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Abstract: This paper presents the development of a bioinstrumentation system for the acquisition and pre-processing 
of surface electromyographic (SEMG) signals, as well as the proposal of a myoelectric controller for leg 
prostheses, using algorithms for feature extraction and classification of myoelectric patterns. The 
implemented microcontrolled bioinstrumentation system is capable of recording up to four SEMG channels, 
and one electrogoniometer channel. The proposed neural myoelectric controller is capable of predicting the 
intended knee joint angle from the measured SEMG singals. The controller is designed in three stages: 
feature extraction, using auto-regressive model and amplitude histogram; feature projection, using self 
organizing maps; and pattern classification, using a Levenberg-Marquadt neural network. The use of SEMG 
signals and additional mechanical information such as that provided by the electrogoniometer may improve 
precision in the control of leg prostheses.  Preliminary results are presented. 

1 INTRODUCTION 

The use of microprocessors in myoelectric control 
has grown notably, benefitting from the functionality 
and low cost of these devices. Microprocessors 
provide the ability to employ advanced signal 
processing and artificial intelligence (AI) methods as 
part of a control system, while easily conforming to 
control options, and adjusting to the input 
characteristics. They also provide the ability to 
implement pattern-recognition-based control 
schemes, which increases the variety of control 
functions, and improves robustness. 

Surface electromyographic (SEMG) signals 
provide a non-invasive tool for investigating the 
properties of skeletal muscles (Sommerich et al, 
2000). The bandwidth of the recorded potentials are 
relatively narrow (50-500 Hz), and their amplitude is 
low (50 µV - 5 mV) (De Luca, 2006). These signals 
have been used not only for monitoring muscle 
behavior during rehabilitation programs (Monseni-
Bendpei et al, 2000), but also for the mechanical 
control of prostheses. In this context, it is important 
to be able to correctly predict which movement is 
intended by the user. The SEMG signal is very 
convenient for such application, because it is non-

invasive, simple to use, and intrinsically related to 
the user’s intention. However, there are other useful 
variables, especially those related to proprioception, 
for example: the angle of a joint, the position of the 
limb, and the force being exerted. 

This project is supported under the development 
of an active leg prosthesis prototype (Figure 1). The 
prosthesis has three degrees of freedom: one for the 
knee (sagittal plane), and two movements for the 
foot (sagittal and frontal plane). The three degrees of 
freedom are associated to the angles θ1, θ2 and θ3, 
controlled by DC reduction motors. 

The prototype will be fixed to the patient’s upper 
leg through a fixing capsule, where the SEMG 
sensors will be located. The prosthesis will receive 
control commands through digital signal processing, 
feature extraction, and pattern classification. 

Specifically, for the development of an active leg 
prosthesis that also possesses ankle and foot axes, it 
is necessary to use other sources of information 
besides SEMG (Ferreira et al, 2005). Thus, the use 
of myoelectric signals combined with other variables 
related to proprioception may improve the reliability 
in closed-loop control systems. In addition, the 
bioinstrumentation system should be as immune to 
noise and interference as possible. This can be 

97



 

achieved by proper board and shielding design, as 
well as the use of filters whenever they are 
necessary. 

 
Figure 1: Mechanical structure of the prosthesis prototype. 

Figure 2 presents the typical main components of 
a general myoelectric controller based on pattern 
recognition. The SEMG signals are acquired by 
surface electrodes placed on the skin over muscle(s) 
of the user. The signals originating from the 
electrodes are pre-amplified to differentiate the 
small signals of interest, and then are amplified, 
filtered and digitized. Finally, the information is 
transferred to a myoelectric controller (Asghari and 
Hu, 2007). 

 
Figure 2: Typical main components of a general 
myoelectric controller based on pattern recognition. 

In the design and implementation of a myoelectric 
controller, the system’s precision is essential for a 
realistic accomplishment of the user’s intention. The 
precision is an important factor on the development 
of multi-sensory controllers, and can be improved by 
extracting more information from the muscle’s state, 
and using a classifier that is capable of improving 
this information. The controller should be capable of 
learning the muscular activation patterns that are 
used in natural form for typical movements. It also 
needs robustness against the condition variations 
during the operation. The response time cannot 
create delays that are noticeable to the user. 

This article presents a micro-controlled 
bioinstrumentation prototype system as part of the 

development of an active leg prosthesis structure 
that allows the acquisition and processing of 
electromyographic signals and other data related to 
the articulate movement, specifically the angle of the 
knee. The information obtained is processed in order 
to obtain appropriate myoelectric patterns for 
prosthesis control. Preliminary results on the design 
of algorithms for the estimation of the knee angle, 
based on patterns recognitions techniques, are 
presented. 

2 METHODS 

The front end stage of the designed 
bioinstrumentation system acquires up to four 
SEMG channels. The SEMG are measured on a pair 
of agonist and antagonist muscles of the leg (Fig. 3). 
An electrogoniometer is used to measure the flexion 
and extension angles of the knee joint (Fig. 3c). 
 

 
(a)            (b)            (c) 

Figure 3: Experimental setup. Surface electrodes are 
placed over a pair of agonist and antagonist muscle groups 
of the leg: (a) vastus intermedius, (b) semitendinosus. An 
electrogoniometer is used to measure the flexion and 
extension angles of the knee joint (c). 

Differential amplifiers, used in the bipolar 
configuration, significantly reduce the common 
mode interference signals (CMRR > 110 dB). A 
band-pass filter between 10 Hz and 500 Hz 
frequency range is used. It is composed by a low-
pass filter and high-pass filter with a programmable 
gain stage from digital potentiometers, controlled by 
the microcontroller. These elements allow the setting 
of the SEMG amplitude levels based on the 
measurements from the patient. To minimize power 
consumption and increase noise immunity, 
operational amplifiers with JFET inputs were used. 
To obtain adequate myoelectric amplitude, an 
overall gain of up to 20000 can be programmed at 
the front end (De Luca, 2006). 

A second block, micro-controlled and optically 
isolated from the front end (Figure 4), centralizes all 
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the functions associated with the analog/digital 
conversion process, implementing the digital gain 
control for the front end amplifiers and synchronized 
sampling of SEMG signals. The microcontrollers 
belong to the ARM SAM7S64 ATMEL family of 
high performance processors, based on 32-bit RISC 
architecture with an integrated group of peripherals 
that minimize the number of external components. 
 

 
Figure 4: Block diagram of the bioinstrumentation system. 

A 13-bit A/D converter with Serial Peripheral 
Interface (SPI) is used for signal sampling, and 
allows discriminating small amplitude levels. The 
electrogoniometer channel is coupled to the system, 
and generates an electric signal corresponding to the 
angular position ranging from 30 to 240 degrees. 
The sampling frequency of each channel is 1744.25 
Hz. Figure 5 presents example data acquired during 
an experimental measurement. 
 

 
Figure 5: Recorded SEMG signals (rectus femoris and 
opposite muscles) and angle of the knee joint during a   
10-second experiment.  

The microcontroller is linked through RS-485 
protocol to the central processor of the prosthesis, 
which is responsible for coordinating the tasks in the 
control process. Besides the RS485 protocol, which 
provides the interaction of the block with the central 
processor, RS-232C and USB interfaces are 
available for the communication with a PC when the 

system is configured in stand alone mode (Figure 6).  
In this mode, the system allows the visualization of 
the state of the experiments during their realization 
using a LCD display. The instrumentation system is 
designed using low power consumption components, 
which increases the system’s portability. 
 

 
Figure 6: Bioinstrumentation module (with accessories) 
configured in stand alone mode. 

2.1 Adaptive Filter Implementation 

The power line interference usually has its first 
harmonics (60 Hz, 120 Hz, 180 Hz, and 240 Hz) in a 
portion of the spectrum with major SEMG energy 
concentration.  The use of an analog notch filter may 
distort the signal; therefore it should only be used 
when really necessary. Generally, the best option is 
to use an adaptive notch filter. An embedded 
subroutine in the ARM-SAM7S64’s core 
implements an adaptive notch filter in real time. This 
filter maintains a running estimate of the 60 Hz 
interference, and the current noise at time t can be 
estimated from the previous two noise estimates 
(Hamilton, 1996), as shown in equations (1) and (2), 
 

)2()()( nTtenTteNte −−−=  (1) 
 
where T is the sample period and N=2cos(2π.60.T). 
In the filter, the output is generated by subtracting 
the estimated noise, e(t), from the input signal, x(t). 
The expression presented in equation (2) is used to 
implement the filter. 

)]()([)]()([)( nTtenTtxtetxtf −−−−−=  (2) 

If f(t)>0, then the estimate was too low, so we 
adjust the estimate upward by incrementing d: 

dTnTeTnTe ++=+ )()(  (3) 

If f(t) < 0, the estimate was too high, so the 
estimate is decremented: 

dTnTeTnTe −+=+ )()(  (4) 
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As d increases, the filter adapts more rapidly, and 
exhibits a broad bandwidth. Similarly, as d 
decreases, the filter adapts more slowly, and has a 
narrower bandwidth. The selection of the d factor is 
empiric, based on test realizations, and its value is 
small compared to the dynamic range of the A/D 
converter (Hamilton, 1996).  Figure 7 shows the 
adaptive filtering of a SEMG signal measured on the 
rectus femoris muscle. 
 

 

 

 

 

 

 

 

Figure 7: Adaptive filtering performed on a SEMG signal 
contaminated with power-line interference. 

2.2 Myoelectric Controller 

Presenting the myoelectric signal directly to a 
classifier is impractical, because of the 
dimensionality and the random characteristics of the 
signal. It’s necessary that the signal is represented as 
a vector with reduced dimensionality, i.e., a feature 
vector. The myoelectric controller algorithm 
proposes the use of three stages for feature 
extraction and pattern classification. The first stage 
consists in the mixture of feature vectors from time 
domain and spectral analysis. A second stage will 
perform the reduction of the feature space, allowing 
the increase in the number of SEMG input sensors 
without affecting the performance of the control 
process. The last stage has the goal of estimating the 
knee angle. 

2.2.1 Feature Vector Extraction 

Given the stochastic nature of the myoelectric 
signal, it can be considered as a time series, and 
modeled as a linear combination of their past and 
present values. The autoregressive model is a 
convenient structure for model identification, 

especially when the computations of velocity and 
response time are important, as in the recognition 
and classification of myoelectric patterns. The 
autoregressive coefficients provide information 
about the muscular contraction. The estimate of the 
coefficients is performed using a recursive least 
squares (RLS) technique, with a forgetting factor. 
This method gives more weight to the most recent 
samples at the moment of the iteration cycle. The 
parameters are calculated recursively (Ljung, 1987), 
as presented in equations (5), (6) and (7): 
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where k

^
η are the vector coefficients that are 

estimated at discrete time k; ϕk are the regressive 
vectors, kP  is the inverse correlation matrix and 

kL is the gain vector of the filter. The forgetting 
factor kλ  controls the system response time. The 
coefficient estimated at instant k can be interpreted 
as a characteristic of the SEMG signal within the 
time interval specified by the forgetting factor, and it 
is a way of determining the angular displacement 
that the patient wants to impose to the prosthesis 
(Ferreira et al, 2005). The coefficients form a feature 
vector for the pattern classification processes. 

Recent research (Hargrove et al, 2008) has 
demonstrated that a functional and efficient 
configuration consists of a mixture of feature vectors 
on the time domain with autoregressive coefficients. 
This configuration provides good classification 
precision, and is computationally efficient, which 
facilitates its implementation in embedded systems. 
It is also more robust to the displacement of the 
surface electrodes (Hargrove et al, 2008). 

This work uses a mixture of the autoregressive 
vector with the EMG Histogram method. The EMG 
Histogram is an extension of the Zero Crossing and 
the Willison amplitude (Zardoshti-Kermai et al, 
1995). Myoelectric signals reach relatively higher 
levels during the contraction process, compared to 
the base line amplitudes. Thus, vectors obtained 
from the histogram provide a measure of the 
frequency in which the signal reaches each level of 
amplitude, associated with different histogram bins. For the implementation of the histogram, a 
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symmetrical interval with respect to base line over 
the SEMG register is established and the same is 
subdivided into 9 bins. These bins represent 
intervals of amplitude in which the SEMG signal is 
grouped. 

The resultant feature vectors (autoregressive and 
histogram) are concatenated, and then used as the 
input vector of the feature projection stage. 

2.2.2 Feature Projection 

A feature projection stage is used to reduce the 
dimension of the feature space of the input vectors, 
before pattern classification process, using 
supervised neural networks. This reduction is 
performed using an unsupervised Kohonen          
self-organizing map (SOM) neural network. The 
groups of vector coefficients obtained from each 
SEMG channel using the RLS and histogram 
methods are transformed into two-dimensional 
vectors. With the reduction in input dimension, the 
SOM is able to reduce noise and absorb the large 
variations that appear in the original features. In 
addition, the SOM can shorten the training time of 
the supervised neural network. The unsupervised 
SOM can find the winning neuron on a 2-D map to 
represent the original pattern. To find the output 
neuron (winning node), the following steps are used, 
according to the learning rule of the Kohonen 
Feature map (Haykin, 1999). 

Step 1: Choose random values for the initial 
weight vectors Wj(0). 

Step 2: Find the winning neuron yc at time step t 
(Similarity Matching), by using the minimum-
distance Euclidean criterion:  

tjtWtxy jc ,....,2,1,)()(minarg =−=  (8) 

  
Step 3: Update the synaptic weight vectors of all 

neurons by using the following update rule: 
 

)]()([)()()()1( , tWtxthttWtW jyjjj c
−+=+ η  (9) 

  
where )(tη  is the learning rate, and )(, th

cyj  is the 
neighbors function centred around the winner. 

)(tη and )(, th
cyj are varied dynamically during the 

learning stage, in order to obtain optimal results. 
Step 4: Go back to step 2 until no changes in the 

feature map are observed. 
The inputs of the Kohonen’s SOM are features 

from each channel, and the output is the 2-D 
coordinate (on the x and y axes) on the 2-D 

topological net. A 2-D coordinate is a condensed 
feature for each channel (Figure 8). 

2.2.3 Myoelectric Classification 

Multi-layer neural networks have been successfully 
applied to many difficult and nonlinear problems in 
diverse domains and there is considerable research 
on methods to accelerate the convergence time of 
the multi-layer feedforward neural network 
algorithm (Battiti, 1992 and Charalambous, 1992). 
The method used in this paper is the Levenberg-
Marquadt (LM) algorithm (Hagan and Menhaj, 
1994), which consists in the use of the nonlinear 
least squares algorithm to the batch training of 
multi-layer perceptrons. The LM algorithm can be 
considered a modification of the Gauss-Newton 
method. The key step in the LM algorithm is the 
computation of the Jacobian matrix. The LM 
algorithm is very efficient when training networks 
which have up to a few hundred weights. Although 
the computational requirements of the LM algorithm 
become much higher after each iteration, this is fully 
compensated by its higher efficiency. This is 
especially true when high precision is required 
(Hagan and Menhaj, 1994). Figure 8 presents the 
complete block diagram of the myoelectric 
controller. 

 
Figure 8: Block diagram of the proposed myoelectric 
controller algorithm. 
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3 RESULTS 

As a prototype implementation, the training and 
validation processes were performed in off-line 
mode, and the algorithms described above were 
implemented in Matlab. At a later stage, the full 
validation of the controller will be the executed from 
an embedded system running on a Linux platform. 

For this demonstration, SEMG measurements 
were captured from a healthy subject using 10 mm 
Ag/AgCL surface electrodes placed on a pair of 
antagonistic muscles, associated with the flexing and 
extension movements of the knee (Figure 3). The 
electrodes were arranged in bipolar configuration, 
and gel was used to reduce the resistance between 
electrodes and skin. The distances between the 
centers of the electrodes was 3-5 mm, and the 
reference electrode was placed over the lateral 
condyle bone. A total of 10 measurements were 
performed, divided in two groups of signals - 
training and validation - acquired during walks with 
different speeds, with duration of 10 seconds. 

For training purposes, it is essential to know 
information about the input and output, comparing 
the dimensional vectors obtained from the SOM 
network to the displacement angle measured by the 
electrogoniometer sensor. Figure 9 shows the 
estimated angle compared to the measured angle 
from the electrogoniometer. Although the estimated 
angle follows the measurement satisfactorily, the 
output of the LM network presents the impulsive 
noise (9a), which is canceled using a moving 
average recursive filter with a 50-sample window 
(9b). This filter keeps the changes levels or slopes 
that are present in the angle estimated and present a  

 
Figure 9: Comparison of the estimated knee angle (blue) 
to the measured angle from the electrogoniometer (red): 
(a) before filtering; (b) after filtering. 

delay of (M - 1) / 2 samples, where M is the number 
of samples in the average (Smith, 1999). The results 
obtained with 50 samples of average were 
satisfactory, decreasing the variance and conserving 
the changes levels (Figure 9b). 

A preliminary comparison was performed 
between the proposed algorithm and the methods 
proposed by Ferreira et al. (2005). The proposed 
algorithm it is an alternative to the latter approach, 
which consists in using the AR model for feature 
extraction, and a LM multi-layer perceptron neural 
network for pattern classification. The evaluation 
was based on the classification error, which was 
calculated using the following equation: 
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where )(ix  and        represent the angular values 
from the electrogoniometer sensor and the angle 
estimated vectors respectively, N is the dimension of 
the vectors. Table 1 presents the averages error rate 
of classification measured in the group of validation 
signals. 

The results in Table 1 show that the proposed 
algorithm achieved better classification then the 
method proposed by Ferreira et al. (2005). This 
means that the proposed method is more accurate in 
estimating the knee joint angle from the myoelectric 
signals. 

Table 1: Comparison based the average rate classification. 

Ferreira et al. (2005) 8.02% ± 4.2 
Proposal Algorithm 5.86% ± 1.6 

4 CONCLUSIONS 

This paper presents the current state of development 
of a bioinstrumentation system for active control of 
leg prostheses. Features of the system and of the 
signal processing algorithm used in the myoelectric 
controller were presented. The system allows the 
acquisition of SEMG signals with a maximum 
amount of signal information and a minimum 
amount of contamination from electrical noise. The 
results show that the system has great potential for 
future developments in leg prostheses. Another 
feature of the system is that it works not only as a 
part of the prosthesis control, but also in stand alone 
mode. Preliminary analysis showed that the 
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computational complexity of the proposed algorithm 
increases for each iteration during execution of the 
LM network. Future work will aim optimize the 
code for its execution in real time. 
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