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Abstract: The motivation of this work is to investigate two technological AI paths, evaluate the performance, 

and discuss the results. Using a covid-19 chest X-ray images databank, we address the two distinct 

experiments to this problem: (1) an investigation of feature extraction and classification using machine 

learning algorithms and (2) an approach based on transfer learning used in state-of-the-art applications. For 

the implementation of our proposal (1), an integrated framework consisting of 25 algorithms with different 

characteristics was developed to extract features from chest X-ray images. Following this path, we seek to 

focus on the spatial spectral signatures of shape, texture, local and global statistical quantities. The extraction 

of features based on information in Fourier and wavelet space-frequency domain was also implemented as 

part of the framework. On the other hand, several transfer learning CNN’s were also used to evaluate 

performance and to compere to the first technological path results. Furthermore, the performance of other 

results reported by various other works are provided. The comparative performance evaluation demonstrated 

that the two concepts for a computational intelligence tool can produce very good results even working in 

high-dimensional vector spaces.  

HIGHLIGHTS 
 

• An integrated framework for feature extraction in medical images is proposed. 

• It is investigated the automatic diagnosis in chest X-ray images using several algorithms.  

• It is show that performance is increased when different feature extraction algorithms are merged. 

• Experiments were performed with fourteen different IA algorithms and the results were compared. 
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INTRODUCTION 

Humanity was surprised by the worldwide viral contamination that is now simply called COVID-19. This 
pandemic has caused a seemingly endless number of deaths and exposed the fragility of our healthcare 
institutions throughout the planet [1]. Population isolation and early diagnosis can reduce viral spread. 
Immunizing the population through mass vaccination seems to be the strongest way to overcome this 
pandemic. 

Since the end of 2019, the symptoms of COVID-19 have been explored and reported in the scientific 
literature. A large number of cases suffer acute respiratory syndrome [2]. The disease can be detected mainly 
by two types of tests: through the Reverse Transcription Polymerase Chain Reaction (RT-PCR) and 
serological tests (antibodies present in the blood). During this pandemic, radiologists have learned and 
gained experience from the multitude of situations they must assess [3-4].  

To help healthcare systems and hopefully mitigate this pain that has befallen the planet, there is a strong 
motivation to invest in research and development automatic tools to support medical diagnosis [3]. Diagnosis 
can also be made by analyzing computer tomography (CT) images and/or by chest X-Ray images. This 
procedure can be performed by a radiologist as well as by an automatic tool to support medical diagnosis [3-
7]. The resolution, texture quality, and discrimination of spectral components in CT images are superior to 
those of X-Ray [3-4]; thus, this approach allows a more accurate diagnosis by a radiologist or even by 
intelligent algorithms to support the diagnosis. However, the CT exam is more expensive and difficult to 
perform in many parts of the world. X-ray-based radiography found throughout the world is relatively 
inexpensive. Therefore, COVID diagnosis based on Chest X-ray images is the subject covered in this work. 
Two technological paths are investigated in this work: (1) grouping of features computed in different 
algorithms, and classification using machine learning algorithms, and (2) CNN transfer learning solution. The 
performance of the two approaches is shown and discussed. 

We selected a set of works that we believe it reports the state of the art, although many other good 
articles can be found on this subject [8–41]. The scenario of deep learning research involves images as input 
information through convolutional neural networks (CNN). This can also be observed in research that 
addresses the diagnosis of COVID-19. Many works are found based on pre-trained model with transfer 
learning using known networks: AlexNet [38], MobileNetV2 [8, 20-21, 31], NASNet [11], Inception – V3 [8, 
25], DarkNet – 53 [28], DenseNet – 121 [9, 11, 17, 25, 39], DenseNet – 201 [8, 14, 21], DenseNet – 210 [38], 
Inception – V4 [31], InceptionResNet –V2 [8, 31], ReconNet [25], ResNet – 8 [18], ResNet16 [18], ResNet – 
18 [14-15, 17, 27, 37-38], ResNet – 50 [8, 13, 15, 22, 24, 29, 41], ResNet –101 [17], Xception [8, 11], 
EfficientNet [11], SqueezeNet [14-15, 20], VGG – 16 [10–13, 17, 27, 31, 40], VGG – 19 [8, 30]. Works 
employing custom CNNs are also available [8, 10, 19, 25, 27, 37, 39].  

For many solutions, CNNs can carry out the entire process up to classification [7, 9, 10–15, 17–19] or 
they can be part of a system that performs feature extraction [8, 10, 16, 20, 22–27, 29, 30, 32, 35, 38, 40, 
41]. CNNs are also used in hybrid systems integrated with classic classifiers, such as Logistic Regression 
(LR) [30, 35], Support Vector Machine SVM [20–26, 33, 35, 38], k-Nearest Neighbor (K-NN) [20-21, 23, 25, 
30, 35, 38], Naïve Bayes [21], Random Forest [21, 23, 30], Multilayer Perceptron (MLP) [21, 25], Decision 
Tree [23, 36], Adaptive Boosting (AdaBoost) [23, 35], Extreme Gradient Boosting (XGBoost) classifier [30], 
and Stochastic Gradient Descent (SGD) [35]. Deep learning techniques addressing Long Short-Term 
Memory (LSTM) network [31-32], and even an approach using CNN integrated with LSTM [42] is also found. 
In addition, COVID diagnosis methodologies have been reported that employ image features extraction 
based on radiomics, image statistics, texture, and shape integrated with classifier, such as Ensemble Bagged 
Model (EBM) trees, K-NN, and SVM for classification [33-34]. Dimensionality reduction [25, 29, 39], feature 
selection [31, 33, 35], preprocessing as image resize [16, 17, 39-40], histogram equalization [39-40], 
segmentation [16, 19, 33, 37, 40], data augmentation [9, 17, 33, 39-40], and denoising [16] are addressed in 
many methodologies. 

The data need to show the spectral signatures/patterns that characterize the studied problem. In our 
proposal, to extract features from chest X-ray images, we ignore the dimensionality problem of as the 
limitation. Even for machine learning algorithms, the reduction of complexity was not taken into account [25, 
29]. 

Following this line of reasoning, we address to solve the problem in a higher order vector space, and the 
dimension was removed as a restriction of the investigated problem. Furthermore, many machine learning 
algorithms perform well in large dimensional spaces. Approaches that use Bayesian inference suffer from 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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badly conditioned covariance matrix. However, most of the time it is possible to consider the random variables 
as independent and simplify the problem without significantly affecting algorithm performance. 

We propose a scenario with a large number of features to be extracted (up to 4000 features) based on 
statistics, shape textures, and frequency domain. Results for COVID diagnosis were obtained in the chosen 
scenarios based on machine learning classification techniques. Furthermore, we provide results using pre-
trained CNNs to compare to the machine learning techniques obtained and techniques addressed in other 
works. 

This paper is organized as follows. The methodology adopted in the present work is shown in the next 
section. The results are presented in section 3. In section 4, the obtained results and the comparative 
performance evaluation are discussed. Section 5 provides the conclusions of the present work. 

METHODS 

Transfer learning based on CNN pre-trained models has been very successful in COVID-19 
detection/diagnostic tools [8–41]. However, these methods require extensive computational resources such 
as GPUs (Graphics Processing Units), cloud processing, or specialized cluster hardware. Our work 
demonstrates other technological paths that can achieve similar performance, without costing so much 
computational effort. Figure 1 illustrates two paths taken in the construction of a computational medical 
diagnostic tool for COVID-19. In the first step of the block diagram of Figure 1, the dynamic range of the X-
ray image is expanded to [0, 255] and then resized to (224 × 224) pixels. The thoracic X-ray images with its 
pixels represented in a gray scale are converted to an RGB format. One of the paths involves the 
development of a framework for feature extraction and classification based on machine learning techniques, 
and the other is based on transfer learning through pre-trained CNNs to produce a diagnosis. These two 
technological paths will be detailed below. 

Overview of the proposed Feature Extraction Framework (FEF) 

All In the block diagram shown in Figure 1 there are two solutions to the classification problem: one 
through the use of a feature extractor in conjunction with machine learning techniques and, the second 
solution, through the use of deep learning, more specifically pre-trained convolutional networks. In this 
section, an overview of the feature extraction framework is presented. 

Figure 2 shows a block diagram of the Feature Extractor Framework (FEF). This is a flexible platform 
that allows the inclusion of other future feature extraction algorithms. The Figure 2 present the various 
algorithms that are part of it. The FEF input can be a grayscale or color image bank. In the way of RGB color 
images, there are algorithms for build histograms and global image statistics. RGB color space can be 
converted to HSV or CIELab color space. Features can be computed in any color representation space or in 
more than one if so configured. 

In the path where we have the grayscale representation of the image, there is another scenario of global, 
local and texture processing algorithms. The images can be requantized by using a linear or k-Means based 
quantizer. The modules that appear at the top just below in Figure 2 present the cartesian moments, central 
moments, moments-HU and moments-Log-Hu. They can be configured together or individually. For example, 
if you specify the calculation of the log-Hu-moments (which are 7 in number) you will automatically need to 
calculate all the other moments whose blocks are connected in series in Figure 2. Table 1 shows the number 
of features computed in each algorithm. 

Cartesian and central moments were calculated up to order n = 3 [43]. This produces (n+1)2 = 16 
moments in each case. If the option "select moments" is chosen, only the five moments of order (0,1), (1,0) 
(1,1), (0,2), (2,0) will be returned. Seven invariants moments (Hu-moments) and seven and Log-Hu-moments 
can be computed, respectively. The invariant moments have been widely applied to image pattern recognition 
in a variety of applications due to their invariant characteristics in image translation, scaling and rotation [43–
44]. Histograms can produce up to a maximum of 255 features per band (color images count the three bands). 
The statistical features, which are a total of 32, are global spatial quantities computed directly on the image 
[45].  

 
We define the digital image as: 
 

   [𝑛, 𝑚], 0 ≤ 𝑛 ≤ 𝑁 − 1 and 0 ≤ 𝑚 ≤ 𝑀 − 1                                                                                    (1) 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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where N defines the number of lines, M defines the number of columns of the image and x[.,.] informs the 
pixel amplitude value, x ∈ [0, 255]). The Probability Mass Function (PMF) is computed based on the relative 
frequency of the pixel amplitude, basically the histogram normalized by the number of pixels.  
 

 
 

Figure 1. Framework block diagram. Note that there are two paths after the pre-processing module: in the path on the 
left shows the image feature extracting, these quantities are the inputs of the machine learning algorithms; the path on 
the right shows the solution through pre-trained convolutional networks (transfer learning). At the end of each 
technological conception, performance is evaluated according to objective metrics. 

Local quantities such as those of Haralick descriptors [46–47], the Zernike moments [48-49], the 
Histogram of Oriented Gradients (HOG) [50], the Local Binary Pattern (LBP) [51] and the Local Directional 
Patterns (LDP) [52-53] were also computed. The Haralick descriptors commonly used in image analysis are 
texture features and are computed from a gray scale image representation. The Haralick texture descriptors 
are computed from a matrix that counts the co-occurrence of neighboring gray levels in the image (GLCM - 
Gray Level Co-occurrence Matrix) [53]. The GLCM matrixes counts the number of occurrences of the 
neighboring pixel values relative to the reference pixel. This is evaluated for all 4 directions {0, π/4, π/2, and 
3π/4 radians}. See the example shown in Figure 3, in the direction of 0 radians if we take the reference pixel 
with value equal to 3, it is observed that the value with amplitude 1 immediately to the right occurs twice. This 
means that we have two occurrences of the pair {3, 1}. This information is indicated in the respective gray 
levels co-occurrence matrix. 

 
The Zernike moments and the Histogram of Oriented Gradients (HOG) are descriptors that focus on the 

shape of an object. The Zernike moments, proposed by Frits Zernike [48], are based on a set of complex 
polynomials that form a complete orthogonal basis. Similar to Hu invariant moments, the Zernike moments 
can also be used to describe the shape of an object, however, as the Zernike polynomials are orthogonal to 
each other, there is no redundancy of information between moments. To these features were added 
Histograms of Oriented Gradient (HOG) [50]. The HOG is commonly used in computer vision and image 
processing for object detection purposes. The HOG shape features measure the intensity of the gradients or 
edge directions in an image cell. In this work, a cell is considered 32 × 32 pixels, but it is configurable. 

 
The LBP [51] algorithm is characterized by being a texture operator that labels the pixels of an image, 

limiting the process to a neighborhood of each pixel. The result is encoded as a binary number [51]. The LDP 
algorithm, which has been successfully applied in face identification [52], uses changing the magnitude of 
the gradient in a specific direction around pixels to encode the local texture. Instead of comparing the intensity 
value of neighboring pixels, this method compares the gradient magnitude of the neighboring pixel along a 
specific direction and encodes it in the same way as LBP. In Figure 4 is shown a LDP example using Chest 
X-Ray as input image. Usually, the histogram is calculated from the LDP. However, other statistical 
parameters can be proposed. 

The features based on texture matrixes [53] are computed from Gray-Level Co-occurrence Matrices 
(GLCM), Gray Level Dependence Matrix (GLDM), Gray-Level Run Length Matrices (GLRLM), Gray-Level 
Size Zone Matrix (GLSZM) and Gray Tone Difference Matrix (NGTDM). 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Nascimento, F.A.O.; et al. 5 
 

 
Brazilian Archives of Biology and Technology. Vol.66: e23230609, 2023 www.scielo.br/babt 

 

 
 

Figure 2. Feature extractor block diagram. Each block corresponds to a specific algorithm. The blocks in gray color 
refer to the algorithms applied in gray-levels images. The blocks in blue consider the three bands color images. The 
features computed in each algorithm can be concatenated into a single output file. 

The addition of global features computed in the frequency domain are also proposed in the 2D-Discrete 
Fourier Transform (2D-DFT) domain and in the 2D-Discrete Wavelet Transform (2D-DWT) domain. For 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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instance, we propose to investigate the frequency domain quantities such as the amount of information 
distributed in subband energy for the 2D-DFT. To construct the energy distribution features in the frequency 
domain, a two-dimensional FFT (Fast Fourier Transform) was used, and the magnitude spectrum (squared) 
was segmented into a set of circular disks. Each pair of circular disks are delimited by a lower and an upper 
frequency, corresponding to a subband in the discrete Fourier transform domain. The 2D-DFT can be 
computed by 

𝑿[𝑘, 𝑟] =
1

𝑁𝑀
∑ ∑ 𝑥[𝑛, 𝑚]𝑒−

2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑚=0

𝑒−
2𝜋
𝑀

𝑟𝑚

𝑁−1

𝑛=0

                                                                      (2) 

                Table 1. Feature extractor framework quantity features produced. 

Algorithms Number of features 

cartezian moments {(0, 1), (1, 0), (1, 1), (0, 2), (2, 0)}  5 

cartezian moments - moments order (default:3) up to 64 

central moments: {(0, 1), (1, 0), (1, 1), (0, 2), (2, 0)}  5 

central moments of order - moments order (default:3) up to 64 

invariants Hu moments  7 

invariants Log-Hu moments  7 

gray-scale image histogram (default: 64 bins) up to 256 

BRG image color space histogram (default: 64 x 3 = 192 bins) up to 768 

HSV image color space histogram (default: 64 x 3 = 192 bins) up to 768 

CIELab image color space histogram (default: 64 x 3 = 192 bins) up to 768 

Gray-Scale Statistics  32 

RGB Color Statistics 96 

HSV Color Statistics 96 

CIELab Color Statistics  96 

Zernike Moments shape descriptors 25 

Local Binary Patterns (LBP) descriptors (default: 16 features) up to 256 

Local Directional Patterns (LDP) descriptors (default: 16 features) up to 256 

Histograms of Oriented Gradients (HOG) (128 features) up to 512 

Haralick texture descriptors (4 directions x 13) 52 

Gray-Level Co-occurrence Matrices (GLCM) (4 directions x 27) 108 

Gray Level Dependence Matrix (GLDM)  20 

Gray-Level Run Length Matrices (GLRLM) (4 directions x 20) 80 

Gray-Level Size Zone Matrix (GLSZM) 20 

Gray Tone Difference Matrix (NGTDM)  5 

frequency energy from linear subband spectrum (default:16) up to 64 

frequency energy from logarithmic subband spectrum up to 64 

wavelet transform decompositions levels energy image size log2 function  

 

 
 
Figure 3. It shows the GLCM (Gray-Level Co-occurrence Matrices) computed in the 4 directions: 0, π/4, π/2, and 3π/4 
radians. GLCMs have dimension NxN, where N is the number of bits with which each pixel is represented. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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For illustrative purposes, Figure 5 is an example where the amplitude spectrum is represented in 
decibels. In the two-dimensional DFT (2D-DFT), the coefficient 𝑿[0,0] is centered in Figure 5, and the 2D-
DFT is interpolated (this leads to Discrete-Space Fourier Transform – DSFT) for didactic effects. 

 

𝑿[𝑘, 𝑟]𝑑𝐵 = 20 log10|𝑿[𝑘, 𝑟]|                                                                                          (3) 

 
where 0 ≤ 𝑘 ≤ 𝑁 − 1 and 0 ≤ 𝑟 ≤ 𝑀 − 1. The energy of the information stored in each band 𝐵𝑘 is measured 
by computing 

𝐸𝑘 = ∑ |𝑿[𝑘, 𝑟]|2

𝑘,𝑟∈𝐵𝑘

                                                                                        (4) 

In Figure 5 the band 𝐵𝑘 projected on the frequency axes is emphasized. Note that since the Fourier 
transform modulus is symmetric to any of the frequency axes, it only suffices to calculate the energies over 
one of the quadrants (the gray area in Figure 5). In case 𝑁 ≠ 𝑀 the curve that defines the limits of each 

subband describes an ellipse, otherwise if 𝑁 = 𝑀, the subband limit curve defines a circle. The DC coefficient 
𝑿[0,0] is not included in the energy calculation. Two possibilities were implemented, in the first approach the 
bandwidth varies uniformly and in the second it varies logarithmically. 

In the 2D-DWT domain, features are calculated as a function of the information energy at the transform 
decomposition level. The feature extraction framework (FEF) can be configured to produce up to 4500 
features. 

After building the database corresponding to the feature set for all images, features that are not random 
variables are eliminated (for example, if it is a constant value), as shown in Figure 2.  
All computed features can now be concatenate and save as one data file.  Feature selection and scaling 
algorithms are also included in the platform. 

Observe that the set of features computed from many different algorithms are then placed together. 
These features concern to local and global quantities. Some features preserve the texture spectral signature, 
other are associated with shape. Some are obtained from the space domain and others from the frequency 
domain. We would like to show that this is an interesting strategy to obtain a set of features. Furthermore, 
therefore, an improvement in the performance of machine learning techniques. 

 
 
 

                  
 
a) Chest X-Ray of COVID-19 diagnosis            b) LDP obtained from the chest X-Ray on the left. 

 
Figure 4. Local Directional Patterns (LDP) example. The output of the LDP algorithm generates a binarized image as a 
function of the local texture behavior. 
 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Figure 5. Frequency domain representation. The magnitude of the Fourier transform as a function of horizontal and 
vertical frequencies is represented in logarithmic terms (deciBeis) for ease of visualization. 

Learning Framework 

Two learning approaches were investigated (Figure 1). The first approach uses seven machine learning 
algorithms involving the data features file built by the feature extractor, and the second, is based on transfer 
learning through pre-trained CNNs. We also used seven pre-trained CNNs models. 

In the second approach to the problem, as shown in Figure 1, pre-trained convolutional neural networks 
(CNN) were addressed. In this case, the chest radiography image dataset was used as input to the 
classification problem. Seven distinct algorithms were also investigated: ResNet, InceptonResNet, 
DenseNet, EffivientNet, VGG19, Xception, and MobileNet. 

RESULTS 

The following subsections will describe the input dataset used and the two scenarios investigated, with 
two or three diagnosis classes. 

Input dataset description 

In this work, the set of X-ray images used was extracted from different sources, available from the 
KAGGLE website version 4, with an update in March/06/2021. This image database contains 3616 
COVID-19 positive cases, 10,192 normal X-ray images, 6012 X-ray images with lung opacity diagnosis, 
and 1345 viral pneumonia cases. All images are disposed in Portable Network Graphics (PNG) file 
format with a resolution of 299 × 299 pixels. 

The 3616 images of COVID-19 positive cases were extracted from the Banco digital de Imagen 
Médica de la Comunidad Valenciana (BIMCV) as result of the Pathology Detection in Chest Radiology 
(PADCHEST) project; from the Institute of Diagnostic and Interventional Radiology, Hannover Medical 
School, Hannover, Germany; from the Società italiana di Radiologia Medica e Interventistica (SIRM); 
from the Eurorad COVID-19 Data Repository; and other publicly available sources of COVID-19 positive 
patients. In addition, a total of 6012 images diagnosed with lung opacity, along with 8851 normal chest 
radiograph images, were collected from the Radiological Society of North America (RSNA) database. 
Another 1341 normal X-ray images and the 1345 images diagnosed with viral pneumonia are pediatric 
images and were taken from a collection of X-ray images with 8 different pathologies called ChestX-
ray8. An example with chest X-ray images with different diagnoses is shown in Figure 6. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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a) Normal 

 
b) COVID-19 

 
c) Viral pneumonia 

Figure 6. Chest X-Ray images example. 

In this work, we investigate two distinct scenarios involving the diagnosis of thoracic X-Ray images. In 
these scenarios, the algorithms need to discriminate between two and three distinct classes. The same 
preprocessing algorithm (Figure 1) was employed in the two scenarios, with 10% of the total instances used 
for technique performance evaluation and 90% for training and/or validation. The metrics used to assess the 
specific case of the two classes are different from the other scenarios studied, as will be detailed.  

Table 2 shows the feature extractor configuration for the performance evaluation with the machine 
learning algorithms. The machine learning algorithms were implemented in Python language using Skit-learn 
libraries with the default classifier configuration. The following algorithms were chosen: Linear Discriminant 
Analysis (LDA), XGBoost Classifier (XGB), Histogram-based Gradient Boosting (HGB), Bagging Classifier 
(BC), Ensemble Extra-Tree Classifier (ETC), Gradient Boosting (GB) and Random Forest (RF). The set of 
chose machine learning were implemented to run in parallel way. It means that all algorithms were under the 
same training and testing conditions to produce the prediction results.  

For all machine learning experiments, the model training and evaluation procedure was randomly 
repeated 30 times. The feature extractor framework was configured as shown in Table 2 to produce initially, 
481 features. After eliminating the non-random variables and applying the feature selection algorithm based 
on Pearson's coefficient, 432 random variables remained. Features were discarded when the absolute value 
of the Pearson's coefficient is greater than 0.75. Furthermore, in the experiments carried out, no feature 
scaling was applied. 

For all machine learning experiments, the model training and evaluation procedure was randomly 
repeated 30 times. The feature extractor framework was configured as shown in Table 2 to produce initially, 
481 features. After eliminating the non-random variables and applying the feature selection algorithm based 
on Pearson's coefficient, 432 random variables remained. Features were discarded when the absolute value 
of the Pearson's coefficient is greater than 0.75. Furthermore, in the experiments carried out, no feature 
scaling was applied. 

In each machine learning simulation (for a total of 30), a dataset for training and a dataset for 
performance evaluation were randomly selected for each simulation. The presented results correspond to 
the minimum, the average, and the maximum of the obtained performances. Using the pre-trained CNNs 
models, the approach was different, at the end of training, the best epoch validation performance model 
weights were chosen. The following networks based on transfer learning were evaluated: ResNet, 
InceptonResNet, DenseNet, EffivientNet, VGG19, Xception, and MobileNet. 

Hyperparameters 

The machine learning algorithms were implemented using Skit-Learn [54] in Python programming 
language. For the boosting-based classifiers: Gradient Boosting (GB), Histogram-based Gradient Boosting 
(HGB), and XGBoost Classifier [55] used in the experiment, the learning rate was set to 0.15. It was used the 
log-loss function to use to be optimized and the boosting process maximum number of iterations was set to 
100. For Linear Discriminant Analysis (LDA), a Singular Value Decomposition (SVD) solver was chosen, 
since we are working with a large number of features. In this case the covariance matrix is not calculated. 
The determinant of this matrix tends to zero as the number of variables with statistical dependence increases. 
The absolute threshold for a singular value of a variable to be considered significant is set to 1x10-5. The 
Ensemble Extra-Tree Classifier (ETC) was used with the number of trees in the forest equal to 180, the 
maximum depth of the tree 50 and log-loss was set as optimization criterium. The Random Forest (RF) 
classifier was configured as same as Ensemble Extra-Tree Classifier. The ensemble Bagging Classifier (BC) 
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was configured to use the decision tree classifier as base estimator. The number of estimators was set to 15. 
All other hyperparameters used are scikit-learn defaults [54]. 

On the other hand, in the proposed CNN experiments, all pretrained networks used the first-order 
gradient-based optimization algorithm of stochastic objective functions: ADAM (Adaptive Moment estimation) 
[56]. The initial learning rate was set to 1x10-3 and “softmax” activation function was chosen. Binary-
crossentropy was used as loss function for binary classification model and categorical-crossentropy for three 
classes experiment. To improve performance when the metric has stopped the convergence, the system was 
configured with a reduce learning rate strategy. The factor by which the learning rate was reduced was set 
to ½. The minimum learning rate accepted was 1x10-6. The system was also configured for early stopping in 
order to avoid overfitting by monitoring the validation loss. 

The two-classes scenario 

For the performance evaluation when there are two classes to discriminate, the following parameters 
were used as a metric: Accuracy, Specificity, Sensitivity, and Precision. The Accuracy (Ac) is defined as 

𝐴𝑐 =  
𝑇𝑝 + 𝑇𝑛

𝑃 + 𝑁
=

𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
                                                                     (5) 

The Specificity (Sp), selectivity or the true-negative rate (TNR) can be written as 

𝑆𝑝 = 𝑇𝑁𝑅 =  
𝑇𝑛

𝐹𝑝 + 𝑇𝑛
=

𝑇𝑛

𝑁
                                                                              (6) 

The Sensitivity (Se), recall, hit-rate or the true-positive is formulated as 

𝑆𝑒 = 𝑇𝑃𝑅 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
=

𝑇𝑝

𝑃
                                                                           (7) 

The Precision (Pr) is defined as 

𝑃𝑟 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
                                                                                   (8) 

where P is the total of positives, N is the total of negatives, Tp is the number of true positives, Tn is the number 
of true negatives, Fp is the number of false positives and Fn is the number of false negatives. 

 

                                 Table 2. Feature extractor framework experiment configuration. 

FEF configuration Number of features 

Cartesian moments 16 

Central moments 16 

Hu-moments 7 

Log-Hu-moments 7 

Gray scale histogram 64 

Gray scale statistics 32 

Gray-level co-occurrence matrices (GLCM) 108 

Zernike moments 25 

Histogram of Oriented Gradients (HOG) 128 

Local Binary Patterns (LBP)  32 

Local Directional Patterns (LDP)  32 

Frequency domain linear-subband energy 16 

Scaling features algorithm not used 

Selection feature algorithm correlation: 0.75 
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  Table 3. FEF-MLF performance evaluation for Covid-19 vs. Pneumonia Viral. 
Algorithm Accuracy Specificity Sensitivity Precision 

 Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. 

HGB 100.0 99.25 98.39 100.0 99.36 98.38 100.0 98.96 97.78 100.0 98.27 95.38 

LDA 100.0 99.17 98.39 100.0 99.51 98.64 100.0 98.25 95.65 100.0 98.70 96.15 

XGB 98.83 98.71 98.60 99.50 99.43 99.35 97.22 96.78 96.35 98.63 98.42 98.21 

GB 99.60 98.23 97.38 99.73 98.31 97.32 100.0 98.02 95.45 99.19 95.43 92.31 

ET 99.40 98.08 96.57 99.20 97.61 95.84 100.0 99.46 97.69 97.54 93.44 88.43 

RF 99.19 97.75 96.17 99.20 97.32 95.49 100.0 99.02 97.64 97.54 92.61 86.78 

BC 98.79 96.63 95.36 98.94 96.68 94.52 100.0 96.55 92.70 96.72 90.90 84.09 

                              Table 4. TFL performance evaluation for Covid-19 vs. Pneumonia Viral. 
Algorithm         Acc. Spec.       Sens.  Prec. 

Inception V3 100.0 100.0 100.0 100.0 

MobileNet 99.80 100.0 99.72 100.0 

DenseNet 121 99.80 99.36 100.0 99.71 

XceptionNet 99.60 99.24 99.73 99.73 

EfficientNet B7 99.60 99.73 99.24 99.24 

VGG 19 99.40 98.43 99.73 99.46 

InceptionResNeT V2 98.99 99.46 97.62 98.40 

            Table 5. Performance evaluation for Covid-19 vs. Pneumonia Viral results presented by others works. 

Publication Method Acc. Spec. Sens. Prec. 

Panetta et al. [39] Fibonacci Patterns 99.14 99.26 98.44 95.45 

Panwar et al.  [11] nCOVnet – CNN 97.62 78.57 97.61 _____ 

Sheykhivand et al. [32] CNN –LSTM (II) 96.90 96.80 97.10 96.75 

Tamal et al. [35] FE-ML (SVM) 95.20 85.00 99.60 _____ 

Karakanis  et al. [19]  CNN – RESNET8 98.70 98.30 100.0 _____ 

 

In the two-classes scenario we have the classification between COVID-19 diagnosis versus viral 
pneumonia. Table 3 presents the results using the extracted features in conjunction with machine learning 
algorithms, Table 4 shows the performance results using the Pre-trained CNNs and in Table 5 is shown the 
results obtained from other works. 

Scenario with more than two classes 

In scenarios with more than two classes, the confusion matrix is used. The main diagonal of the confusion 
matrix indicates the ratio between the true positive rate of a class for the total instances of the respective 
class. 

𝑃𝑟[𝑘] =  
𝑇𝑝[𝑘]

𝑃[𝑘]
                                                                                                    (9) 

The average accuracy is computed by the weighted average of the positive rate of each class. 

𝐴𝑐 =
∑ 𝑇𝑝[𝑘]𝑁

𝑘=1

∑ 𝑃[𝑘]𝑁
𝑘=1

                                                                                                (10) 
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In the three classes scenario we have to identify the correct class between COVID-19 diagnosis versus 
Viral Pneumonia versus Normal. Table 6 contains the results using the extracted features dataset in 
conjunction with machine learning algorithms and the results obtained using pre-trained CNNs. In Table 7 is 
presented, for a comparative analysis, the results obtained from other works. Finally, in Figure 7 presents 
one example of the confusion matrix evaluated on the test dataset for MobileNet approaching. 

DISCUSSION 

In the last 3 years the SARS-COVID-19 virus has been responsible for a pandemic. COVID-19 caused 
a fatal disease that spread rapidly around the world. Since the beginning of that pandemic the chest 
radiography (2D) has been an important screening tool that features a non-invasive approach. Addressing 
machine learning and deep learning approaching, technology has struggled to overcome the shortage of 
health professionals, especially when screening for the disease. In our proposed experiment, several 
machine learning algorithms were used for computer-assisted identification of COVID-19. To highlight that is 
a subject of extreme global importance, the authors of [57] presented a survey of 1715 publications on the 
use of machine learning and deep learning techniques for disease screening of which, 265 articles were 
selected for construction of their review work. 

 

  
                      (a)                                 (b) 

 

Figure 7. Confusion matrix based on dataset for MobileNet: (a) two-classes scenario; and (b) three-classes scenario. 

X-ray is a low-cost, rapidly produced exam and considered the gold standard for identifying changes in 
bones, lungs, heart and spinal cord [58-59]. Furthermore, it is used globally in hospitals and clinics, x-rays 
are undoubtedly the radiographic medium that produces the most exams. According to the cited references, 
researchers involved with the subject show greater interest in the CNN architecture in the investigation of 
COVID-19. Thinking about the sensitivity of medical data, in our work we were careful to use a database with 
21,165 (see section Input dataset description) cases available in Kaggle and that gathers x-ray images from 
8 different repositories, usually without adopting a protocol as to the orientation of the anteroposterior (AP) 
and lateral (lateral) incidences.  Even so, with the contraposition of image acquisition, this number of cases 
is considered sufficient to avoid overfitting and consequently high false-positive values. 

As shown in Table 3 and Table 4, the results presented in scenario 1 presents a good performance for 
both approaches (1) feature extraction in conjunction with machine learning techniques for classification and 
(2) transfer-learning based on pre-trained CNN networks. 

CNNs have a very large degree of freedom that makes it possible to generalize a solution. On the other 
hand, they require a very large computational effort when compared to other machine learning techniques. 
Pre-trained CNNs networks have shown a very good classification performance [8–39]. We also try to show 
that good results in COVID – 19 can be obtained without adding too much to the pre-trained network. In our 
example, a single model was conceived for all the evaluated CNN networks used, and one more layer was  
added to the existed pre-trained model. Very good results were obtained, as well as the best results reported 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Nascimento, F.A.O.; et al. 13 
 

 
Brazilian Archives of Biology and Technology. Vol.66: e23230609, 2023 www.scielo.br/babt 

in several works (Table 5 and Table 7). 
Although the Inception V3 network (Table 4) presented 100% success for the COVID versus Viral 

Pneumonia discrimination, it does not necessarily mean that it is better than the others that obtained very 
similar results, as there is a certain dependence on the test dataset chosen. For the scenario with three 
classes, the MobileNet (Table 6) presented slightly higher results in terms of accuracy. 

The machine learning (ML) based solutions are less generalist, then to obtain CNN’s similar results, a 
well-built feature database is needed. This means that is necessary a vector space of features that efficiently 
discriminates the spectral signatures embedded (somehow) in chest radiography images. We believe that a 
good performance in a pattern classification system depends more intensely on how the patterns are 
constructed than on the algorithm chosen for the classification. For the examples shown in this work, a 
dimension space of 432 features relevance were used to ML training. The XGB and the HGB presented a 
very good results for the three-class scenario, similar to pre-trained CNNs (Table 6). They have shown good 
convergence and stability even in large spaces of features. 

 

                     Table 6. FEF-MLF/TLF Performance evaluation for Covid-19 vs. Pneumonia Viral vs. Normal. 

ALGORITHM ACC. COVID NORMAL PNEU. 

XGBoost Classifier 96.84 97.27 96.85 95.60 

Hist. Grad.  Boosting 96.79 94.40 98.70 88.76 

Bagging Classifier 94.00 89.31 97.46 80.48 

Linear Discriminant 93.95 89.30 96.08 90.39 

Ensemble Extra-Tree 93.25 83.38 98.26 82.03 

Gradient Boosting 94.34 87.93 97.80 85.46 

Random Forest 93.21 83.78 98.27 80.43 

MobileNet 98.48 96.94 99.22 95.64 

XceptionNet 97.82 97.17 99.51 94.03 

InceptionResNet V2 97.03 97.60 97.40 92.80 

DenseNet 121 97.03 96.93 97.91 91.95 

Inception V3 93.66 93.73 95.25 83.12 

EfficientNet B7 92.74 84.70 95.81 85.90 

VGG 19 91.56 75.52 97.62 83.13 

Table 7. Performance evaluation for Covid-19 vs. Pneumonia Viral vs. Normal results presented by others work. 

Publication Method Acc. Cov. Nor. Pneu. 

Panetta et al. [39]* Fibonacci Patterns 98.71 98.00 98.00 100.0 

Sheykhivand et al. [32] LSTM (scen. V) 98.10 99.50 97.10 97.90 

Dixit et al. [34] CoV2 –Detect-Net 99.35 100.0 98.69 99.35 

Demir [33]* DeepCoro – Net 100.0 100.0 100.0 100.0 

Karakanis & Leontidis [19] CNN – ResNet8 98.70 99.00 98.00 97.00 

Rajpal et al. [30]* CNN – ResNet–50 97.88 98.73 99.36 95.54 

Islam et al. [43]* CNN – LTSM 99.12 99.34 100.0 98.03 

*The indices were calculated according to the metrics presented in section 3.4 using the results obtained from                
the confusion matrix 
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It is also clear to be observed that a specific problem involving the discrimination of two classes is, in 
most cases, easier to be solved than when adding more classes to the problem. Comparing Tables 3 and 6, 
an estimate of the increase in classification difficulty can be observed by the small decreasing in the 
measured performance quantities. 

In general, when the number of classes is increased, it is observed that CNNs perform better. Figure 4 
illustrates this point of view. To improve the performance of MLs in these circumstances, it is necessary to 
investigate an efficient approach for a feature selection given the statistical dependence of variables and the 
ability of a feature to report the spectral signatures of interest. It may also be interesting to have an adequate 
feature scaling, as they have a very large variation in the dynamic range between them. This was not the 
subject of this work, but it is certainly a topic of interest. 

CONCLUSION 

We believe that the main purpose of this work has been achieved. We sought to investigate two distinct 
approaches to handling COVID - 19 automatic diagnostics and have showed that machine learning-based 
approaches can produce results as good as the best deep learning techniques. However, to obtain this level 
of performance using machine learning (ML) approach, it is necessary to build a feature vector space that is, 
as much as possible, representative of the spectral signatures of interest. On the other hand, machine 
learning-based techniques require considerably less computational effort when compared to deep learning 
approaching. Looking at it from this point of view, ML could be more interesting than implementations using 
deep learning, for example, in applications involving embedded systems when there are computational 
restrictions. 

The construction of a large feature space (> 400) from chest X-Ray images proved to be suitable for its 
use for ML training for COVID – 19 diagnoses. Since feature scaling selection techniques have not been 
investigated yet, this is one of the possible subjects for future work. 
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