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IntroductIon

The miniaturization and cost reduction of microelec-
tronic devices have been leading to the development of 
new technologies. Wireless sensor networks (WSNs) 
are one example of these new technologies. A WSN is 
a distributed system that is composed of autonomous 
units with sensing capabilities (sensor nodes), intercon-
nected by wireless communication. WSNs have been 
successfully applied in the monitoring of the human 
body. This development led to a new concept: Body 
Sensor Networks (BSNs).

According to Yang (2006, pp. 5), BSNs have specific 
requisites, when compared to WSNs. Among these 
requisites, we highlight the following:

• High level of security, in order to guarantee the 
confidentiality of information;

• Biocompatibility and biodegradability;
•  Higher sensitivity to data loss, and the consequent 

need for mechanisms to ensure a minimum Qual-
ity of Service (QoS);

• Need for context awareness, as the physiological 
variations are strongly related to the changes in 
the context in which the user is in;

• Low number of sensor nodes, which should, 
however, be usually more precise than sensors 
for other applications of WSNs;

• Requirement of nodes with the capability of run-
ning multiple tasks.

Pervasive monitoring demands great adaptation 
capability from the BSN. Moreover, cases in which 
the decision made by the system can be different from 
the decision that would be made by a healthcare pro-
fessional are frequent. Therefore, besides intelligent 
algorithms that allow autonomous operation, BSNs 
need mechanisms that allow changes in their behavior 
in order to become a clinically useful tool. According 
to Baldus, Klabunde, and Müsch (2004), “the BSN has 
to work automatically, but has also to be always under 
explicit control of any clinician.”

Thus, specific models that include programmability 
as a functional requisite are important in a software 
architecture designed for BSNs. However, the great-
est challenge is to allow the modifications to be made 
not only to the structure of the software, but also in its 
behavior, without excluding the capability for autono-
mous operation of the system.

According to Barbosa, Sene, Carvalho, da Rocha, 
Nascimento, and Camapum (2006), two important 
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concepts related to programmability in BSNs are: (i) 
deployment-time programmability, and (ii) run-time 
set-up. The deployment-time programmability refers 
to the definition of software artifacts and algorithms 
that are embedded in the sensor node. In BSNs, the 
inclusion of this functionality requires a programming 
interface that is suitable for healthcare personnel, as 
well as intelligent compilers. Intelligent compilers 
should be capable of handling implicit functional and 
nonfunctional requisites of a program. As an example, 
the inclusion of mechanisms and policies for energy 
saving could be treated by these structures.

The run-time set-up refers to the capability for ad-
justments in run-time. The BSN should provide inter-
activity between the healthcare professional (the BSN 
manager) and the system. As a requisite, sensor nodes 
need mechanisms that allow a better control of the tasks 
that are being run. A possible solution is the use of data 
structures that allow preemptive multitasking.

The goal of this article is to present the current state of 
the art, regarding programmability in BSNs. Moreover, 
we want to present potential benefits of a paradigm shift 
in which healthcare professionals become the actual 
programmers and maintainers of the BSNs. With that 
in mind, we briefly present a software architecture that 
has been developed with the goal of allowing program-
mability at network and sensor node levels.

Background

Many issues related to software for BSNs have not 
been discussed yet. Among them, we can mention: (i) 
the development of graphical user interfaces directed 
to healthcare personnel; (ii) the hardware abstraction 
layers (HALs); (iii) the standardization of services 
and information structuring (BSN ontology); and (iv) 
programmability at sensor and sensor node levels. The 
solutions to these problems can lead to improvement 
of the effectiveness of these systems. 

Currently, the software used in BSNs has the fol-
lowing characteristics:

• They are composed of proprietary systems built 
based on a specific architecture (hardware), and 
designed for handling a single application. They 
have little or no modularization, and they are not 
committed to software development methodolo-

gies. In general, they do not employ multiprogram-
ming. Sensor nodes are usually viewed just as 
sources of data, and all processing is performed 
in a gateway—an element that interconnects the 
BSN to other systems—or in a Local Processing 
Unit (LPU), which is an element to where the data 
are transmitted. Some examples of such systems 
are presented in Asada, Shaltis, Reiner, Sokwoo, 
and Hutchinson (2003), Valdastri, Menciassi, 
Arena, Caccamo, and Dario (2004), Linz, Kall-
mayer, Aschenbrenner, and Reichl (2006), Kara, 
Kemaloglu, and Kirbas (2006), and Chakravorty 
(2006).

• These systems are usually based on a generic, 
general purpose model. It is usually based on 
the NesC programming language (Gay, Levis, 
von Behren, Welsh, Brewer, & Culler, 2003), on 
the TinyOS Operating system (Hill, 2003), and 
on a network programming system, the Deluge 
(Hui & Culler, 2004). All of these systems are 
free of charge, and they were developed by the 
University of California, in Berkeley. CodeBlue 
(Welsh, 2006), WHMS (Jovanov, 2006), and 
UbiMon (ICL, 2006) are examples of designs 
that use the TinyOS framework. Other examples 
are presented in (Bauldus et al., 2004) and in 
(Farshchi, Nuyujukian, Pesterev, Mody, & Judy, 
2006).

Regarding programmability, systems built based on 
TinyOS have the following limitations when applied 
to BSNs:

• The NesC programming language imposes a pe-
culiar syntax, based on concepts emerged from 
software engineering. Without the knowledge of 
programming logic and the expertise in managing 
software components, it is virtually impossible 
for a nonspecialized user to use this system.

• The multiprogramming model used in TinyOS 
is not interactive enough. It offers little control 
over the activities (tasks) run by the sensor node, 
because there is no context switch. Tasks cannot 
be immediately interrupted or replaced in order 
to answer a policy established by the application, 
or to answer to a command issued by the user. 
Moreover, according to Han, Bhatti, Carlson, 
Dai, Deng, Rose, Sheth, Shucker, Gruenwald, 
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and Torgerson (2005), the execution of more 
complex tasks can be limited by the occurrence 
of deadlocks.

BSNs must be designed to operate in an autonomous 
manner. On the other hand, they should offer mecha-
nisms that yield the control to healthcare personnel, 
since all the functionalities of the network should reflect 
their judgment and their clinical evaluation. Thus, a great 
challenge in BSN software design is to increase, in a 
transparent way, the access to the internal configurations 
of the network and its sensor nodes without damaging 
its capability for autonomous operation.

 

prograMMIng Body sensor 
netWorks

Software Architecture for Body-worn Sensor Networks 
(SOAB) is a system that is being developed at the Uni-
versity of Brasilia to support BSN-based applications 
(Barbosa et al., 2006). SOAB incorporates the concept 
of programmability, presented in the introduction of this 

article, as functionality (service) offered by the BSN. 
Figure 1 presents a diagram illustrating the activities 
related to the method for programming BSNs proposed 
by SOAB. Part of these activities should be run by 
healthcare professionals (clinicians), and the remaining 
activities are run by the system itself.

Figure 1a refers to programming at deployment 
time. These activities are responsible for the definition 
of mechanisms and policies that are included in the 
sensor nodes to support a specific application. Figure 
1b refers to the run-time set-up process, responsible for 
the definition and/or adjustments of applications and 
data sources. The detailed definition of these activities 
will be presented later, during the description of the 
layers of the proposed architecture.

SOAB is a modular system, divided into four 
independent functional layers: (i) a graphical inter-
face, developed especially for healthcare personnel; 
(ii) middleware for interconnection of the BSN with 
the Internet; (iii) a server for handling the services 
related to the services requested by the programmers; 
and, finally, (iv) an operating system with support for 
preemptive multitasking, which will be installed in 

Figure 1. Activity diagrams to describe the SOAB programming methodology



1104  

Programming Body sensor Networks

the sensor nodes. This operating system was named 
MedOS, and one of its main features is that it tries to 
increase the lifetime of the sensor nodes by means of 
proper scheduling of tasks, based on policies that are 
adapted to biomedical applications. In order to sys-
tematize these policies, an automata-based model has 
been used. Moreover, MedOS allows BSN managers 
to manipulate the states of the running tasks. Figure 2 
presents an overview of SOAB. 

In the first layer of SOAB (Figure 2), we have the 
BWSNET Configuration Tool. This graphical interface 
is responsible for providing means by which healthcare 
professionals can describe their algorithms in a way 
that is more intuitive, less time-consuming, and less 
error-prone. This interface also allows the possibility 
of including new sensors that were not initially speci-
fied, without the need to recompile the source code. 
An interface based on Java Reflection (Java Tutorials, 
2006) was used to achieve this feature. The BWSNET 
Configuration Tool has also a simulator that acts as a 
virtual debugger for estimating the sensor node life-
time and other performance metrics. As a sample of 
the BWSNET Configuration Tool, Figure 3a shows a 
deployment-time programming interface for the acqui-
sition of the electrocardiogram (ECG), while Figure 
3b shows the run-time set-up interface.

Figure 3b also shows how an application is defined, 
and how it can be modified. As an example, the ap-
plication “monitoring user stress” was defined by four 
variables: blood pressure, ECG, heart rate, and Blood 
O2. Each variable can also be defined by other variables 
of data sources, as described by Carvalho, Perillo, 
Heinzelman, and Murphy (2004). The “ECG” variable, 
in this case, has been defined by three data sources: ECG 
1Lead 100 Hz, ECG 3Leads 500 Hz, and ECG 6Leads 
1000 Hz. In order to support these functionalities, the 
tasks and the software artifacts have also been included 
at deployment-time (see Figure 3a).

In order to increase the lifetime of the network 
and, consequently, of the application, the system is 
responsible for determining how much time each data 
source should stay active, and how it should operate 
(the required precision). In order to do so, the system 
uses information regarding the application in order to 
execute policies that promote, for instance, energy sav-
ing. These policies act on the scheduling of the running 
tasks and on the adjustment of the bandwidth, and of 
the transmission power of the communication interface 
of the sensor nodes (Sensor QoS Level). By using the 
run-time set-up interface, the healthcare professional 
can alter the configuration that is usually chosen by the 
system, excluding and/or adding new data sources and 
variables, and can manipulate the Sensor QoS Level. 

Figure 2. SOAB’s four layer system
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The user can also change the current values attributed 
to the priorities associated with the tasks, and also 
suspend and restart tasks.

In order to provide support for the programming and 
reconfiguration of the sensor nodes from the Internet, 
a group of remote procedure calls (RPCs) has been 
implemented in compliance with the recommenda-
tions of the W3C Web Services (http://www.w3.org/
TR/2004/NOTE-ws-arch-20040211/; http://www.
w3.org/TR/wsdl20/). These RPCs represent the XML 
middleware layer in Figure 2.

In the third layer, we have the BWSNET Proxy. This 
software entity has been projected to operate in the 
gateway devices. It is responsible for the translation of 
the requisitions of the SOAP XML format (http://www.
w3.org/TR/2003/REC-soap12-part1-20030624/) to 
commands that are understandable to the underlying 
layer. Besides, it has the responsibility of creating the 
real image of the system from the BSN manager’s 
program and the correspondent automata, the selfad-
justable binary code that will be executed by the sensor 
nodes. Another functionality of the BWSNET Proxy 
server that is equally important, is that it promotes the 
integration of the BSN with an external healthcare 
information system (HIS).

Figure 4 shows the module that is responsible for 
selecting the best automatum for a given configuration 
defined at deployment time. The automata generator is an 

intermediate-level intelligent compiler. It is composed 
of three modules. The “Parser” module is responsible 
for extraction relevant information for the “Selector” 
module. In practice, these informations are related to 
parameters, such as the objective of the application, the 
number of tasks, the types of tasks, and the selected 
alarms, among others. The values of these parameters 
are used for filling a table of parameters that will be 
used by the selector module. The “Selector” module 
chooses the automatum that maximizes the potential of 
each application, guaranteeing a greater lifetime for the 
system. In practice, the selector module is a decision 
tree (Cormem, Leiserson, & Rivest, 1997, pp. 173) 
that is responsible for the choice of the best automatum 
from a set of possible automata that are deposited in an 
automata repository. This choice is made based on the 
table of values that is made available by the “Parser” 
module. The definition of this three (selection algorithm) 
is based on the medical knowledge that influences the 
values of each parameter in the table.

After the choosing the best automatum, the “Gen-
erator” module can generate the “automato.c” file (see 
Figure 4), which will represent the program that will 
be embedded into the sensor node. For this task, a de-
scription of the necessary code libraries and necessary 
system calls should be used. This description is stored 
in the automata repository, along with the functional 
description of each automatum. During the automata 

Figure 3. Examples of SOAB graphical interfaces
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selection, this configuration file is used by the “Genera-
tor” module for assembling the “automato.c” file.

In the last layer of SOAB, there is an application-
oriented operating system called MedOS. The main 
objective of MedOS is to provide support for the 
behavioral adjustment of the sensor-node at run-time, 
changing the priority values that can be associated with 
the tasks provided by the sensor-node. Figure 5 shows 
the main artifact of MedOS and their dependencies. The 
functionalities are represented by tasks created together 
using FreeRTOS libraries (Barry, 2006). 

Besides the preemptive multitasking functionality, 
MedOS implements a set of device drivers, a set of 
library functions that are used by the automata genera-
tor module, and a command interpreter. The command 
interpreter allows programmers to alter the scheduling 
of tasks that is currently adopted by the system. This 
functionality may or may not be included during the 
generation of the image of the system. If this function-
ality is disabled, artifacts related to the library “inter-
preter.h” (Figure 5) will not be included. Thus, only 
artifacts related to the “policy.h” file (which represent 
the behavior of the automatum that has been chosen 
by the application) will be included in the “automata.
h” file, which represents the image of the system that 
will be installed in the sensor nodes. 

In addition to the code libraries of FreeRTOS, the 
MSPGCC code libraries (http://mspgcc.sourceforge.

net/) have also been used for the implementation of 
MedOS.

SOAB has been tested in the hardware platform pre-
sented in Figure 5. The sensor-nodes were built using the 
Olimex MSP-P149 kit (http://www.olimex.com/dev/
msp-p149.html), with a bluetooth radio BlueSRMIFv1 
(http://www.sparkfun.com/commerce/product_info.
php?products_id=582). This system allows the moni-
toring of electrocardiographic and electromyographic 
signals, as well as skin temperature, arterial pressure, 
and galvanic skin resistance.

future trends

The SOAB includes three main innovative features 
to the BSN research area: (i) a graphical interface 
for programming and reconfiguration of the sensor 
nodes; (ii) an application of the concept of preemptive 
multitasking to BSNs; and (iii) an intelligent compiler 
(which is also an automata generator). The authors 
believe that these three features will be pursued by 
future efforts in this area. Some other potential future 
trends may be highlighted: 

• The study of man-machine interfaces, and its 
repercussions on programming and reconfigura-
tion models of BSNs. A graphical user interface is 

Figure 4 . The automata generator module
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an attractive and effective alternative, especially 
for remote access using the Internet. However, 
in some situations and environments, such as in 
an emergency room, other devices (hardware) 
could be used in a more effective way. Baudus 
et al. (2004) discuss the use of a infrared set-up 
pen, which works as a remote control, allowing 
the physicians and nurses to connect the data 
sources needed for patient monitoring. These 
data sources are implemented with sensor nodes 
that can be interconnected to form a BSN that is 
suitable for the desired application.

• Smart compilers that are capable of embedding, 
during the programming at deployment time 
of the sensor nodes, mechanisms and policies 
that increase the effectiveness of the application 
should also be targeted by new developments. 
These compilers must be based on a specialist’s 
knowledge, since the medical expert is the one 
who should know how to schedule the resources 
according to each application, and should operate 
in a transparent way to the user. 

• Smart and adaptive algorithms for task scheduling 
that take into account the dynamics of the appli-
cations should also be pursued. For instance, the 
health condition of the patient and the capability 
of the sensor node and of the network should be 
taken into account in the formulation of these 
algorithms. In this context, preemptive multitask-
ing allows the computer system to guarantee for 

each process a regular “slice” of operating time 
in a more reliable way. It also allows the system 
to rapidly deal with important external events, 
such as incoming data, which might require the 
immediate attention of one or another process.

• Stantardization of the software features and of 
the process related to the development of sytem 
for BSNs will also be an important issue. In this 
subject, we can highlight: (i) the development of 
methodologies for evaluation of these systems 
regarding their usability and effectiveness; and 
(ii) the standardization of the interfaces and ser-
vices as a tool for promoting the independency 
of hardware and for facilitating the integration of 
information with other networks and systems. For 
example, the definition of a BSN Sensor Ontol-
ogy could establish a hierarchy that expresses 
the semantics associated to each type of sensor, 
group or relationship. This approach can increase 
the effectiveness in the use of BSNs facilitating 
the gathering of information, which could also 
be used for programming and reconfiguration of 
the network. 

conclusIon

By using a modular software architecture that is 
designed according to the requirements of possible 
applications, it is possible to increase the capability 

Figure 5. MedOS artifacts and sensor node architecture
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for autonomous operation of the BSN, and still offer 
tools for programming and reconfiguration of these 
systems that can be used for people with little grasp 
on programming languages.

This text presented a proposal for a paradigm shift 
for the programming and reconfiguration of the BSNs. 
By making more suitable tools available—such as 
programming interfaces, intelligent compilers, and 
application-oriented algorithms—the goal is to allow 
healthcare workers to become the actual programmers 
and maintainers of this technology. The possibility of 
developing and/or testing new applications without the 
need of specific technical knowledge on programming 
languages and computational models can facilitate the 
popularization of this technology.

SOAB integrates concepts such as reflection, Web 
services, automata, intelligent compilers, and preemp-
tive multitasking, with the goal of becoming a solution 
that is functional, portable, usable, effective, and easy 
to maintain. Also, this architecture can be extended 
into four levels, allowing its improvement and the 
implantation of other systems (services). This solution 
establishes a concept: application-oriented software 
architecture.

references

Asada, H., Shaltis, P., Reiner, A., Sokwoo, R., & 
Hutchinson, R. C. (2003, May–June). Mobile monitor-
ing with wearable photoplethysmographic biosensors. 
IEEE Engineering in Medicine and Biology Magazine, 
22(3), 28–40.

Baldus, D., Klabunde, K., & Müsch, G. (2004). Reliable 
set-up of medical body-sensor networks. Lecture notes 
in computer science, 2920/2004, 353–363.

Barbosa, T. M. G. de A., Sene, I. G. Jr., Carvalho, H. 
S., da Rocha, A. F., Nascimento, F. A. O., & Camapum, 
J. F. (2006). Application-oriented programming model 
for sensor networks embedded in the human body. In 
Proceedings of the 28th Annual International 
Conference IEEE Engineering in Medicine and Biol-
ogy Society (EMBC) (Vol. 1, pp. 6037–6040). IEEE 
EMBC Press.

Barry, R. (2006). FreeRTOS. Retrieved February 6, 
2008 from, http://www.freertos.org/

Carvalho, S. H., Perillo, M., Heinzelman, W., & Murphy, 
A. (2004, January–February). Middleware to support 
sensor network applications. IEEE Network Magazine 
Special Issue, 18(1), 6–14.

Chakravorty, R. A. (2006). Programmable service 
architecture for mobile medical care. In Proceedings 
of the Fourth IEEE International Conference on Per-
vasive Computing and Communications WorkShops 
(PERCOMW´06). IEEE Computer Society Press.

Cormem, T. H., Leiserson, C. E., & Rivest, R. L. 
(1997). Algorithms (1st ed.). Cambrige, Massachusetts: 
MIT Press.

Farschchi, S., Nuyujukian, H. P., Pesterev, A., Mody, I., 
& Judy, W. J. A. (2006, July). TinyOS-enabled MICA2-
based wireless neural interface. IEEE Transactions on 
Biomedical Engineering, 53(7), 1416–1424.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, 
E., & Culler, D. (2003). The nesC language: A holistic 
approach to network embedded systems. In Proceedings 
of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation (PLDI’03) 
(Vol. 38, No. 5, pp. 1–11). ACM Press.

Han, R., Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, 
J., Sheth, A., Shucker, B., Gruenwald, C., & Torger-
son, A. (2005, August). MANTIS OS: An embedded 
multithreaded operating system for wireless micro 
sensor platforms. ACM/Kluwer Mobile Networks & 
Applications (MONET), Special Issue on Wireless 
Sensor Networks, 10(4), 563–579.

Hill, J. L. (2003). System architecture for wireless 
sensor networks. Unpublished doctoral dissertation, 
Computer Science Department, University of Cali-
fornia, Berkeley.

Hui, J., & Culler, D. (2004). The dynamic behavior of a 
data dissemination protocol for network programming 
at scale. In Proceedings of the 2nd international 
conference on Embedded networked sensor systems 
( Vol. 1, pp. 81–94). ACM Press.

ICL - Imperial College London. (2006). Ubiquitous 
monitoring environment for wearable and implantable 
sensors. Imperial College London University Web site. 
Retrieved February 6, 2008, from http://www.doc.ic.ac.
uk/vip/ubimon/partners/index.html



  1109

Programming Body sensor Networks

P
Java Tutorials. (2006). Tutorials trail: The reflection 
AP. Retrieved February 6, 2008, from, http://java.sun.
com/docs/books/tutorial/reflect/

Jovanov, E. (2006). WHMS - wearable health monitor-
ing system. The University of Alabama in Huntsville, 
Electrical and Computer Engineering department Web 
site. Retrieved February 6, 2008, from http://www.ece.
uah.edu/~jovanov/whrms/

Kara, S., Kemaloglu, S., & Kirbas, S. (2006). Low-cost 
compact ECG wih graphic LCD and phonocardiogram 
system design. Springer Jornal of Medical Systems, 
30, 205–209.

Linz, T., Kallmayer, C., Aschenbrenner, R., & Reichl, 
H. (2006). Fully integrated EKG shirt based on embroi-
dered electrical interconnections with conductive yarn 
and miniaturized flexible electronics. In Proceedings 
of International Workshop on Wearable and Implanted 
Body Sensor Networks (BSN’06) (Vol. 1, pp. 23–26). 
IEEE Computer Society Press.

Valdastri, P., Menciassi, A., Arena, A., Caccamo, C., & 
Dario, P. (2004, September). An implantable telemetry 
platform system for in vivo monitoring of physiological 
parameters. IEEE Transactions on Information Tech-
nology in Biomedicine, 8(3), 271–277. 

Welsh, M. (2006). CodeBlue: Wireless sensor networks 
for medical care. Harvard University, Division of En-
gineering and Applied Sciences Web site. Retrieved 
February 6, 2008, from http://www.eecs.harvard.
edu/~mdw/proj/codeblue/

Yang, G. (2006). Body sensor networks. London: 
Springer-Verlag.

key terMs

Application-Oriented Operating System: An 
operating system that is designed or customized for 
fulfilling the interests of an application or of a set of 
similar applications that share a significant part of the 
requirements. This kind of system must include specific 
mechanisms and policies, in order to effectively serve 
the interest of the applications.

Automata or State Machines: A mathematical 
model that can be used for representing the behavior 
of a computational system. A state diagram is used for 

its graphical representation. Basically, an automatum is 
composed of states that can be graphically represented 
by circles and edges, which indicate the actions that 
are responsible by changes of state. In WSNs, usually 
the states are associated with the tasks, and the edges 
are directly related to the events that are responsible 
by the changes in states.

Context Awareness: The capability of compu-
tational systems of determining circumstances and 
scenarios in which its users may be inserted, or sim-
ply determining information that is of interest to the 
system. To do so, the system uses rules (intelligent 
algorithms) and data that can be supplied by the user 
itself, or obtained by sensors. These data can also lead 
to probabilistic information. In this case, the context 
awareness is not exact, but instead, a hypothesis with 
an associated probability value.

Multiprogramming: The approach that allows 
several processes to run simultaneously in a system. In 
a multiprogrammed sensor node, several programs are 
simultaneously maintained and managed in the memory 
by resident software. These programs are organized 
as tasks. The execution of these tasks follows a policy 
that is defined during the design of the system, and it 
is coordinated by a mechanism called task scheduler. 
In WSNs, there are two kinds of multiprogramming: 
(i) event-driven run-to-completion single thread ap-
proach, and (ii) preemptively time-sliced multithread-
ing model.

Ontology: A data model that represents the entities 
that are defined and evaluated by its own attributes, 
and organized according to a hierarchy and a semantic. 
Ontologies are used for representing knowledge on 
the whole of a specific domain or on of it. In WSNs, 
ontologies are included in software architectures as a 
way of facilitating the search for relevant information. 
For example, in a BSN an ontology could be used for 
sensing a specific context (context awareess).

Pervasive Monitoring: The capability of a system to 
keep itself operating under any condition. These condi-
tions can be related not only to the location (space), but 
also to the time. They can also be related to technical 
conditions, such as connectivity, safety, and the amount 
of energy stored in the batteries.

Preemptive Multitasking: An approach of mul-
tiprogramming. The operating system can interrupt 
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the execution of a task and initiate the execution of 
another, in order to satisfy the restrictions that are 
defined by the policy that is being used for the sched-
uling of tasks. It also allows the execution of a task to 
be suspended or interrupted by a command received 
from the application.

Quality of Service (QoS): The capability of the 
system of adjusting itself or of offering mechanisms 
that allow its adjustment in order to fulfill the requisites 
that are defined for each application. In WSNs the 
parameters that are commonly related to the quality 
of the service that is offered by this kind of system 
are application lifetime (which is related to energy 
consumption), connectivity, confidentiality, reliability, 
bandwidth, and transmission power. 

Reflection: A concept related to software: program-
ming languages, operating systems, middleware, and 

Graphical User Interface (GUI). A reflexive system 
offers mechanisms that allow its data structures to 
be inspected and/or modified during execution (at 
run-time). For this, the system must keep its selfrep-
resentation that is commonly organized as metadata. 
In nonreflexive systems, the metadata usually are lost 
or discarded during compilation, typically when the 
low-level codes (assembly language) are generated.

Web Services: Modular, independent, selfdescrip-
tive programs that are designed to guarantee interoper-
ability among systems that are developed with different 
technologies and that interact in a computer network. 
Typically, Web services are described by using the 
WSDL (Web Services Description Language), and 
they use SOAP (Simple Object Access Protocol) for 
message exchange. 




