
Encyclopedia
of Healthcare
Information Systems

Nilmini Wickramasinghe
Illinois Institute of Technology, USA

Eliezer Geisler
Illinois Institute of Technology, USA

Volume III
MRI-Z

Hershey • New York

Medical Information science reference

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Copy Editor: Laura Kochanowski, Jeannie Porter, and Sue Vander Hook
Typesetter: Jeff Ash and Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any
means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate
a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Encyclopedia of healthcare information systems / Nilmini Wickramasinghe and Eliezer Geisler, editors.
 p. ; cm.
 Includes bibliographical references.
 Summary: “This book provides an extensive and rich compilation of international research, discussing the use, adoption, design, and diffusion of information
communication technologies (ICTs) in healthcare, including the role of ICTs in the future of healthcare delivery; access, quality, and value of healthcare;
nature and evaluation of medical technologies; ethics and social implications; and medical information management”--Provided by publisher.
 ISBN 978-1-59904-889-5 (h/c)
 1. Medical informatics--Encyclopedias. I. Wickramasinghe, Nilmini. II. Geisler, Eliezer, 1942-
 [DNLM: 1. Information Systems--Encyclopedias--English. W 13 E5523 2008]
R858.E52 2008
651.5’04261--dc22
 2007047456

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this encyclopedia set is original material. The views expressed in this encyclopedia set are those of the authors, but not neces-
sarily of the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

1101

PProgramming Body Sensor Networks
Talles Marcelo Gonçalves de Andrade Barbosa
Catholic University of Goiás, Brazil
University of Brasília, Brazil

Hervaldo Sampaio Carvalho
University of Brasília, Brazil

Iwens Gervásio Sene Jr.
Catholic University of Goiás, Brazil
University of Brasília, Brazil

Francisco A. de O. Nascimento
University of Brasília, Brazil

João Luiz Azevedo de Carvalho
University of Southern California, USA

Adson Ferreira da Rocha
University of Brasília, Brazil

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

The miniaturization and cost reduction of microelec-
tronic devices have been leading to the development of
new technologies. Wireless sensor networks (WSNs)
are one example of these new technologies. A WSN is
a distributed system that is composed of autonomous
units with sensing capabilities (sensor nodes), intercon-
nected by wireless communication. WSNs have been
successfully applied in the monitoring of the human
body. This development led to a new concept: Body
Sensor Networks (BSNs).

According to Yang (2006, pp. 5), BSNs have specific
requisites, when compared to WSNs. Among these
requisites, we highlight the following:

• High level of security, in order to guarantee the
confidentiality of information;

• Biocompatibility and biodegradability;
• Higher sensitivity to data loss, and the consequent

need for mechanisms to ensure a minimum Qual-
ity of Service (QoS);

• Need for context awareness, as the physiological
variations are strongly related to the changes in
the context in which the user is in;

• Low number of sensor nodes, which should,
however, be usually more precise than sensors
for other applications of WSNs;

• Requirement of nodes with the capability of run-
ning multiple tasks.

Pervasive monitoring demands great adaptation
capability from the BSN. Moreover, cases in which
the decision made by the system can be different from
the decision that would be made by a healthcare pro-
fessional are frequent. Therefore, besides intelligent
algorithms that allow autonomous operation, BSNs
need mechanisms that allow changes in their behavior
in order to become a clinically useful tool. According
to Baldus, Klabunde, and Müsch (2004), “the BSN has
to work automatically, but has also to be always under
explicit control of any clinician.”

Thus, specific models that include programmability
as a functional requisite are important in a software
architecture designed for BSNs. However, the great-
est challenge is to allow the modifications to be made
not only to the structure of the software, but also in its
behavior, without excluding the capability for autono-
mous operation of the system.

According to Barbosa, Sene, Carvalho, da Rocha,
Nascimento, and Camapum (2006), two important

1102

Programming Body sensor Networks

concepts related to programmability in BSNs are: (i)
deployment-time programmability, and (ii) run-time
set-up. The deployment-time programmability refers
to the definition of software artifacts and algorithms
that are embedded in the sensor node. In BSNs, the
inclusion of this functionality requires a programming
interface that is suitable for healthcare personnel, as
well as intelligent compilers. Intelligent compilers
should be capable of handling implicit functional and
nonfunctional requisites of a program. As an example,
the inclusion of mechanisms and policies for energy
saving could be treated by these structures.

The run-time set-up refers to the capability for ad-
justments in run-time. The BSN should provide inter-
activity between the healthcare professional (the BSN
manager) and the system. As a requisite, sensor nodes
need mechanisms that allow a better control of the tasks
that are being run. A possible solution is the use of data
structures that allow preemptive multitasking.

The goal of this article is to present the current state of
the art, regarding programmability in BSNs. Moreover,
we want to present potential benefits of a paradigm shift
in which healthcare professionals become the actual
programmers and maintainers of the BSNs. With that
in mind, we briefly present a software architecture that
has been developed with the goal of allowing program-
mability at network and sensor node levels.

Background

Many issues related to software for BSNs have not
been discussed yet. Among them, we can mention: (i)
the development of graphical user interfaces directed
to healthcare personnel; (ii) the hardware abstraction
layers (HALs); (iii) the standardization of services
and information structuring (BSN ontology); and (iv)
programmability at sensor and sensor node levels. The
solutions to these problems can lead to improvement
of the effectiveness of these systems.

Currently, the software used in BSNs has the fol-
lowing characteristics:

• They are composed of proprietary systems built
based on a specific architecture (hardware), and
designed for handling a single application. They
have little or no modularization, and they are not
committed to software development methodolo-

gies. In general, they do not employ multiprogram-
ming. Sensor nodes are usually viewed just as
sources of data, and all processing is performed
in a gateway—an element that interconnects the
BSN to other systems—or in a Local Processing
Unit (LPU), which is an element to where the data
are transmitted. Some examples of such systems
are presented in Asada, Shaltis, Reiner, Sokwoo,
and Hutchinson (2003), Valdastri, Menciassi,
Arena, Caccamo, and Dario (2004), Linz, Kall-
mayer, Aschenbrenner, and Reichl (2006), Kara,
Kemaloglu, and Kirbas (2006), and Chakravorty
(2006).

• These systems are usually based on a generic,
general purpose model. It is usually based on
the NesC programming language (Gay, Levis,
von Behren, Welsh, Brewer, & Culler, 2003), on
the TinyOS Operating system (Hill, 2003), and
on a network programming system, the Deluge
(Hui & Culler, 2004). All of these systems are
free of charge, and they were developed by the
University of California, in Berkeley. CodeBlue
(Welsh, 2006), WHMS (Jovanov, 2006), and
UbiMon (ICL, 2006) are examples of designs
that use the TinyOS framework. Other examples
are presented in (Bauldus et al., 2004) and in
(Farshchi, Nuyujukian, Pesterev, Mody, & Judy,
2006).

Regarding programmability, systems built based on
TinyOS have the following limitations when applied
to BSNs:

• The NesC programming language imposes a pe-
culiar syntax, based on concepts emerged from
software engineering. Without the knowledge of
programming logic and the expertise in managing
software components, it is virtually impossible
for a nonspecialized user to use this system.

• The multiprogramming model used in TinyOS
is not interactive enough. It offers little control
over the activities (tasks) run by the sensor node,
because there is no context switch. Tasks cannot
be immediately interrupted or replaced in order
to answer a policy established by the application,
or to answer to a command issued by the user.
Moreover, according to Han, Bhatti, Carlson,
Dai, Deng, Rose, Sheth, Shucker, Gruenwald,

 1103

Programming Body sensor Networks

P
and Torgerson (2005), the execution of more
complex tasks can be limited by the occurrence
of deadlocks.

BSNs must be designed to operate in an autonomous
manner. On the other hand, they should offer mecha-
nisms that yield the control to healthcare personnel,
since all the functionalities of the network should reflect
their judgment and their clinical evaluation. Thus, a great
challenge in BSN software design is to increase, in a
transparent way, the access to the internal configurations
of the network and its sensor nodes without damaging
its capability for autonomous operation.

prograMMIng Body sensor
netWorks

Software Architecture for Body-worn Sensor Networks
(SOAB) is a system that is being developed at the Uni-
versity of Brasilia to support BSN-based applications
(Barbosa et al., 2006). SOAB incorporates the concept
of programmability, presented in the introduction of this

article, as functionality (service) offered by the BSN.
Figure 1 presents a diagram illustrating the activities
related to the method for programming BSNs proposed
by SOAB. Part of these activities should be run by
healthcare professionals (clinicians), and the remaining
activities are run by the system itself.

Figure 1a refers to programming at deployment
time. These activities are responsible for the definition
of mechanisms and policies that are included in the
sensor nodes to support a specific application. Figure
1b refers to the run-time set-up process, responsible for
the definition and/or adjustments of applications and
data sources. The detailed definition of these activities
will be presented later, during the description of the
layers of the proposed architecture.

SOAB is a modular system, divided into four
independent functional layers: (i) a graphical inter-
face, developed especially for healthcare personnel;
(ii) middleware for interconnection of the BSN with
the Internet; (iii) a server for handling the services
related to the services requested by the programmers;
and, finally, (iv) an operating system with support for
preemptive multitasking, which will be installed in

Figure 1. Activity diagrams to describe the SOAB programming methodology

1104

Programming Body sensor Networks

the sensor nodes. This operating system was named
MedOS, and one of its main features is that it tries to
increase the lifetime of the sensor nodes by means of
proper scheduling of tasks, based on policies that are
adapted to biomedical applications. In order to sys-
tematize these policies, an automata-based model has
been used. Moreover, MedOS allows BSN managers
to manipulate the states of the running tasks. Figure 2
presents an overview of SOAB.

In the first layer of SOAB (Figure 2), we have the
BWSNET Configuration Tool. This graphical interface
is responsible for providing means by which healthcare
professionals can describe their algorithms in a way
that is more intuitive, less time-consuming, and less
error-prone. This interface also allows the possibility
of including new sensors that were not initially speci-
fied, without the need to recompile the source code.
An interface based on Java Reflection (Java Tutorials,
2006) was used to achieve this feature. The BWSNET
Configuration Tool has also a simulator that acts as a
virtual debugger for estimating the sensor node life-
time and other performance metrics. As a sample of
the BWSNET Configuration Tool, Figure 3a shows a
deployment-time programming interface for the acqui-
sition of the electrocardiogram (ECG), while Figure
3b shows the run-time set-up interface.

Figure 3b also shows how an application is defined,
and how it can be modified. As an example, the ap-
plication “monitoring user stress” was defined by four
variables: blood pressure, ECG, heart rate, and Blood
O2. Each variable can also be defined by other variables
of data sources, as described by Carvalho, Perillo,
Heinzelman, and Murphy (2004). The “ECG” variable,
in this case, has been defined by three data sources: ECG
1Lead 100 Hz, ECG 3Leads 500 Hz, and ECG 6Leads
1000 Hz. In order to support these functionalities, the
tasks and the software artifacts have also been included
at deployment-time (see Figure 3a).

In order to increase the lifetime of the network
and, consequently, of the application, the system is
responsible for determining how much time each data
source should stay active, and how it should operate
(the required precision). In order to do so, the system
uses information regarding the application in order to
execute policies that promote, for instance, energy sav-
ing. These policies act on the scheduling of the running
tasks and on the adjustment of the bandwidth, and of
the transmission power of the communication interface
of the sensor nodes (Sensor QoS Level). By using the
run-time set-up interface, the healthcare professional
can alter the configuration that is usually chosen by the
system, excluding and/or adding new data sources and
variables, and can manipulate the Sensor QoS Level.

Figure 2. SOAB’s four layer system

 1105

Programming Body sensor Networks

P

The user can also change the current values attributed
to the priorities associated with the tasks, and also
suspend and restart tasks.

In order to provide support for the programming and
reconfiguration of the sensor nodes from the Internet,
a group of remote procedure calls (RPCs) has been
implemented in compliance with the recommenda-
tions of the W3C Web Services (http://www.w3.org/
TR/2004/NOTE-ws-arch-20040211/; http://www.
w3.org/TR/wsdl20/). These RPCs represent the XML
middleware layer in Figure 2.

In the third layer, we have the BWSNET Proxy. This
software entity has been projected to operate in the
gateway devices. It is responsible for the translation of
the requisitions of the SOAP XML format (http://www.
w3.org/TR/2003/REC-soap12-part1-20030624/) to
commands that are understandable to the underlying
layer. Besides, it has the responsibility of creating the
real image of the system from the BSN manager’s
program and the correspondent automata, the selfad-
justable binary code that will be executed by the sensor
nodes. Another functionality of the BWSNET Proxy
server that is equally important, is that it promotes the
integration of the BSN with an external healthcare
information system (HIS).

Figure 4 shows the module that is responsible for
selecting the best automatum for a given configuration
defined at deployment time. The automata generator is an

intermediate-level intelligent compiler. It is composed
of three modules. The “Parser” module is responsible
for extraction relevant information for the “Selector”
module. In practice, these informations are related to
parameters, such as the objective of the application, the
number of tasks, the types of tasks, and the selected
alarms, among others. The values of these parameters
are used for filling a table of parameters that will be
used by the selector module. The “Selector” module
chooses the automatum that maximizes the potential of
each application, guaranteeing a greater lifetime for the
system. In practice, the selector module is a decision
tree (Cormem, Leiserson, & Rivest, 1997, pp. 173)
that is responsible for the choice of the best automatum
from a set of possible automata that are deposited in an
automata repository. This choice is made based on the
table of values that is made available by the “Parser”
module. The definition of this three (selection algorithm)
is based on the medical knowledge that influences the
values of each parameter in the table.

After the choosing the best automatum, the “Gen-
erator” module can generate the “automato.c” file (see
Figure 4), which will represent the program that will
be embedded into the sensor node. For this task, a de-
scription of the necessary code libraries and necessary
system calls should be used. This description is stored
in the automata repository, along with the functional
description of each automatum. During the automata

Figure 3. Examples of SOAB graphical interfaces

1106

Programming Body sensor Networks

selection, this configuration file is used by the “Genera-
tor” module for assembling the “automato.c” file.

In the last layer of SOAB, there is an application-
oriented operating system called MedOS. The main
objective of MedOS is to provide support for the
behavioral adjustment of the sensor-node at run-time,
changing the priority values that can be associated with
the tasks provided by the sensor-node. Figure 5 shows
the main artifact of MedOS and their dependencies. The
functionalities are represented by tasks created together
using FreeRTOS libraries (Barry, 2006).

Besides the preemptive multitasking functionality,
MedOS implements a set of device drivers, a set of
library functions that are used by the automata genera-
tor module, and a command interpreter. The command
interpreter allows programmers to alter the scheduling
of tasks that is currently adopted by the system. This
functionality may or may not be included during the
generation of the image of the system. If this function-
ality is disabled, artifacts related to the library “inter-
preter.h” (Figure 5) will not be included. Thus, only
artifacts related to the “policy.h” file (which represent
the behavior of the automatum that has been chosen
by the application) will be included in the “automata.
h” file, which represents the image of the system that
will be installed in the sensor nodes.

In addition to the code libraries of FreeRTOS, the
MSPGCC code libraries (http://mspgcc.sourceforge.

net/) have also been used for the implementation of
MedOS.

SOAB has been tested in the hardware platform pre-
sented in Figure 5. The sensor-nodes were built using the
Olimex MSP-P149 kit (http://www.olimex.com/dev/
msp-p149.html), with a bluetooth radio BlueSRMIFv1
(http://www.sparkfun.com/commerce/product_info.
php?products_id=582). This system allows the moni-
toring of electrocardiographic and electromyographic
signals, as well as skin temperature, arterial pressure,
and galvanic skin resistance.

future trends

The SOAB includes three main innovative features
to the BSN research area: (i) a graphical interface
for programming and reconfiguration of the sensor
nodes; (ii) an application of the concept of preemptive
multitasking to BSNs; and (iii) an intelligent compiler
(which is also an automata generator). The authors
believe that these three features will be pursued by
future efforts in this area. Some other potential future
trends may be highlighted:

• The study of man-machine interfaces, and its
repercussions on programming and reconfigura-
tion models of BSNs. A graphical user interface is

Figure 4 . The automata generator module

 1107

Programming Body sensor Networks

P

an attractive and effective alternative, especially
for remote access using the Internet. However,
in some situations and environments, such as in
an emergency room, other devices (hardware)
could be used in a more effective way. Baudus
et al. (2004) discuss the use of a infrared set-up
pen, which works as a remote control, allowing
the physicians and nurses to connect the data
sources needed for patient monitoring. These
data sources are implemented with sensor nodes
that can be interconnected to form a BSN that is
suitable for the desired application.

• Smart compilers that are capable of embedding,
during the programming at deployment time
of the sensor nodes, mechanisms and policies
that increase the effectiveness of the application
should also be targeted by new developments.
These compilers must be based on a specialist’s
knowledge, since the medical expert is the one
who should know how to schedule the resources
according to each application, and should operate
in a transparent way to the user.

• Smart and adaptive algorithms for task scheduling
that take into account the dynamics of the appli-
cations should also be pursued. For instance, the
health condition of the patient and the capability
of the sensor node and of the network should be
taken into account in the formulation of these
algorithms. In this context, preemptive multitask-
ing allows the computer system to guarantee for

each process a regular “slice” of operating time
in a more reliable way. It also allows the system
to rapidly deal with important external events,
such as incoming data, which might require the
immediate attention of one or another process.

• Stantardization of the software features and of
the process related to the development of sytem
for BSNs will also be an important issue. In this
subject, we can highlight: (i) the development of
methodologies for evaluation of these systems
regarding their usability and effectiveness; and
(ii) the standardization of the interfaces and ser-
vices as a tool for promoting the independency
of hardware and for facilitating the integration of
information with other networks and systems. For
example, the definition of a BSN Sensor Ontol-
ogy could establish a hierarchy that expresses
the semantics associated to each type of sensor,
group or relationship. This approach can increase
the effectiveness in the use of BSNs facilitating
the gathering of information, which could also
be used for programming and reconfiguration of
the network.

conclusIon

By using a modular software architecture that is
designed according to the requirements of possible
applications, it is possible to increase the capability

Figure 5. MedOS artifacts and sensor node architecture

1108

Programming Body sensor Networks

for autonomous operation of the BSN, and still offer
tools for programming and reconfiguration of these
systems that can be used for people with little grasp
on programming languages.

This text presented a proposal for a paradigm shift
for the programming and reconfiguration of the BSNs.
By making more suitable tools available—such as
programming interfaces, intelligent compilers, and
application-oriented algorithms—the goal is to allow
healthcare workers to become the actual programmers
and maintainers of this technology. The possibility of
developing and/or testing new applications without the
need of specific technical knowledge on programming
languages and computational models can facilitate the
popularization of this technology.

SOAB integrates concepts such as reflection, Web
services, automata, intelligent compilers, and preemp-
tive multitasking, with the goal of becoming a solution
that is functional, portable, usable, effective, and easy
to maintain. Also, this architecture can be extended
into four levels, allowing its improvement and the
implantation of other systems (services). This solution
establishes a concept: application-oriented software
architecture.

references

Asada, H., Shaltis, P., Reiner, A., Sokwoo, R., &
Hutchinson, R. C. (2003, May–June). Mobile monitor-
ing with wearable photoplethysmographic biosensors.
IEEE Engineering in Medicine and Biology Magazine,
22(3), 28–40.

Baldus, D., Klabunde, K., & Müsch, G. (2004). Reliable
set-up of medical body-sensor networks. Lecture notes
in computer science, 2920/2004, 353–363.

Barbosa, T. M. G. de A., Sene, I. G. Jr., Carvalho, H.
S., da Rocha, A. F., Nascimento, F. A. O., & Camapum,
J. F. (2006). Application-oriented programming model
for sensor networks embedded in the human body. In
Proceedings of the 28th Annual International
Conference IEEE Engineering in Medicine and Biol-
ogy Society (EMBC) (Vol. 1, pp. 6037–6040). IEEE
EMBC Press.

Barry, R. (2006). FreeRTOS. Retrieved February 6,
2008 from, http://www.freertos.org/

Carvalho, S. H., Perillo, M., Heinzelman, W., & Murphy,
A. (2004, January–February). Middleware to support
sensor network applications. IEEE Network Magazine
Special Issue, 18(1), 6–14.

Chakravorty, R. A. (2006). Programmable service
architecture for mobile medical care. In Proceedings
of the Fourth IEEE International Conference on Per-
vasive Computing and Communications WorkShops
(PERCOMW´06). IEEE Computer Society Press.

Cormem, T. H., Leiserson, C. E., & Rivest, R. L.
(1997). Algorithms (1st ed.). Cambrige, Massachusetts:
MIT Press.

Farschchi, S., Nuyujukian, H. P., Pesterev, A., Mody, I.,
& Judy, W. J. A. (2006, July). TinyOS-enabled MICA2-
based wireless neural interface. IEEE Transactions on
Biomedical Engineering, 53(7), 1416–1424.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer,
E., & Culler, D. (2003). The nesC language: A holistic
approach to network embedded systems. In Proceedings
of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation (PLDI’03)
(Vol. 38, No. 5, pp. 1–11). ACM Press.

Han, R., Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose,
J., Sheth, A., Shucker, B., Gruenwald, C., & Torger-
son, A. (2005, August). MANTIS OS: An embedded
multithreaded operating system for wireless micro
sensor platforms. ACM/Kluwer Mobile Networks &
Applications (MONET), Special Issue on Wireless
Sensor Networks, 10(4), 563–579.

Hill, J. L. (2003). System architecture for wireless
sensor networks. Unpublished doctoral dissertation,
Computer Science Department, University of Cali-
fornia, Berkeley.

Hui, J., & Culler, D. (2004). The dynamic behavior of a
data dissemination protocol for network programming
at scale. In Proceedings of the 2nd international
conference on Embedded networked sensor systems
(Vol. 1, pp. 81–94). ACM Press.

ICL - Imperial College London. (2006). Ubiquitous
monitoring environment for wearable and implantable
sensors. Imperial College London University Web site.
Retrieved February 6, 2008, from http://www.doc.ic.ac.
uk/vip/ubimon/partners/index.html

 1109

Programming Body sensor Networks

P
Java Tutorials. (2006). Tutorials trail: The reflection
AP. Retrieved February 6, 2008, from, http://java.sun.
com/docs/books/tutorial/reflect/

Jovanov, E. (2006). WHMS - wearable health monitor-
ing system. The University of Alabama in Huntsville,
Electrical and Computer Engineering department Web
site. Retrieved February 6, 2008, from http://www.ece.
uah.edu/~jovanov/whrms/

Kara, S., Kemaloglu, S., & Kirbas, S. (2006). Low-cost
compact ECG wih graphic LCD and phonocardiogram
system design. Springer Jornal of Medical Systems,
30, 205–209.

Linz, T., Kallmayer, C., Aschenbrenner, R., & Reichl,
H. (2006). Fully integrated EKG shirt based on embroi-
dered electrical interconnections with conductive yarn
and miniaturized flexible electronics. In Proceedings
of International Workshop on Wearable and Implanted
Body Sensor Networks (BSN’06) (Vol. 1, pp. 23–26).
IEEE Computer Society Press.

Valdastri, P., Menciassi, A., Arena, A., Caccamo, C., &
Dario, P. (2004, September). An implantable telemetry
platform system for in vivo monitoring of physiological
parameters. IEEE Transactions on Information Tech-
nology in Biomedicine, 8(3), 271–277.

Welsh, M. (2006). CodeBlue: Wireless sensor networks
for medical care. Harvard University, Division of En-
gineering and Applied Sciences Web site. Retrieved
February 6, 2008, from http://www.eecs.harvard.
edu/~mdw/proj/codeblue/

Yang, G. (2006). Body sensor networks. London:
Springer-Verlag.

key terMs

Application-Oriented Operating System: An
operating system that is designed or customized for
fulfilling the interests of an application or of a set of
similar applications that share a significant part of the
requirements. This kind of system must include specific
mechanisms and policies, in order to effectively serve
the interest of the applications.

Automata or State Machines: A mathematical
model that can be used for representing the behavior
of a computational system. A state diagram is used for

its graphical representation. Basically, an automatum is
composed of states that can be graphically represented
by circles and edges, which indicate the actions that
are responsible by changes of state. In WSNs, usually
the states are associated with the tasks, and the edges
are directly related to the events that are responsible
by the changes in states.

Context Awareness: The capability of compu-
tational systems of determining circumstances and
scenarios in which its users may be inserted, or sim-
ply determining information that is of interest to the
system. To do so, the system uses rules (intelligent
algorithms) and data that can be supplied by the user
itself, or obtained by sensors. These data can also lead
to probabilistic information. In this case, the context
awareness is not exact, but instead, a hypothesis with
an associated probability value.

Multiprogramming: The approach that allows
several processes to run simultaneously in a system. In
a multiprogrammed sensor node, several programs are
simultaneously maintained and managed in the memory
by resident software. These programs are organized
as tasks. The execution of these tasks follows a policy
that is defined during the design of the system, and it
is coordinated by a mechanism called task scheduler.
In WSNs, there are two kinds of multiprogramming:
(i) event-driven run-to-completion single thread ap-
proach, and (ii) preemptively time-sliced multithread-
ing model.

Ontology: A data model that represents the entities
that are defined and evaluated by its own attributes,
and organized according to a hierarchy and a semantic.
Ontologies are used for representing knowledge on
the whole of a specific domain or on of it. In WSNs,
ontologies are included in software architectures as a
way of facilitating the search for relevant information.
For example, in a BSN an ontology could be used for
sensing a specific context (context awareess).

Pervasive Monitoring: The capability of a system to
keep itself operating under any condition. These condi-
tions can be related not only to the location (space), but
also to the time. They can also be related to technical
conditions, such as connectivity, safety, and the amount
of energy stored in the batteries.

Preemptive Multitasking: An approach of mul-
tiprogramming. The operating system can interrupt

1110

Programming Body sensor Networks

the execution of a task and initiate the execution of
another, in order to satisfy the restrictions that are
defined by the policy that is being used for the sched-
uling of tasks. It also allows the execution of a task to
be suspended or interrupted by a command received
from the application.

Quality of Service (QoS): The capability of the
system of adjusting itself or of offering mechanisms
that allow its adjustment in order to fulfill the requisites
that are defined for each application. In WSNs the
parameters that are commonly related to the quality
of the service that is offered by this kind of system
are application lifetime (which is related to energy
consumption), connectivity, confidentiality, reliability,
bandwidth, and transmission power.

Reflection: A concept related to software: program-
ming languages, operating systems, middleware, and

Graphical User Interface (GUI). A reflexive system
offers mechanisms that allow its data structures to
be inspected and/or modified during execution (at
run-time). For this, the system must keep its selfrep-
resentation that is commonly organized as metadata.
In nonreflexive systems, the metadata usually are lost
or discarded during compilation, typically when the
low-level codes (assembly language) are generated.

Web Services: Modular, independent, selfdescrip-
tive programs that are designed to guarantee interoper-
ability among systems that are developed with different
technologies and that interact in a computer network.
Typically, Web services are described by using the
WSDL (Web Services Description Language), and
they use SOAP (Simple Object Access Protocol) for
message exchange.

