and feature
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extraction based on sample entropy, time-domain filtering and wavelet transform coefficients.
Hargrove et al (2008) used a combination of time-domain features and AR coefficients with
a LDA classifier to determine the effect of electrode displacements on pattern classification
accuracy, and to design a classifier training strategy to address this issue.

Despite great successes in decoding discrete movements such as individual finger flexion
or extension, the matter of continuously predicting joint angles using SEMG is comparatively
underdeveloped (Smith et al 2008). This work presents a feature extraction and pattern
classification algorithm for estimating the intended knee joint angle from a two-channel
SEMG signal, acquired using surface electrodes placed on the upper leg. This algorithm
was designed for myoelectric control of an active transfemoral prosthesis (Cascão Jr et al
2005, Rodrigues et al 2006), as an improvement to the algorithm proposed by Ferreira et al
(2005). The algorithm by Ferreira et al consisted in using the AR model for feature extraction,
and a Levenberg–Marquardt (LM) multi-layer perceptron neural network (Hagan and Menhaj
1994) for pattern classification. The proposed method improves the feature extraction stage by
using a combination of spectral and temporal domain approaches—AR coefficients (Huang
et al 2005, Hargrove et al 2008) and signal amplitude histogram (Zardoshti-Kermani et al
1995, Liu et al 2007), respectively—and by incorporating a feature projection stage, using
a self-organizing map (SOM) (Kohonen 2001). The incorporated Kohonen network reduces
the dimensionality of the data at the input of the LM neural classifier, by mapping all the AR
and histogram coefficients into a two-dimensional vector space (Chu et al 2005). The new
algorithm was quantitatively compared to its original version (Ferreira et al 2005) and to a
different method from the literature (Wang et al 2006), based on the error-to-signal percentage,
the correlation coefficient and the evaluation of error events.

2. Methods

2.1. Data acquisition and pre-processing system

As part of the project of an active transfemoral prosthesis (figure 1(a)) (Cascão Jr et al 2005,
Rodrigues et al 2006), a microcontrolled bioinstrumentation system was designed and built
(figure 1(b)) using low-power consumption components (Delis et al 2008). The system uses
INA118 front-end amplifiers with CMRR > 110 dB (Burr-Brown Corp., Tucson, AZ/Texas
Instruments Inc., Dallas, TX) for SEMG signal acquisition (up to four channels) and an
electrogoniometer (EMG System do Brasil Ltda, São José dos Campos, Brazil) for measuring
the knee joint angle. Analog filters are used to limit the SEMG signal to the 20–500 Hz
frequency range. Two channels of the amplified SEMG signal and the angle displacement
signal from the electrogoniometer are analogically multiplexed and sampled using a MCP3304
13 bit analog-to-digital (ADC) converter (Microchip Technology Inc., Chandler, AZ) at a
sampling rate of 1744.25 Hz (for each channel). The ADC is isolated from the power
supply through an NML0505S isolated dc–dc converter (C&D Technologies Inc., Blue Bell,
PA), and is optically connected to the serial peripheral interface (SPI) of an AT91SAM7S64
microcontroller (Atmel Corp., San Jose, CA) through an HCPL-2430 optocoupler (Avago
Technologies Ltd, San Jose, CA).

The microcontroller implements a real-time adaptive notch filter, which maintains a
running estimate of the 60 Hz power-line interference (Delis et al 2008). The filtered SEMG
signals and the knee joint angle measurements are transferred to a personal computer through
a serial interface (RS-232 C or USB) by setting the system to online mode. A block diagram
of the bioinstrumentation system is shown in figure 1(c).
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(a)

(c)

(b)

Figure 1. (a) Prosthesis prototype; (b) electrogoniometer and instrumentation system; (c) block
diagram of the instrumentation system.

2.2. Subjects and the data acquisition protocol

The following experimental protocol was designed for evaluating the performance of the
proposed algorithm. The protocol was approved by the research ethics committee of the
University of Brası́lia (process no. 09/2009, group III). Four able-bodied volunteers were
studied (table 1), and provided informed consent in accordance with institutional policy.
Two pairs of 10 mm Ag/AgCl surface electrodes with conductive gel were placed in bipolar
configuration over a pair of agonist/antagonist muscles of the same leg, corresponding to the
flexion and extension movements of the knee joint, respectively (table 1 and figures 2(a) and
(b)). The distance between the centers of the electrodes of each pair was 3–5 cm. Each pair of
electrodes was associated with a different SEMG acquisition channel. Reference electrodes
were placed over the lateralis and medialis epicondylus bones. An electrogoniometer was
placed and strapped over the external side of the same leg, so that it would measure the angular
displacement of the knee in sagittal plane (figure 2(c)). The two channels of SEMG data and
the knee joint angle information were acquired using the bioinstrumentation system described
above.

Each subject was studied over the course of 5 days. Four 10 s measurements were
performed on each day, with 5 min rest periods between measurements. For each measurement,
the subject was asked to walk in a particular direction at a constant pace. Some variability in
pace was observed between measurements. The first and third measurements from each day
were used for training, and the second and fourth measurements were used for testing. Thus,
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Table 1. Age of the volunteers and corresponding experimental configurations.

Age Antagonist muscles Front-end gain

Subject A 39 Rectus femoris and semitendinosus 3030
Subject B 22 Vastus intermedius and semitendinosus 6060
Subject C 24 Vastus lateralis and semitendinosus 6060
Subject D 27 Rectus femoris and semitendinosus 6060

(a) (b) (c)

Figure 2. Placement of electrodes (a), (b) and electrogoniometer (c). The electrodes are placed in
bipolar configuration over a pair of agonist/antagonist muscles, corresponding to the flexion and
extension movements of the knee joint, respectively. The electrogoniometer measures the angular
displacement of the knee in the sagittal plane.

a total of 80 measurements were obtained, with half of them being used for training and the
other half being used for testing. Representative datasets from each volunteer are shown in
figure 3.

2.3. Knee joint angle estimation algorithm

Figure 4 presents the main components of the proposed knee joint angle estimation algorithm,
which is based on myoelectric pattern recognition. The proposed algorithm is composed
of three main stages: (i) feature extraction, using a combination of spectral and temporal
domain approaches (AR coefficients and signal amplitude histogram, respectively); (ii) feature
projection, using a self-organizing map; and (iii) pattern classification, using the Levenberg–
Marquardt multi-layer perceptron neural network. Feature extraction and projection is
performed independently for each SEMG channel. Data from the electrogoniometer are
used as reference during network training, and are not used by the network during testing.
Each of these stages is discussed in detail below, followed by a discussion on the approach for
training the cascade neural networks.

2.3.1. Feature extraction stage. Presenting the myoelectric signal directly to a neural
classifier is impractical, because of the dimensionality and random characteristics of the
signal. The signal needs to be represented by a vector of reduced dimensionality, capable of
representing the signal’s information in a more compact fashion. Such a vector is called a
feature vector. In this work, the feature vector is composed of two sets of coefficients: the
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Figure 3. Representative sets of recorded SEMG signals and measured knee joint angles from
each subject.

Figure 4. Block diagram of the proposed knee joint angle estimation algorithm. Feature extraction
and projection is performed independently for each SEMG channel. A multi-layer perceptron
neural network is used for pattern classification. Data from the electrogoniometer are used as
reference only during network training, and are not used by the network during testing.

amplitude histogram bin counts, representing the time-domain characteristics of the SEMG
signal, and the auto-regressive coefficients, representing the spectral content of the signal.

The SEMG amplitude histogram is an extension of the zero crossing and the Willison
amplitude measures (Zardoshti-Kermani et al 1995). The amplitude histogram provides a



Estimation of the knee joint angle from SEMG signals for active control of leg prostheses 937

measure of the regularity in which the SEMG signal reaches each level of amplitude, associated
with different histogram bins. Myoelectric signals reach relatively higher levels during the
contraction period (compared to the baseline amplitude); thus, the amplitude histogram is
capable of providing useful information about the state of a joint (Zardoshti-Kermani et al
1995). A histogram with nine symmetrically and uniformly distributed bins was used in this
work. The range of values was set based on the maximum and minimum SEMG amplitude
levels measured on the training datasets. The window length was set to 200 samples (115 ms).

The auto-regressive model is a convenient structure for model identification, in which the
spectral envelope of the signal is modeled as an all-pole transfer function. The coefficients of
this transfer function (the AR coefficients) contain information about the frequency content
of the signal. In this work, the AR coefficients are used to compactly represent the spectral
features of the SEMG signal (Huang et al 2005, Hargrove et al 2008). The coefficients are
calculated using the recursive least-squares (RLS) algorithm with a forgetting factor (Vaseghi
2000). This gives more weight to the most recent samples at the moment of the iteration,
which allows the algorithm to track temporal variations of the signal. Based on the literature
(Huang et al 2005, Ferreira et al 2005) and on an evaluation using the Akaike criterion (Ljung
1987), we concluded that an AR order of 4 to 6 is sufficient to efficiently represent the SEMG
signal. Thus, a sixth-order AR model was used, with a forgetting factor of 0.995, which is
equivalent to 200 samples, or 115 ms.

Both the histogram window and the AR coefficients are updated for every new SEMG
sample. This produces a more dense but semi-redundant stream of class decisions that could
potentially be used to improve response time and accuracy (Englehart and Hudgins 2003).

2.3.2. Feature projection stage. The feature extraction stage (discussed above) reduces the
dimension of the data to 15 (9 histogram bins, and 6 AR coefficients). The feature projection
stage proposed in this work further reduces the dimension of the feature vector, by mapping it
into a two-dimensional space using a self-organizing map.

SOM neural networks (Kohonen 2001) are trained using unsupervised learning, and are
capable of arranging the input data into a discretized two-dimensional space (a map), which
attempts to preserve the topological properties of the input space. The SOM is composed of
nodes (or neurons). A position in the map space and a weight vector (of the same dimension as
the input data vectors) are assigned to each node. The mapping algorithm consists in finding
the node with the weight vector that is the closest to the input vector. The output of the SOM
network is the two-dimensional coordinate of the winning node.

Each of the two SOMs (one for each SEMG channel) is arranged in a topological net
with 100 neurons in their interconnection structure (10 × 10 matrix). The dimension of the
network was chosen empirically, based on experimentation. The initial learning rate was 0.9,
and the time constants τ 1 and τ 2 were 1431 and 1000 iterations, respectively (Haykin 1999).
The neighborhood function initially contains all the neurons of the network, centered around
the winning neuron, and with time it gradually decreases in size. Thus, the initial size of the
neighborhood function is equal to the radius of the lattice (i.e. 5).

At the output of the feature projection stage, the information in each of the SEMG channels
is represented by only two coefficients (a 2D coordinate), resulting in a total of four coefficients
at the input of the pattern classification stage. Different coordinate pairs represent different
points of operation associated with the movement of the knee joint during a walk.

2.3.3. Pattern classification stage. The pattern classification stage is responsible for
providing an estimate of the knee joint angle from the set of four SOM coefficients obtained
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from the feature projection stage. This is performed using a Levenberg–Marquardt multi-layer
perceptron neural network (Hagan and Menhaj 1994).

There has been considerable research on methods to accelerate the convergence time of
multi-layer feed-forward neural networks, such as methods that focus on standard numerical
optimization techniques, including the conjugate gradient algorithm, quasi-Newton methods
and nonlinear least squares (Battiti 1992, Charalambous 1992). The method used in this
work is an application of a nonlinear least-squares algorithm to the batch training of multi-
layer perceptrons, called the Levenberg–Marquardt algorithm. The LM algorithm is very
efficient for training moderate-sized feed-forward neural networks (Hagan and Menhaj 1994).
Although the computational requirements of the LM algorithm become much higher for each
iteration, this is fully compensated by its higher efficiency. This is especially true when high
precision is required.

The LM network used in this work has three layers in its structure, with four input nodes
(output vectors of the SOM networks) in the first layer, six nodes in the second layer (associated
with tangential functions) and one node in the output layer (associated with a linear function).
This structure was chosen empirically, based on experiments aimed at minimizing the mean
squared error (MSE). The node in the output layer represents the estimated knee joint angle
(figure 4).

2.3.4. SOM and LM neural network training. The proposed algorithm was implemented and
evaluated in Matlab (Mathworks, Inc., South Natick, MA). The cascade network blocks (SOM
and LM) were trained independently for each set of 10 s two-channel SEMG test signals, using
its corresponding set of training signals and electrogoniometer measurements.

First, the histogram and AR coefficients associated with each sample of each of the two
SEMG signals were calculated. Then, these coefficients were used in the SOM networks’
unsupervised training process to configure the topological map structures and set the weight
vector of each neuron. Then, the same feature vectors were used in the trained SOMs, in order
to generate two-dimensional vectors to be used for training the LM network.

During LM network training, the outputs from the trained SOM network were used as
inputs, and the corresponding angular displacement measurements from the electrogoniometer
were used as the target outputs. The same initial weight values were used for all three network
layers (zero for all neurons). The maximum number of iterations was set to 50, the MSE stop
criterion was 10−10 n.u.2 and the initial learning rate was 1. These values were empirically
chosen, aiming at maximum reduction of the final MSE.

2.4. Quantitative evaluation

For the validation and evaluation of performance, the proposed algorithm was quantitatively
compared with the methods by Ferreira et al (2005) and Wang et al (2006).

The myoeletric algorithm by Ferreira et al differs from the algorithm proposed in this
work by using only the AR model for feature extraction (no time-domain features), and by not
using a feature projection stage. A LM network is also used as classifier.

The EWP-PCA algorithm by Wang et al uses time-scale feature extraction, PCA feature
projection and a multi-layer perceptron neural classifier. In the feature extraction stage, the
energy of the wavelet packet coefficients (EWP) was calculated by decomposing the signals
to the fourth level by wavelet packet transform using the Symlet wavelet of order 5 (sym5),
and then calculating the relative energy in each subspace. Then, the resulting 30-element
feature vector undergoes dimensionality reduction using principal component analysis. In our
implementation of this algorithm, a LM network was used for pattern classification.
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For consistency with the proposed method, the same LM-network configuration was used
for all three methods, and the same training process and test sets were applied. For the same
reason, the wavelet decomposition in the EWP-PCA algorithm was performed for 200-sample
(115 ms) windows, and a sliding-window approach was used, such that the decomposition was
recalculated for every new SEMG sample. In addition, the same AR order and forgetting-factor
configuration was used for the proposed method and the method by Ferreira et al.

The 40 sets of SEMG and electrogoniometer data which were not used for training
(10 per subject) were used for comparing the three methods. The performance of each
algorithm was evaluated by comparing the knee angle estimated from the SEMG signals with
the angular displacement values measured with the electrogoniometer. The following metrics
were used: error-to-signal percentage, correlation coefficient, and the number, amplitude and
duration of error events. The Mahalanobis distance (Duda et al 2000) was calculated for each
metric as a means of assessing the statistical difference between the proposed method and the
algorithms by Ferreira et al and Wang et al.

2.4.1. Error-to-signal percentage. The error-to-signal percentage (ESP) for each test dataset
was calculated using the following expression:

ESP =
√√√√

∑N
i=1 |x(i) − x̂(i)|2∑N

i=1 |x(i)|2 × 100%, (1)

where x(i) and x̂(i) are the measured and estimated knee joint angular displacements,
respectively, and N is the signal length (number of samples). Then, the average ESP and
standard deviation were calculated for each subject.

2.4.2. Correlation coefficient. The correlation coefficient r between two random variables x
and y, with N samples and expected values x̄ and ȳ, is defined as

r =
∑N−1

i=0 (xi − x̄) (yi − ȳ)√∑N−1
i=0 (xi − x̄)2 ∑N−1

i=0 (yi − ȳ)2
. (2)

This coefficient provides a measurement of the degree of linear dependence between the two
variables. It assumes values between −1 and +1. Negative values indicate negative correlation,
positive values indicate positive correlation and r = 0 indicates linear independence. The closer
the coefficient is to either −1 or +1, the stronger the correlation between the variables.

The correlation coefficient between measured and estimated knee angle displacement
values for each test dataset was calculated as described above. Then, the mean and standard
deviation values of r were calculated for each subject.

2.4.3. Statistics of error events. Classification errors when estimating the knee joint angle
can be large or small, and also isolated or enduring. While it is obvious that large errors are
more critical than small ones, it is important to note that enduring errors are more critical than
isolated ones, because the system’s mechanical inertia tends to filter impulse-like events. With
this in mind, a metric was designed to obtain statistics on such error events, i.e. short or long
series of significantly large classification errors. This metric measures the number, amplitude
and duration of the error events.

The estimation error time series associated with each of the 40 test signals was
calculated by taking the absolute difference between the knee joint angle measured with
the electrogoniometer and the displacement angle estimated from the SEMG signals. Then,
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a threshold was applied to the time series, and errors that were lower than the threshold were
set to zero. This threshold was empirically set to 10◦. Each series of consecutive errors found
to be above the threshold was considered an error event.

From the pre-processed error time-series, the error events were segmented by (i) detecting
the beginning of the event, i.e. a non-zero value found after a series of zeros, and then (ii)
detecting the end of the event, i.e. a zero value found after a series of non-zero values. Then, for
each event, the duration (number of samples) and maximum error amplitude were calculated.
Finally, the number of error events, the maximum error event duration and the maximum
error amplitude were calculated for each set of SMEG signals, and the average and standard
deviation of those parameters were calculated for each subject.

2.4.4. Mahalanobis distance. The Mahalanobis distance (Duda et al 2000) was used for
assessing the statistical difference between the proposed method and the algorithms by Ferreira
et al and Wang et al. The Mahalanobis distance is a useful way of determining similarity
of sample sets, as it is not dependent on the scale of measurements. For each of the above-
described metrics, the Mahalanobis distance was calculated as

d(x, y) =
√√√√ N∑

i=1

(x̄i − ȳi )
2

σ 2
xi

+ σ 2
yi

, (3)

where N is the number of subjects, x̄ and ȳ are the intra-subject means for two different
algorithms, and σ x and σ y are the associated standard deviations. Assuming the uncertainty
on x̄ and ȳ is Gaussian with zero mean, d2(x, y) follows a χ2

N distribution. For N = 4, results
are considered to be statistically similar (with 95% confidence) if d2 � 9.49, i.e. if d � 3.08.

3. Results

3.1. Training and testing

Figure 5 shows the performance of the proposed method’s LM network in the course of
50 training epochs for a representative experiment. The final MSE after 50 epochs was
7.91 × 10−4 n.u.2.

Figure 5. LM network training: MSE as a function of training epoch. The final MSE after
50 epochs was 7.91 × 10−4 n.u.2 for this representative experiment.
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(a)

(b)

(c)

Figure 6. Measured and estimated knee joint angles for two sets of signals from the same subject:
(a) training results; (b) test results; (c) filtered test results.

Figure 6 shows two time series of estimated knee joint angles from subject A, obtained
during the training and testing processes, respectively. In the test results, a 50 tap (29 ms)
moving average filter was used for reducing the estimation noise. Such filtering removes jitter
in the output signal, which could cause undesirable and unintentional motion of the prosthesis.

3.2. Comparison with other methods

Figure 7 presents a qualitative comparison between the presented algorithm and the methods
proposed by Ferreira et al (2005) and Wang et al (2006). Measured SEMG (channel 1 only) and
electrogoniometer signals from two different subjects are shown (a), (e). For the acquisition
of the data shown in (a), the straps holding the electrode cables were intentionally left loose,
which caused movement artifacts in the SEMG signal (indicated by arrows). Measured and
estimated angle displacements from each subject are shown for the algorithm by Ferreira et al
(b), (f), the EWP-PCA method (c), (g) and the proposed algorithm (d), (h). The absolute
difference between measured and estimated angles is also shown. In the presence of movement
artifacts, the algorithm by Ferreira et al produces large errors (b). The EWP-PCA method and
the proposed algorithm are more robust to such artifacts (c), (d). In the absence of movement
artifacts, the method by Ferreira et al (f) provides lower error levels than the EWP-PCA
algorithm (g). Overall, the proposed algorithm provides lower error levels than the other two
methods (d), (h).

Table 2 presents the measured mean (μ) and standard deviation (σ ) for the error-to-signal
percentage of each subject’s group of test signals, obtained with the proposed method, the
algorithm by Ferreira et al and the EWP-PCA method. The proposed method provided lower
ESP than the other two methods for all four subjects.

Table 3 presents the mean and standard deviation for the correlation coefficient of each
subject’s group of test signals, obtained with the proposed method, the algorithm by Ferreira
et al and the EWP-PCA method. The proposed method provided slightly higher correlation
than the algorithm by Ferreira et al, and considerably higher correlation than the EWP
algorithm.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 7. Qualitative comparison between the presented algorithm and the methods proposed by
Ferreira et al and Wang et al. Measured SEMG and electrogoniometer signals from two different
subjects are shown (a), (e). For the acquisition of the data in (a), the straps holding the electrode
cables were intentionally left loose, causing movement artifacts in the SEMG signal (arrows).
Measured and estimated angle displacements from each of the two subjects, and their absolute
difference (estimation error), are shown for the algorithm by Ferreira et al (b), (f), the EWP-PCA
method (c), (g) and the proposed algorithm (d), (h). The threshold level used for calculating the
statistics of the error events (10◦) is indicated.

Table 4 presents the average number of error events and the average maximum error event
duration and amplitude (an standard deviations) found in each subject’s group of test signals,
for the proposed algorithm, the algorithm by Ferreira et al and the EWP-PCA method. The
proposed algorithm provided a lower number of error events and peak error amplitude. The
three methods presented equivalent maximum error event duration.
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Table 2. Error-to-signal percentage, in % (μ ± σ ).

Ferreira et al EWP-PCA Proposed

Subject A 8.02 ± 4.21 9.45 ± 2.58 6.56 ± 1.85
Subject B 8.18 ± 4.70 7.12 ± 1.22 5.33 ± 1.13
Subject C 6.54 ± 4.36 6.51 ± 4.03 5.77 ± 3.64
Subject D 6.63 ± 3.06 7.54 ± 3.17 5.23 ± 1.47

Table 3. Correlation coefficient (μ ± σ ).

Ferreira et al EWP-PCA Proposed

Subject A 0.75 ± 0.20 0.52 ± 0.20 0.84 ± 0.07
Subject B 0.54 ± 0.27 0.30 ± 0.22 0.61 ± 0.22
Subject C 0.59 ± 0.16 0.27 ± 0.16 0.59 ± 0.90
Subject D 0.71 ± 0.17 0.34 ± 0.19 0.72 ± 0.09

Table 4. Statistics of error events (μ ± σ ).

Number of Maximum error event Maximum error
error events duration (ms) amplitude (degrees)

Ferreira EWP-PCA Proposed Ferreira EWP-PCA Proposed Ferreira EWP-PCA Proposed

Subject A 45 ± 10 252 ± 64 27 ± 5 433 ± 154 441 ± 82 450 ± 206 76 ± 48 98 ± 67 42 ± 11
Subject B 71 ± 15 240 ± 71 32 ± 11 398 ± 105 385 ± 71 377 ± 187 61 ± 49 161 ± 48 30 ± 7
Subject C 34 ± 11 181 ± 63 18 ± 6 719 ± 442 500 ± 293 691 ± 512 47 ± 27 158 ± 69 29 ± 12
Subject D 51 ± 12 192 ± 44 28 ± 8 413 ± 183 400 ± 160 339 ± 132 49 ± 36 130 ± 71 33 ± 11

Table 5. Mahalanobis distance between the proposed method and the algorithms by Ferreira et al
and Wang et al, for each of the evaluated metrics.

Proposed versus Ferreira et al Proposed versus EWP-PCA

Error-to-signal percentage 0.80 1.56
Correlation coefficient 0.48 2.58
Number of error events 3.34 6.38
Maximum error event duration 0.35 0.44
Maximum error amplitude 1.19 3.63

Table 5 presents the measured Mahalanobis distance between the proposed method and
the algorithms by Ferreira et al and Wang et al, respectively, for each of the five metrics
shown in tables 2, 3 and 4. When compared with the algorithm by Ferreira et al, the
proposed method achieved a statistically significant reduction in the number of error events.
When compared with the EWP-PCA algorithm, the proposed method achieved a statistically
significant reduction in the number of error events and maximum error amplitude. Results
were considered statistically significant for d > 3.08 (see section 2.4.4).
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4. Discussion

The presented method is proposed as an improvement to the algorithm by Ferreira et al
(2005). The most important modification is the addition of a feature projection stage—a SOM
network—to the system. The addition of the amplitude histogram to the feature extraction
stage also plays an important role in the algorithm, as the combination of temporal and spectral
features is known to improve the robustness to electrode displacement (Hargrove et al 2008).
Such improvement was observed in some of the signals obtained from one of the subjects
(figures 7(a)–(d)).

The proposed method achieved better results than the algorithms by Ferreira et al and Wang
et al for all the quantitative metrics used in this work, except for the duration of error events
(table 4). One possible reason is noise in the feature space (AR and histogram coefficients).
While the feature projection stage is able to reduce the amplitude of such variations, their
duration may remain unchanged.

The maximum error amplitudes measured with the proposed method are considerably
reduced when compared to the results using the other two algorithms; however, they are
still large (table 4). Nevertheless, this may not be a significant issue, as short duration error
events are unnoticeable to the leg prosthesis, due to the system’s mechanical inertia. These
short duration error peaks may be caused due to noise in the feature space, and/or by an
insufficient number of neurons in the SOM network and in the LM network’s hidden layer.
This problem may be addressed by increasing the number of neurons, by increasing the
number of SEMG signals and/or adding other variables associated with leg proprioception
(e.g. accelerometers). These approaches would result in increased computational network
complexity and convergence time. Alternatively, error peaks may be avoided by increasing
the forgetting factor of the AR/RLS algorithm and the window length of the histogram.
However, this approach would increase the response time of the prosthesis.

The accuracy of the proposed method in the presence of transient data may be improved
using time-frequency and time-scale feature projection (e.g. wavelets, short-time Fourier
transform) (Englehart et al 2001). However, these approaches are more computationally
intense than the combination of AR coefficients with an amplitude histogram, as proposed in
this work, and would also affect the networks’ complexity. Furthermore, time-domain and
AR features have been shown to outperform time-frequency features for stationary or slowly
changing data, and to provide equivalent results for steady-state SEMG signals (Huang et al
2005).

One important aspect to consider when designing systems for estimation of user motion
intention based on physiological measurements is overtraining. It is expected that the validity
of the trained models is limited only to a given period of time. Such period may be made
shorter due to overtraining. In all methods investigated in this paper, the performance is not
expected to be sustained for days, or even for a few hours. This motivates the use of other
type of sensors on the prosthesis, which may potentially allow parameter adaptation during
the use of the prosthesis by the patient. For example, microelectromechanical gyroscopes and
joint motion sensor may be used for measuring the angular velocity of the knee joint. The
integration of these data can be used to obtain an estimate of the knee joint angle, which can
be used to make small corrections of the neural network coefficients in real time.

5. Conclusion

This work introduces an algorithm for knee joint angle estimation from SEMG signals, which
may be used for myoelectric control of transfemoral leg prostheses. The proposed method



Estimation of the knee joint angle from SEMG signals for active control of leg prostheses 945

improves the algorithm originally presented by Ferreira et al (2005), by adding a feature
projection stage (a SOM network) and by incrementing the feature extraction stage with a
signal amplitude histogram. Feature extraction now combines time-domain (histogram) and
frequency-domain (AR coefficients) features. Pattern classification is still performed using a
Levenberg–Marquardt multi-layer perceptron neural network, but this is now more efficient
due to the dimensionality reduction provided by the SOM network.

The improved method was quantitatively compared with the original algorithm and with
the EWP-PCA method. The proposed algorithm presented higher correlation, lower error-to-
signal ratio and peak error amplitude, and fewer error events.

We have shown that it is possible to continuously decode knee position from SEMG signals
collected from a generalized electrode placement in an able-bodied subject. Future work will
be aimed at (i) reducing noise, (ii) evaluating the method in amputees, (iii) optimizing the
code for its execution in real time, and (iv) adding accelerometer sensors and adaptive Kalman
filtering to the system. The latter will not only improve the system’s accuracy at estimating
the knee joint angle, but also allow the myoelectric control algorithm to estimate the angular
velocity of displacement of the knee joint.
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(Vitória, Brazil, 20–22 February 2006)

Smith R J, Tenore F, Huberdeau D, Etiene-Cummings R and Thakor N V 2008 Continuous decoding of finger
position from surface EMG signals for the control of powered prostheses Proc. 30th Ann. Int. Conf. Engineering
in Medicine and Biology Society (Vancouver, Canada, 20–24 August 2008) pp 2393–6

Sommerich C M, Joines S M, Hermans V and Moon S D 2000 Use of surface electromyography to estimate neck
muscle activity J. Electromyogr. Kinesiol. 6 377–98

Vaseghi S V 2000 Advanced Digital Signal Processing and Noise Reduction 2nd edn (New York: Wiley)
Wang G, Wang Z, Chen W and Zhuang J 2006 Classification of surface EMG signals using optimal wavelet packet

method based on Davies–Bouldin criterion Med. Biol. Eng. Comput. 44 865–72
Zardoshti-Kermani M, Wheeler B C, Badie K and Hashemi R M 1995 EMG feature evaluation for movement control

of upper extremity prosthesis IEEE Trans. Rehabil. Eng. 3 324–33
Zhao J, Xie Z, Jiang L, Cai H, Lio H and Hirzinger G 2006 EMG control for a five-fingered interactuated prosthetic

hand based on wavelet transform and sample entropy Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(Beijing, China, 9–15 October 2006) pp 3215–20

http://dx.doi.org/10.1109/TBME.2005.856295
http://dx.doi.org/10.1109/10.204774
http://dx.doi.org/10.1109/10.52324
http://dx.doi.org/10.1109/TMECH.2007.897253
http://dx.doi.org/10.1016/S1050-6411(00)00033-X
http://dx.doi.org/10.1007/s11517-006-0100-y
http://dx.doi.org/10.1109/86.481972

	1. Introduction
	2. Methods
	2.1. Data acquisition and pre-processing system
	2.2. Subjects and the data acquisition protocol
	2.3. Knee joint angle estimation algorithm
	2.4. Quantitative evaluation

	3. Results
	3.1. Training and testing
	3.2. Comparison with other methods

	4. Discussion
	5. Conclusion
	Acknowledgments
	References

