Modelagem e análise dos efeitos da subamostragem espaço-temporal em ressonância magnética dinâmica com aquisições em espiral

Pedro Henrique Farias da Costa (phfcosta03@gmail.com) João Luiz Azevedo de Carvalho (joaoluiz@pgea.unb.br)

Departamento de Engenharia Elétrica, Universidade de Brasília

Introdução

- ▶ Em exames de ressonância magnética dinâmica, a aquisição de dados deve ser rápida [1].
- ▶ Isso é feito subamostrando o chamado espaço k-t, o que resulta em artefatos de aliasing [2,3].
- ► Trajetórias em espiral permitem cobrir todo o espaço k com poucos views.
- As formas mais comuns de ordenação de views são a sequencial e a entrelaçada.
- ► Aquisição em espiral com ângulo dourado [4,5]:
- ► Espalha o aliasing pela imagem de forma mais homogênea;
- ► Ainda inexplorada em aplicações cardiovasculares.
- ► Objetivo: Comparar as abordagens sequencial, entrelaçada e de ângulo dourado para aquisição de imagens de ressonância magnética dinâmica usando trajetórias em espiral com subamostragem.

Teoria: ordenação de views

- ► Caso sequencial: espirais uniformemente espaçadas; para quadros temporais consecutivos, rotações de $\varphi_s = 360^{\circ}/N$, em que N é a quantidade total de braços de espiral (Fig. 1a).
- ► Caso entrelaçado: espirais agrupadas de modo a cobrir uma seção do espaço k; para quadros temporais consecutivos, rotações de $\varphi_e=360^\circ/M$, em que M é o fator de subamostragem (Fig. 1b).
- ► Caso ângulo dourado: espirais uniformemente espaçadas; para quadros temporais consecutivos, rotações de $\varphi_d=180^\circ/\left(1+\sqrt{5}/2\right)$ (Fig. 1c).

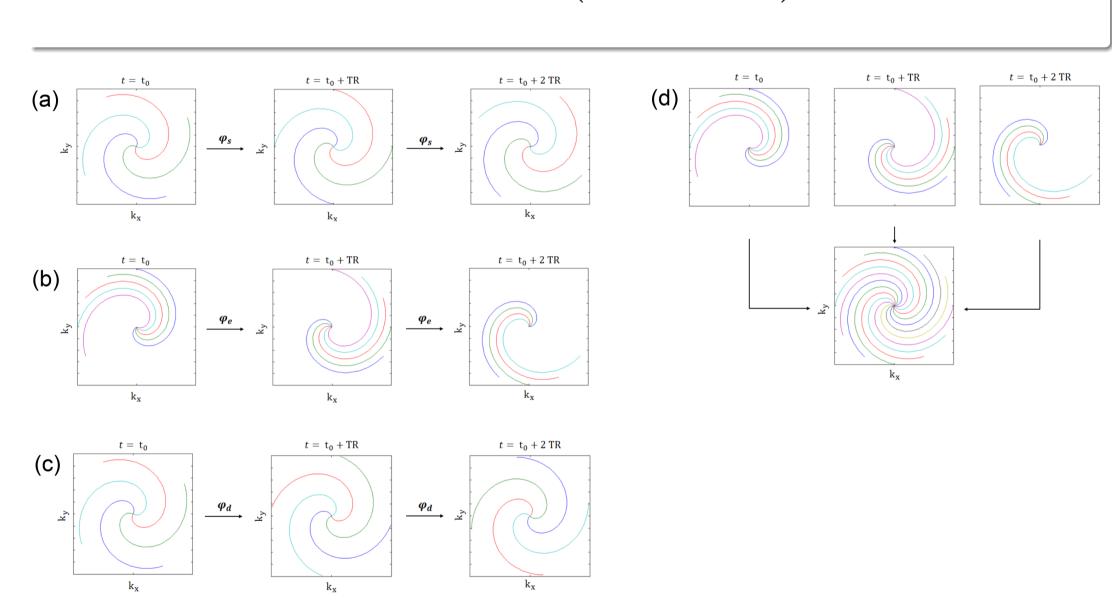


Fig. 1: Ordenação de views: (a) sequencial; (b) entrelaçada; (c) ângulo dourado; (d) reconstrução com janela deslizante.

Métodos: "aquisição"

- Simulações em Matlab usando fantoma numérico que modela o movimento do coração (Fig. 2) [6].
- ► Tempo entre quadros temporais (TR): 10 ms.
- ► As trajetórias espirais foram projetadas utilizando o método desenvolvido por Hargreaves [7].
- ▶ braços de espiral: N = 32;
- ▶ fator de subamostragem: M = 8;
- ightharpoonup N/M = 4 views por quadro temporal, simulando aquisição ao longo de 4 batimentos cardíacos.
- ► Três variações de ordenação de views:
- ightharpoonup sequencial ($\varphi_s=11,25^\circ$);
- \blacktriangleright entrelaçada ($\varphi_e=45^\circ$);
- ▶ ângulo dourado ($\varphi_d \approx 111,25^\circ$).

(a)

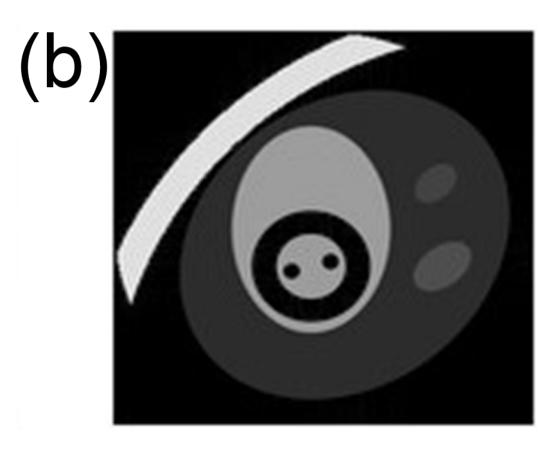


Fig. 2: Fantoma numérico que modela o movimento do coração: (a) diástole; (b) sístole.

Métodos: reconstrução

- ► Reconstruções realizadas quadro a quadro utilizando NUFFT (non-uniform fast Fourier transform) [8].
- ▶ Janela deslizante [9] foi utilizada para combinar views de L quadros temporais adjacentes (Fig. 1d).
- ► Reduz os artefatos de aliasing espacial devido à subamostragem, mas causa borramento temporal.
- ► A resolução temporal é igual ao comprimento da janela deslizante: $\Delta t = L \times TR$.
- Foram testados valores de Δt variando entre 10 e 80 ms, isto é, com L variando entre 1 e 8.
- \triangleright Quanto maior o L, mais se reduz o aliasing espacial, entretanto, pior é a resolução temporal e, consequentemente, o borramento temporal.
- ▶ Um conjunto completo de dados (N views) é obtido quando se combinam as imagens de M quadros adjacentes.

Métodos: análise qualitativa e quantitativa

- ► Para visualização dos resultados, usamos imagens mostrando somente a coluna central de cada imagem p/ os diferentes quadros temporais (Fig. 3).
- ► Resultados foram comparados qualitativamente e quantitativamente com o resultado de referência, obtido usando M=1 e L=1 (Figs. 2 e 3).
- ▶ Imagens de erro: diferença absoluta entre a imagem de referência e a imagem obtida para cada configuração.
- Análise quantitativa:
 - ► razão sinal-erro (SER);
 - histograma das intensidades do erro (no artigo);
 - ▶ desvio padrão do erro.

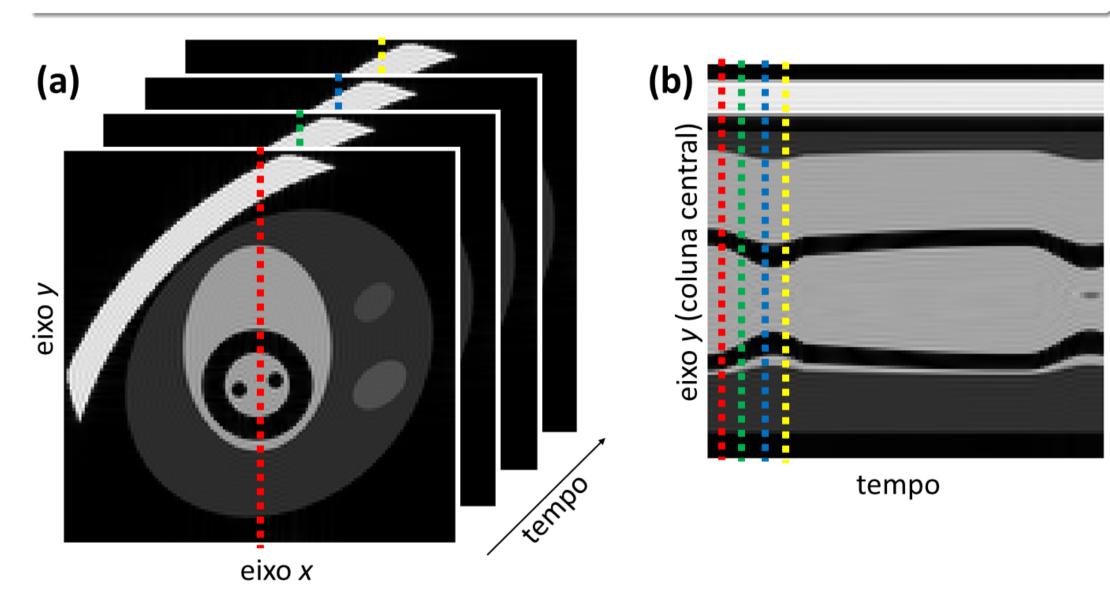


Fig. 3: (a) imagem de referência; (b) imagem mostrando a coluna central de cada imagem para os diferentes quadros temporais.

Resultados

Os resultados da Fig. 4 mostram que, ao se diminuir o comprimento da janela deslizante, o borramento temporal diminui ao passo que o aliasing espacial aumenta. Nesse caso, aparecem focos com pixels muito claros nas configurações sequencial e entrelaçada, enquanto que na configuração ângulo dourado os artefatos de aliasing tem intensidade média menor.

A Tabela 1 mostra que, nos casos em que se utiliza janela deslizante curta ($\Delta t \leq 40$ ms) para melhorar a resolução temporal, a configuração ângulo dourado é a de melhor SER e menor desvio padrão do erro. O caso entrelaçado se mostrou pior que o caso sequencial para todos os comprimentos de janela avaliados.

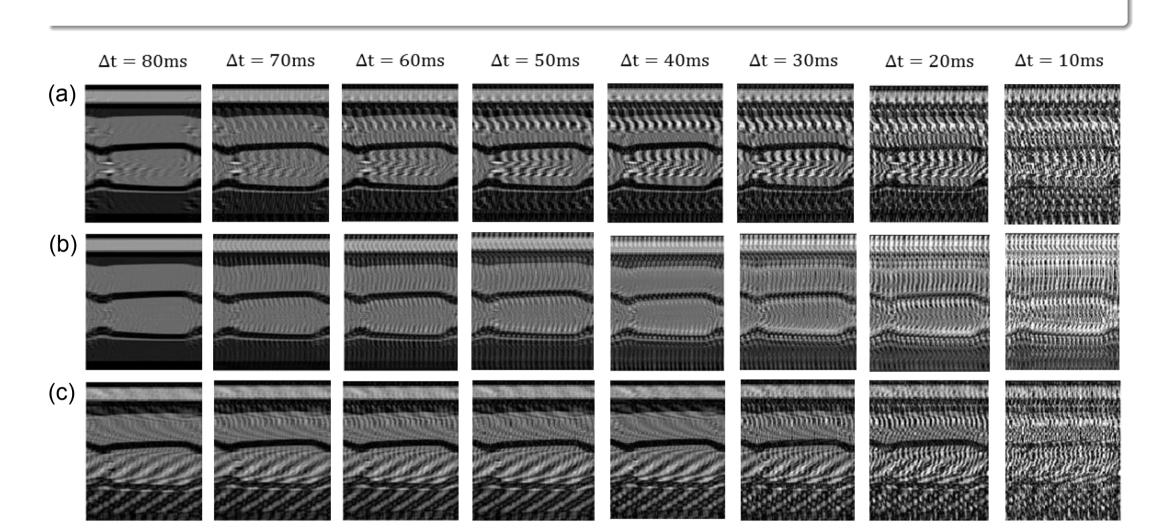


Fig. 4: Resultados variando o comprimento de janela deslizante: (a) sequencial; (b) entrelaçada; (c) ângulo dourado.

Tabela 1: Resultados quantitativos variando o comprimento de janela deslizante para os três métodos de ordenação de views.

juncia aconzante para os tres metodos de ordenação de views.						
	razão sinal-erro (dB)			desvio padrão do erro (u.n.).		
$\Delta t \; (\text{ms})$	sequencial	entrelaçada	ângulo dourado	sequencial	entrelaçada	ângulo dourado
80	33,4	33,4	27,0	1,00	1,01	1,59
70	30,9	29,5	26,2	1,07	1,03	1,67
60	28,7	26,2	25,6	1,31	1,39	1,78
50	26,5	23,7	25,1	1,64	1,86	1,86
40	24,6	21,5	25,0	2,08	2,59	1,97
30	22,4	19,4	22,8	2,56	3,02	2,37
20	20,1	17,1	20,4	3,27	3,77	3,13
10	16.8	14.1	16.8	4.56	5.11	4.59

Discussão e Conclusões

As simulações mostraram que a configuração utilizando ângulo dourado pode ser uma alternativa vantajosa quando se deseja melhorar a resolução temporal, pois resulta em imagens com menor concentração de artefatos de aliasing. Em trabalhos futuros, sugere-se avaliar o desempenho do ângulo dourado em técnicas de compressed sensing [10,11].

Referências

- [1] Glover & Pelc. Magn Reson Annu, p. 299, 1988.
- [2] Tsao. Magn Reson Med 47:202, 2002.
- [3] Madore et al. Magn Reson Med, 42:813, 1999.
- [4] Kim et al. Magn Reson Med 65:1365, 2011. [5] Winkelmann et al. IEEE Trans Med Imaging 26:68, 2007.
- [6] Shin et al. IEEE Trans Med Imaging 26:917, 2007.
- [7] Hargreaves. PhD thesis, Stanford University, 2001.
- [8] Fessler & Sutton, IEEE Trans Signal Proc 51:560, 2003.
- [9] Riederer et al. Magn Reson Med 8:1, 1988.
- [10] Lustig et al. Magn Reson Med 58:1182, 2007.
- [11] Gamper, Magn Reson Med 59:365, 2008.