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Information extracted from the surface electromyographic (sEMG) signals can allow for
the detection of movement intention in transfemoral prostheses. The sEMG can help
estimate the angle between the femur and the tibia in the sagittal plane. However,
algorithms based exclusively on sEMG information can lead to inaccurate results. Data
captured by inertial-sensors can improve this estimate. We propose three myoelectric
algorithms that extract data from sEMG and inertial sensors using Kalman-filters. The
proposed fusion-based algorithms showed improved performance compared to methods
based exclusively on sEMG data, generating improvements in the accuracy of knee joint
angle estimation and reducing estimation artifacts.
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1. Introduction

Several research groups have developed electronic systems for controlling joints.
These devices include, for instance, electromechanical knees, which use some form of
computational intelligence to control the resistive torque around the knees. Grimes
et al. [1977] developed an echo control scheme for gait control, in which a modified
knee trajectory is deduced from the healthy leg and played back on the contralateral
side. Popovic et al. [1995] presented a battery-powered active knee joint actuated
by direct current (DC) motors, controlled by a finite state knee controller that
uses a robust position tracking algorithm for gait control. Some companies have
also developed electronic knees for clinical use. For example, the Otto Bock C-leg
[Kastner et al. (1999)] provides adjustable resistance for flexion and extension in the
swing using onboard intelligence and a particular software package. Sup et al. [2008]
introduced a finite-state machine for a knee ankle prosthesis with pneumatic actu-
ators. The stiffness and damping parameters of the impedance controller can take
different values according to four gait states: stance flexion/extension, pre-swing,
swing flexion, and swing extension. A variant of prosthesis equipped with electric
actuators and a unidirectional series spring is presented in [Sup et al. (2008a)]. In
this system, a load cell in series with each actuator controls the force. The per-
formance was evaluated with test with healthy subjects on a treadmill. The gait
patterns generated with the prototype was similar to those found in experiments
with healthy people with a healthy gait.

A pattern-recognition-based myoelectric control algorithm is typically composed
of various main modules; a data segmentation stage handles the data before feature
extraction, to improve precision and response time. A feature extraction stage pre-
processes the data for reducing the amount of information to be analyzed. Linear
or nonlinear transformation of the original data can allow for the acquisition of
new variables (features). The central component is the neural network classifier,
which must be capable of learning relations between the input features and the
desired control outputs. Significant advancements in pattern recognition method-
ology are in progress. A common approach is to extract parameters from the data,
such as time-domain features (e.g. mean absolute value, waveform length, number
of zero crossings) [Kelly et al. (1990); Hudgins et al. (1993)], spectral parameters
(e.g. auto-regressive model) [Huang et al. (2005); Hargrove et al. (2008)], time-
frequency coefficients (e.g. short-time Fourier transform) [Englehart et al. (2001)]
and time-scale coefficients (e.g. discrete wavelet transform and wavelet packet
decomposition) [Englehart et al. (2001); Chu et al. (2005); Wang et al. (2006)].
Further data reduction may be achieved using a feature projection stage between
pre-processing and classification [Englehart et al. (2001); Chu et al. (2005); Wang
et al. (2006)]. This approach eliminates redundant information, which speeds up the
training process. It may also help mapping the data into small and well-separated
clusters, by absorbing signal variations and noise present in the data’s original
vector-space.
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On the other hand, the problem of continuously predicting joint angles using
surface electromyographic (sEMG) signals is comparatively underdeveloped [Smith
et al. (2008); Ha et al. (2011)]. Surynarayanan and Reddy [1997] developed an
intelligent system to detect the elbow joint angle from sEMG signals measured on
the biceps and reported a maximum root mean squared (RMS) error on the order
of 24%. Gupta and Reddy [1996] found a linear relationship between quasi-static
index finger flexion angles and sEMG signals from the flexor digitorum superficialis
muscle. Recently, Reddy et al. used myoelectric signals from the flexor muscle to
control computer models of finger and wrist joints. Fakuda et al. [2003] developed a
manipulator controlled by arm movements, using myoelectric signals to determine
which joint should be controlled. Sawaguchi et al. [2011] developed estimation mod-
els of the wrist angle from the corresponding myoelectric potential. One of them is
a one-link model considering the moment arm. The other is illustrated by a multi-
body model with a half-moon shaped rigid body rolling inside a bowl-shaped body.
Each model provided good estimation of the wrist angle from measured surface
myoelectric potentials. Comparing the estimation accuracy for the two models,
the half-moon-shaped model yield more accurate estimation. Zhang et al. [2012]
presented an mth order nonlinear model to describe the relationship between the
sEMG signals and the joint angles of human legs; in this method a simple Back
Propagation (BP) neural network has been used for model estimation. The results
showed that the proposed EMG-based method had a good performance for angle
estimation for both able-bodied subjects and spinal cord injury patients; the aver-
age RMS error in angle estimation for leg extension exercises was less than 9◦, and
the average RMS error for treadmill exercise is less than 6◦ for all the able-bodied
subjects. Yang et al. [2013] proposed a hierarchical projected regression method
to allow for online estimation of the joint angle of the human elbow. Lizhi et al.
[2014] established a state space model with an unknown structure, for estimation
of the finger joint angle, which used time-domain features extracted from sEMG
signals. Shengxin et al. [2017] applied a radial basic function (RBF) neural network
to estimate the tremor in joint angle based on an estimate of the root mean square
of sEMG. Tang et al. [2014] used the BP neural network to map the nonlinear
relationship between sEMG and the elbow joint angle. In this type of myoelectric
control, the level of muscle activity, either in isometric or isotonic contraction in
a dynamic limb motion, is the most important process to be recognized [Ferreira
et al. (2005)]. To evaluate this activity level, a combination of time domain and fre-
quency domain features may provide improved estimation precision, in comparison
with either approach independently. This feature combination is also computation-
ally efficient, and is more robust to electrode displacement [Delis et al. (2009)].

We have proposed two different algorithms for estimating the intended knee joint
angle from sEMG signals measured on upper-leg opposing muscles [Ferreira et al.
(2005); Delis et al. (2009)]. The first method uses the autoregressive (AR) model
for feature extraction and a Levenberg–Marquardt (LM) multi-layer perceptron
neural network for supervised learning [Ferreira et al. (2005)]. The second method
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uses time- and frequency-domain sEMG feature extraction (amplitude histogram
and AR model, respectively), self-organizing maps for feature projection, and a
LM neural classifier [Delis et al. (2009)]. However, myoelectric control methods
that rely solely on sEMG signals may lead to significantly inaccurate knee joint
angle estimates, for different reasons [Merletti and Parker (2009)]: (i) high level of
amplification due to the typically low sEMG signal levels; (ii) failures due to broken
electrode connections or sudden changes in the electrode–electrolyte interface due
to poor contact; (iii) motion of the electrodes over the skin; and (iv) noise caused
by the power supplies.

The previous results motivate the search for other types of sensors to be used in
prostheses, which may potentially allow adaptations during its use by the patient.
For example, microelectromechanical gyroscopes and joint motion sensors may
allow for measuring the angular velocity of the knee joint. The integration of these
data can be used to obtain an estimate of the knee joint angle, which can be used to
make small corrections of the neural network coefficients in real-time. Fusion of the
sEMG information with inertial sensor data could also improve the precision of the
prosthesis control during movement, and thus provide a more reliable myoelectric
control [Oskoei and Hu (2007)].

Data fusion is the continuous process of implementing a model of the domain
of interest, using data from different types. Multisensor data fusion has found
widespread use in diverse areas: industry, commerce, local robot guidance for global
military defense, etc. [Luo et al. (2002)]. The purpose of data fusion is to produce
an improved model or estimate of a system from a set of independent data sources.
The use of range sensory data allows automatic extraction of information about
the sensed environment under different operating conditions, which increases the
performance, reliability, data rates, and autonomy of the estimation algorithm [Luo
et al. (2002); Hall and Llinas (1997); Luo (1996)].

In many real-time applications, the desired model can be described with the use
of state vectors that establish time dependence in dynamic processes [Diniz (1997)].
The combination of information from the sensors and subsequent estimation of
the states should be done coherently to reduce the uncertainty about the actual
states. The Kalman-filter is a state estimation algorithm widely used for optimally
estimating the unknown state of a linear dynamic system from Gaussian-distributed
noisy observations [Manyika and Durrant-Whyte (1994)]. The algorithm uses a
predefined system model to predict the state at the next time step [Diniz (1997)].

The fusion of sEMG signals applications with other data is not common in
the literature. However, a few groups have investigated this type of fusion. Silva
et al. [2003], for example, applied data fusion of mechanomyography (MMG) signals
for the generation of binary control signals for an electrically powered prosthesis.
The goal was to implement a practical MMG-based muscle contraction detection
system for prosthesis control. In this work, the MMG signals were recorded using
silicon-embedded microphone-accelerometer sensor pairs. A multisensor data fusion
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strategy then generated binary control signals, based on the RMS values of the seg-
mented signals acquired with each transducer [Silva et al. (2003)]. The measured
contraction detection accuracies were 95% and 86%, for the wrist extensors and the
flexors, respectively. López et al. [2009], on the other hand, proposed two strate-
gies for data fusion based on variance weighted average (VWA) and decentralized
Kalman-filter (DKF), by means of an arrangement of redundant sEMG potentials.
They estimated the muscle contraction amplitude and converted it to an angular
reference used to control the robotic joint. The VWA and DFK algorithms pro-
vided satisfactory results, in the sense that the joint never moved beyond its safety
range [López et al. (2009)]. Fan and Yin [2013] presented a healthcare technology
for active and progressive early rehabilitation using multisource information fusion
from surface electromyography and force-position extended physiological proprio-
ception. The active-compliance control based on interaction force between patient
and exoskeleton is applied to accelerate the recovery of the neuromuscular function.
The Extended physiological proprioception (EPP) feedback system based on tactile
stimuli is developed to help rebuild the closed-loop control system of human body.
Preliminary experiments and clinical trial indicate the human-machine system can
move coordinately, which demonstrates the feasibility, safety and effectiveness of
the progressive exoskeleton-assisted training [Fan and Yin (2013)].

In this work, we propose three myoelectric algorithms based on the fusion of
sEMG signals and inertial sensor data, for estimation of intended knee joint angle,
which may potentially be used to control active transfemoral leg prostheses (Fig. 1).
The proposed algorithms use a feature extraction stage where time domain methods
(fractal dimension, slope sign changes and waveform length) and frequency domain
methods (cepstral coefficients) are combined. Angular velocity information derived
from a gyroscope is used to improve the angle estimation and to make the system
more robust to artifacts. The first strategy uses an additional feature extraction
stage based on Kalman-filters; in this step, the estimated angular velocity (from the
gyroscopes) and the coefficients obtained by fractal dimension, slope sign changes,
waveform length and cepstral coefficients are fused and used as the input vectors to
the LM neural network to estimate the knee angle. The second strategy combines,

Fig. 1. General block diagram of the knee angle estimation algorithms proposals based on data
fusion.
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during the Kalman-filter’s correction process, the angular velocity information and
the knee angle estimated using the LM neural network. The filter output is the
corrected estimated knee angle from the fusion process. The third strategy is a
modification of the second procedure, and uses a compatibility test, based on the
Mahalanobis distance, between the prediction and the correction processes of the
Kalman-filter. This allows the algorithm to disregard sEMG data which are not
coherent with a motion model (usually when artifacts are present).

The three proposed strategies aim to reduce potential artifacts that arise from
the knee angles estimated by the LM neural network. We tested these methods
using signals collected from twelve healthy volunteers. We then present quantita-
tive and qualitative comparisons between the proposed approaches and previous
estimation methods for knee joint angle, in terms of error-to-signal percentages,
correlation coefficients and error event statistics. The experimental results suggest
that strategies based on data fusion lead to improvements and better robustness to
movement artifacts concerning the algorithms based solely on sEMG signals.

2. Materials and Methods

2.1. Data acquisition and experimental protocol

In order to evaluate the performance of the proposed algorithms, we collected sig-
nals from 12 healthy volunteers, using a microcontrolled bioinstrumentation system
previously developed by our research group [Delis et al. (2009)]. This system ana-
logically multiplexes two channels of amplified sEMG signal, the signal from the
electrogoniometer, and the data from the gyroscope sensors. These signals are sam-
pled using a 13-bit analog-to-digital converter, which is electrically isolated from
the microcontroller and the power supply using an optocoupler and a DC–DC con-
verter. During this procedure, data is transferred to a personal computer using a
serial interface. We adopted a sampling rate of 1043.45Hz per channel. To avoid
aliasing and to eliminate DC components, analog filters limited the sEMG signals
to the 20–500Hz frequency range [SENIAM (2008)]. Also, a digital real-time adap-
tive notch filter reduced the 60Hz power line interference [Ahlstrom and Tompkins
(1985)].

To evaluate the robustness of the proposed methods, we also conducted two
additional sets of tests. First, we acquired new sEMG signals, but we intentionally
loosened the straps that hold the cables between the electrodes and the instrumen-
tation equipment. The idea was to evaluate the robustness to movement artifacts,
by comparing their influence on the knee joint angles estimated by the proposed
fusion-based methods and on those estimated by the algorithms based solely on
sEMG signals. The other set of tests involved evaluating the systems’ robustness
to 60Hz interference. To assess this aspect, we added a 60Hz signal with 0.1mV
amplitude to each sEMG channel (in choosing this magnitude, we adopted the max-
imum 60Hz noise levels observed during the previous experiments, and kept them
constant during the entire procedure).
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Fig. 2. Placement of: (a, b) sEMG electrodes, and (c) electrogoniometer and gyroscope sensors.

The experimental protocol was approved by the research ethics committee of
the University of Braśılia (process no. 079/09, group III). The volunteers provided
informed consent and were studied in accordance with institutional policies. To
collect the sEMG signals, we positioned two pairs of 10mm Ag/AgCl surface elec-
trodes using a bipolar configuration over a pair of antagonist muscles, correspond-
ing, respectively, to the flexion and extension movements of the knee joint (Figs. 2(a)
and 2(b)). The longitudinal axes of the electrodes were made parallel to the mus-
cle’s longitudinal axes, and the distance between the electrode pairs’ centers was
2 cm, according to the SENIAM protocol recommendations [SENIAM (2008)]. The
reference electrodes were placed over the lateralis and medialis epicondyles of femur,
while an electrogoniometer was placed and strapped to the external side of the leg
over the center of knee joint (Fig. 2(c)). The gyroscope sensors were placed over
the thigh and shank (Fig. 2(c)). The difference between the signals measured by
the gyroscopes reflects the angular velocity of the knee joint. Both inertial sensors
were simultaneously-acquired with the sEMG signals.

For each volunteer, four 15-s measurements were performed on each day with
5-min rest intervals, over the course of five days. For each measurement, the subject
was asked to walk in a particular direction at a constant pace. Some variability in
pace was observed between measurements. The first and third measurements from
each day were used for training, and the second and the fourth measurements were
used for testing.
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Figure 3 presents examples of simultaneously-acquired sEMG and inertial sig-
nals from a representative subject. A total of 240 measurements were obtained,
with half of them being used for training and the other half being used for testing.

2.2. Feature extraction

In this work, we used cepstral coefficients for frequency-domain sEMG signature
discrimination, and time domain feature vectors in the myolectric signal such as
fractal dimension, slope sign changes, and waveform length. In this section, we
briefly describe how we computed these sets of features, to use them as inputs
to the supervised learning stages. Regarding the cepstral coefficients, consider, for
example, a zero mean, discrete-time segment of signal s of length M , with discrete
Fourier transform (DFT), here called S. Then, the cepstrum vector of the s segment
is, by definition, the inverse DFT of the logarithm of the squared magnitude of
S [Kang et al. (1995)], i.e.

c(m) =
1
M

M−1∑
f=0

log(|S(f)|2)ej2πfm/M , ∀m ∈ {0, 1, . . . , M − 1}. (1)

To compute the cepstral coefficients, we used an approach based on the AR
signal model. Some works have reported that the AR-derived cepstrum feature has
better performance than the unprocessed AR feature [Kang et al. (1995); Chiou
et al. (2004)]. By computing the Laurent series [Kang et al. (1995)] for each coeffi-
cient in Eq. (1), we obtain the recursive relation:

c(0) = −a0,

c(m) = −am −
m−1∑
i=0

(
1 − m + 1

i + 1

)
amcm−i, ∀m ∈ {1, 2, . . . , K − 1},

(2)

where am is the mth order coefficient of the AR model associated with s. Using
Eq. (2), we can compute the first K cepstral coefficients. Even though the cepstral
coefficients are derived directly from the AR coefficients, they do not convey the
same information, because the recursive operation changes the features distribution
nonlinearly [Kang et al. (1995)]. We obtained the cepstral coefficients using a sixth-
order AR model and the process described in Eq. (2). Regarding the time domain
feature vectors, we focus in the following measures.

Fractal dimension (FD): It is a measure of muscle strength [Hu et al. (2005)].
Fractals refer to properties of objects or signal patterns that exhibit self-similarity
over a range of magnification/scales and with the relationship that is fractional.
FD is a measure of this relationship, defined as the change in length of the curve
with the change in the measurement scale. FD is a measure of the source properties
and is a measure of its complexity, spatial extent or its space-filling capacity and is
related to shape and dimensionality of the process [Acharya et al. (2005)]. FD was
calculated using Higuchi algorithm [Higuchi (1998)] for nonperiodic and irregular
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time series. This algorithm yields a more accurate and consistent estimation of FD
for physiological signals than other algorithms [Esteller et al. (2001)].

Slopes sign changes (SSC): It is another method to represent frequency information
of the sEMG signal, associated to the number of times that slope of the sEMG
signal changes sign [Phinyomark et al. (2012)]. The number of changes between the
positive and negative slopes among three sequential segments is measured using a
threshold function, to avoiding background noise in the EMG signal. The suitable
value for the threshold parameter is usually chosen within the interval from 50µV
to 100mV [Phinyomark et al. (2012)].

Waveform length (WL): Is a measure of the complexity of the sEMG signal [Phiny-
omark et al. (2012)]. It is defined as cumulative length of the sEMG waveform over
the time segment. Some articles in the literature called this feature as wavelength
(WAVE) [Phinyomark et al. (2012)].

2.3. Pattern classification

After computing the signal features according to the previous section, we apply
them to an LM multi-layer perceptron neural network [Hagan and Menhaj (1994)],
to estimate the intended knee joint angle. Similarly, to the quasi-Newton meth-
ods, the LM neural network was designed to approach second-order training speed
without computing the Hessian matrix. In fact, the critical step in the LM algo-
rithm is the computation of the Jacobian matrix, which can be obtained using
standard backpropagation techniques [Hagan and Menhaj (1994)]. Therefore, the
resulting computational complexity is significantly lower than that required by the
Hessian matrix computation. Although the computational requirements of the LM
algorithm become much higher after each iteration, this is entirely compensated
by its higher efficiency, especially when high precision is required. In applying the
LM algorithm to the extracted features, we tested three fusion strategies, described
next. These approaches combine these features with information from the gyro-
scopes, for increased accuracy.

2.4. First data fusion strategy

Figure 4 presents the block diagram for the proposed knee angle estimation algo-
rithm using the first data fusion strategy. The use of angular velocity information
from the gyroscopes improves angle estimation precision and reduces estimation
artifacts. A Kalman-filter is applied directly to noisy gyroscopes measurements to
estimate angular velocity. Note that the objective of Kalman-filters, generally speak-
ing, is the estimation of the mean of nonstationary noisy signals, by minimizing the
mean squared error (recursive least squares for stochastic models).

The estimated signal — the angular velocity, in our application — is modeled
using a state-space formulation, describing its dynamical behavior [Diniz (1997)]
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Fig. 4. Block diagram of the proposed knee angle estimation algorithm based on the first fusion
strategy.

according to the linear stochastic model described by:

x(k) = x(k − 1) + n(k) (3)

and

y(k) = x(k) + v(k), (4)

where x(k) is the knee joint angular velocity at time k; n(k) is the noise at time k,
modeling the evolution of the joint angular velocity between two sampling inter-
vals; y(k) is the measured angular velocity at time k, obtained from subtracting the
angular velocity values measured on the thigh and shank; and v(k) is the measure-
ment noise at time k. We assume that n(k) and v(k) have independent Gaussian
distributions, with zero means, variances given by q2 and r2, respectively, and inde-
pendent from x(0). When applying the Kalman-filter to this model, the prediction
process for each iteration cycle is given by:

x̂(k/k − 1) = x̂(k − 1) (5)

and

P (k/k − 1) = P (k − 1) + q2, (6)

with the initialization q2 = 4, r2 = 10, x(1) = 0 and P (1) = 0.01.
The correction process, on the other hand, is given by

Gk =
P (k/k − 1)

(P (k/k − 1) + r2)
, (7)

x̂(k/k) = x̂(k/k − 1) + G(k)(y(k) − x̂(k/k − 1)) (8)

and

P (k) = (1 − G(k))P (k/k − 1), (9)

where G(k) is the Kalman-filter gain at time k; P (k) is the error covariance matrix
associated with the estimation process; and x̂(k/k) is an optimal estimate of x(k)
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in the least-squares sense. It is possible to show that, for this specific problem, this
filter is equivalent to a unity-gain, low-pass, first-order filter, with time-varying cut-
off frequency. This cut-off frequency is computed considering the noise variances q2

and r2, as well as the error variance associated with x̂(k/k) [Diniz (1997)]. The value
of x̂(k/k) is an optimal estimate of the mean of the knee joint angular velocity at
sampling step k. At each time instant, the angular velocity estimate x̂(k/k), along
with the sEMG fractal dimension, slope sign changes, waveform length and cepstral
coefficients, are used as inputs to the neural classifier, as shown in Fig. 2.

2.5. Second data fusion strategy

We also evaluated the use of information fusion in the correction stage of the
Kalman-filter. The Kalman-filter can deal with disturbances originated from sEMG
measurements and propagated to the neural network in a more sophisticated struc-
ture. This approach may reduce the effect of perturbations in the estimated angles
provided by the neural network. Figure 5 presents the block diagram for this second
data fusion strategy.

Note that the sEMG feature vectors are the inputs to the LM neural network.
Then, the estimated knee joint angle is modeled using a state-space formulation,
describing its dynamical behavior [Diniz (1997)], according to the linear stochastic
model given by

x(k) = x(k − 1) + T · u(k) + n(k) (10)

and

y(k) = x(k) + v(k), (11)

Fig. 5. Block diagram of the proposed knee angle estimation algorithm based on the second
fusion strategy.
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where x(k) is the corrected estimated knee angle at time k; u(k) is the measured
angular velocity acquired at time k using a sampling period T (this angular velocity
is obtained from subtracting the angular velocity values measured on the thigh
and shank); n(k) is noise at time k, modeling the evolution of the knee joint angle
between two sampling intervals; y(k) is the estimated knee joint angle at time k,
obtained from the LM neural network output; and v(k) is the measurement noise
at time k.

Again, we assume that n(k) and v(k) are normally distributed with zero mean
and variances given by q2 and r2, respectively; we also assume that n(k) and v(k)
are independent. When applying the Kalman-filter to this model, the prediction
process at each iteration cycle follows:

x̂(k) = x̂(k − 1) + T · u(k) (12)

and

P (k/k − 1) = P (k − 1) + T 2 · σ2
uk

+ q2, (13)

with the initialization q2 = 4, r2 = 10, x(1) = 0, σ2
uk

= 25 and P (1) = 0.0, and
where σ2

uk
is the sample variance of the measured angular velocity. As in the case

of the first proposed fusion strategy, the correction process is given by Eqs. (7)–(9).
Note that the value of x̂(k/k) is an optimal estimate of the knee joint angle, as

provided by the fusion process with the angular velocity information at time k and
angular orientation estimate provided by the neural network applied to the sEMG
data.

2.6. Third data fusion strategy

We also evaluated a modification of the previous strategy, based on a compatibility
test using the Mahalanobis distance [De Maesschalck et al. (2000)]. The Maha-
lanobis distance is a useful way of determining the similarity of sample sets, and it
is not dependent on the scale of the measurements.

The procedure proposed, shown in Fig. 6, uses the Mahalanobis distance’s esti-
mate after the prediction stage of the Kalman-filter, thus affecting the correction
process. The goal is to filter possible artifacts that arise from the angle estimated by
the LM neural network, at each time step of the data fusion process. Such artifacts
are usually propagated as rapid changes in the LM neural network output, which
become incompatible with the smooth motion of the knee joint.

When the Kalman-filter is applied to the linear stochastic models described by
Eqs. (10) and (11), the prediction process follows Eqs. (12) and (13). We evaluate
the square root Mahalanobis distance d(x, y) between the estimated angle from the
LM neural network, y(k), and the previous corrected angle estimate, according to:

d(x, y) =

√√√√N−1∑
i=0

(y(k − i) − x̂(k − i/k − i − 1))2

r2 + P (k − i/k − i − 1)
(14)
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Fig. 6. Block diagram of the proposed knee angle estimation algorithm based on the third fusion
strategy.

and use this distance in a decision process which is part of the calculation of a
corrected estimate for x(k), as follows:

x̂(k/k) =

{
x̂(k/k − 1) + G(k)(y(k) − x̂(k/k − 1)) if d(x, y) < th,

x̂(k/k − 1) otherwise,
(15)

where th is a threshold value chosen based on a Chi-square distribution [Duda
et al. (2000)], as we discuss below. The parameter N in Eq. (14) defines the length
of the window for computing the Mahalanobis distance. For small N , the filter
becomes very sensitive to nonGaussian noise in the measurements, which can lead
the filter to disregard measurements provided by the LM neural network. On the
other hand, large values of N can lead the system to take too long to make the
estimate insensitive to the effect of an artifact. Based on these considerations, we
empirically chose N = 15 (approximately 14ms) in this work.

Note that the window length for feature extraction was much longer (M = 200).
Feature extraction aims to associate fractal dimension, slope sign changes, waveform
length and cepstral features with the knee angle. Thus, the dynamics of feature pro-
cessing must be faster than the evolution of the knee angle. The feature extraction
window must be long enough to guarantee a minimum number of representative
samples, but short enough to ensure satisfactory temporal resolution for knee angle
estimation. On the other hand, the window for Mahalanobis distance calculation
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aims to compare a knee angle estimate with a set of model-based predicted val-
ues. If the estimate deviates considerably from a large number of predicted values
within the window, we assume that we are dealing with an artifact, and hence we
discard the estimated value and use the predicted value instead. Therefore, the win-
dow length N is associated with the maximum duration of an acceptable artifact.
For example, if we consider as “acceptable” those artifacts which last only a few
samples, then the estimates would not be discarded, and the model would follow
these estimates. However, if the artifact lasts many samples, then the Mahalanobis
distance would be large, allowing artifact detection. Also, the estimator would dis-
regard the estimates from the neural network and would use predicted values until
the estimated values normalize. This approach would minimize the effect of those
“unacceptable” artifacts.

If d(x, y) < th, the correction process of the Kalman-filter is implemented
according to Eqs. (7)–(9). At each iteration cycle, an optimal estimate of x(k)
that represents the knee joint angle from the fusion process with the angular veloc-
ity information is obtained. If d(x, y) ≥ th, on the other hand, the estimate x(k)
is computed based on the previous estimated angle, preserving the prediction from
possible artifacts associated with the angle estimate given by the neural network.

Now, assuming that the uncertainty on x and y is Gaussian with zero mean,
d2(x, y) follows a χ2

N distribution [De Maesschalck et al. (2000)]. For example, with
N = 15, results are considered to be statistically similar (with 95% confidence) if
d2 ≤ 25, which leads to d(x, y) ≤ 5; thus, th = 5.

2.7. Neural network design and training

We performed the neural network training and testing using MATLAB (The Math-
Works, Inc., Natick, MA, USA). For each sEMG channel, the proposed algorithms
were implemented using 200-sample (192ms) sliding windows during the feature
extraction process (fractal dimension, slope sign changes, waveform length and
cepstral analysis). For each new pair of gyroscope sensor samples, estimates of
updated Kalman-filter angular velocity (first proposed method) and knee joint
angles (second and third proposed methods) were computed. For the first data
fusion strategy, this approach resulted in a 19-coefficient feature vector per sam-
ple interval (6 cepstral coefficients, one fractal dimension coefficient, one slope sign
changes coefficient and one waveform length coefficient per sEMG channel, plus one
angular velocity coefficient). For the second and third strategies, we obtained 18-
coefficient sEMG feature vector (6 cepstral coefficients, one fractal dimension coef-
ficient, one slope sign changes coefficient and one waveform length coefficient per
sEMG channel).

In all three strategies, the extracted features correspond to the inputs to a three-
layer LM neural network. Each strategy used, 19 (first strategy) or 18 (second and
third strategies) nodes in the input layer, 12 nodes in the hidden layer, and 1 node
in the output layer (this output represents the estimated knee joint angle). We chose
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the network’s architecture and size empirically, aiming at the maximum possible
reduction of the final mean squared error (MSE).

For neural network training, we used the same initial weight values for all three
network layers (null weight for all neurons). The maximum number of iterations was
50, the stop criterion was MSE < 10−10 rad2 (approximately 3.3 × 10−7 degrees2),
and the initial learning rate was 1. The actual joint angle measured with the elec-
trogoniometer was used as training reference.

2.8. Quantitative evaluation of the proposed methods and

comparison with algorithms based solely on sEMG

The proposed methods were compared with the following sEMG-only methods from
the literature:

• recursive least squares method — LM neural network [Ferreira et al. (2005)]; this
algorithm uses the AR model for feature extraction and a LM neural network for
supervised learning.

• recursive least squares + histogram — self-organizing maps — LM neural net-
work [Delis et al. (2009)]; this algorithm uses a combination of temporal and
spectral domain approaches (signal amplitude histogram and AR coefficients,
respectively) for feature extraction, and a feature projection stage with a self-
organizing map and a LM neural network for supervised learning.

• energy of wavelet packet coefficients — principal components analysis — LM
neural network (EWP-PCA) [Wang et al. (2006)]; this method uses the energy
of the wavelet packet coefficients for feature extraction, principal components
analysis for feature projection, and a LM neural network for supervised learning.

Note that the EWP-PCA algorithm was not originally designed to estimate
intended knee joint angles for controlling active transfemoral leg prostheses. Given
that we did not find in the literature an algorithm with a similar purpose, we
adapted the EWP-PCA method to the myoelectric pattern recognition problem
addressed in this work. We emphasize that the main components in the EWP-
PCA approach, such as pattern recognition and order reduction, are relevant to the
problems we face in the angle estimation issue, which justifies our comparisons.

For consistency, the myoelectric algorithms based solely on sEMG signals used
the same LM network configuration, and also the same training process and test
datasets. All algorithms were implemented using 200-sample (192ms) windows with
an overlapping approach, such that feature extraction was performed once for every
new sEMG sample. Also, we used the same AR order and forgetting factor config-
uration for the proposed methods, and for the methods from Ferreira et al. [2005]
and Delis et al. [2009].

For comparing all these methods, we used the 120 sets of sEMG, electrogo-
niometer, and gyroscope data that were not used during training. The performance
of each algorithm was evaluated by comparing the knee angles estimated from the
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sEMG signals with the joint angle values measured with the electrogoniometer. We
applied a threshold over the time series to detect error events [Delis et al. (2009)]
(this threshold was empirically set to 10◦); each series of consecutive errors found
to be above the threshold was considered an error event.

For performance evaluation, the myoelectric algorithms were quantitatively
compared using statistical metrics based on: (i) the error-to-signal percentage; (ii)
the correlation coefficient; (iii) the number of error events; and (iv) the maximum
error amplitude [Delis et al. (2009)]. We evaluated these statistics for each set of
sEMG signals, and computed, for each subject, the intra-subject mean and stan-
dard deviation (SD) of those parameters. Finally, since the values for the different
participants are independent and based on the principles of error analysis [Tay-
lor (1997)], we computed the inter-subject arithmetic averages of the intra-subject
means (to obtain global means), and the inter-subject arithmetic averages of the
participants’ SDs (to obtain global SDs). The square root Mahalanobis distance was
calculated for each metric as a means of assessing the statistical difference between
the methods based solely on sEMG signals and the proposed methods [Delis et al.
(2009); De Maesschalck et al. (2000)].

3. Results

In evaluating the proposed strategies, we first compare their results to the joint
angle measurements obtained with the electrogoniometer. Then, we compare our
results with those obtained using the methods from Ferreira et al. [2005], Delis et al.
[2009] and Wang et al. [2006].

3.1. Comparison with electrogoniometer measurements

In Fig. 7, we present the knee joint angles estimated by the three proposed fusion-
based algorithms, and the measurements from the electrogoniometer, for a rep-
resentative study. The knee joint angles estimated by the proposed myoelectric
algorithms strategies follow the angle provided by the electrogoniometer reason-
ably well, except for the occurrence of discrete artifacts, which, depending on their
durations, may not affect the knee joint angle control.

3.2. Comparison with methods from the literature

Figure 8 illustrates the differences between the proposed myoelectric strategies and
the methods from Ferreira et al. [2005], Delis et al. [2009] and Wang et al. [2006],
for a representative set of measurements. Figures 8(a)–8(c) show knee angles esti-
mated with the algorithms proposed in Ferreira et al. [2005], Delis et al. [2009]
and Wang et al. [2006], respectively, as well as the absolute differences between the
electrogoniometer measurements and the myoelectric estimates, for each case. Sim-
ilarly, Figs. 8(d)–8(f) show the results obtained using the first, second, and third
fusion-based approaches, respectively. Note that all the algorithms provided similar
results, except of the EWP-PCA method, which produced less accurate results.
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(a)

(b)

(c)

Fig. 7. Measured and estimated knee joint angles for the proposed algorithms: (a) first data
fusion strategy; (b) second data fusion strategy; (c) third data fusion strategy.

Table 1 presents a quantitative comparison between the three proposed data
fusion strategies and the methods from Ferreira et al. [2005], Delis et al. [2009]
and Wang et al. [2006], concerning the previously described performance metrics:
error-to-signal percentage, correlation coefficient, number of error events and max-
imum error amplitude. Mean and SD values correspond to global values, obtained
as the inter-subject averages of the intra-subject mean and SD values, as described
above.

These results suggest that the proposed data fusion strategies improve perfor-
mance over the method Wang et al. [2006], concerning the error-to-signal percent-
age, the correlation coefficient, and maximum error amplitude. Furthermore, the
second and the third proposed data fusion methods resulted in lower numbers of
error events than the first data fusion method, and than the methods from Ferreira
et al. [2005], Delis et al. [2009] and Wang et al. [2006]. The statistical significance
of the above differences is evaluated in Tables 2–5, which are discussed below.

Table 2 presents the measured square root Mahalanobis distances between the
results obtained with the first fusion-based strategy and the results obtained with
the methods from Ferreira et al. [2005], Delis et al. [2009] and Wang et al. [2006]
which are based solely on the sEMG signals. Note that, with 12 subjects, the results
are considered to be statistically similar (with 95% confidence) if d2 ≤ 21.03,
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Fig. 8. Measured and estimated knee joint angles for two sets of signals taken from the same
subject, using: (a) the algorithm from Ferreira et al. [2005]. (b) The algorithm from Delis et al.
[2009]. (c) The algorithm from Wang et al. [2006]. (d) The first data fusion strategy. (e) The
second data fusion strategy. (f) The third data fusion strategy.
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Table 2. Square root Mahalanobis distance between the performance metrics obtained with the

first data fusion strategy and those obtained with algorithms based solely on sEMG signals (from
the literature).

Performance metric Ferreira et al. [2005] Delis et al. [2009] Wang et al. [2006]

Error-to-signal percentage 1.02 1.61 4.86*
Correlation coefficient 1.09 1.59 5.89*
Number of error events 0.90 2.67 7.78*
Maximum error amplitude 19.11* 17.30* 5.09*
Maximum error event duration 1.97 0.90 2.48

*Statistically significant difference (with 95% confidence).

i.e. if d ≤ 4.58. From the statistical significances, we found that all the metric
statistics were equivalent to those obtained with the methods from Ferreira et al.
[2005] and Delis et al. [2009], except the maximum amplitude error, for which our
first fusion-based method yielded significantly lower results. In comparison with
the EWP-PCA algorithm, on the other hand, the first proposed strategy lead to
significantly lower error-to signal percentage, correlation coefficient, number of error
events and maximum amplitude error, while the results are statistically equivalent
concerning to the maximum error event duration.

Similarly, Tables 3 and 4 present the measured square root Mahalanobis dis-
tances between the results obtained with the second and third fusion-based strate-
gies, respectively, and the results obtained with the methods from the literature.
We found that the results obtained with the second and third data fusion strategies

Table 3. Square root Mahalanobis distance between the performance metrics obtained with the
second data fusion strategy and those obtained with algorithms based solely on sEMG signals
(from the literature).

Performance metric Ferreira et al. [2005] Delis et al. [2009] Wang et al. [2006]

Error-to-signal percentage 0.52 1.00 4.37
Correlation coefficient 0.84 1.37 5.78*
Number of error events 1.82 1.33 8.25*
Maximum error amplitude 1.24 1.27 3.41
Maximum error event duration 2.16 0.87 2.27

*Statistically significant difference (with 95% confidence).

Table 4. Square root Mahalanobis distance between the performance metrics obtained with the
third data fusion strategy and those obtained with algorithms based solely on sEMG signals (from
the literature).

Performance metric Ferreira et al. [2005] Delis et al. [2009] Wang et al. [2006]

Error-to-signal percentage 0.98 1.53 4.58
Correlation coefficient 0.90 1.37 5.83*

Number of error events 1.80 1.21 8.27*
Maximum error amplitude 0.96 1.07 3.57
Maximum error event duration 2.20 0.85 2.02

*Statistically significant difference (with 95% confidence).
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A. López-Delis et al.

Table 5. Square root Mahalanobis distance between the performance metrics obtained with

the three proposed data fusion strategies.

Performance metric First versus second First versus third Second versus third

Error-to-signal percentage 0.73 0.87 1.03
Correlation coefficient 0.67 0.78 0.76
Number of error events 1.64 1.78 0.78
Maximum error amplitude 20.60* 14.86* 1.38
Maximum error event duration 0.86 0.78 1.04

*Statistically significant difference (with 95% confidence).

do not differ significantly from the results obtained with the methods from Fer-
reira et al. [2005] and Delis et al. [2009]. In comparison with the EWP-PCA
method [Wang et al. (2006)], our second and third methods provided significantly
different results concerning the correlation coefficient and the number of error
events; the results are nevertheless equivalent concerning the error-to-signal per-
centage, maximum amplitude, and error event duration.

3.3. Comparison between the proposed strategies

Table 5 shows the measured square root Mahalanobis distances between the results
obtained with the proposed fusion-based methods. We found that the maximum
amplitude error associated with the first strategy is significantly lower than those
provided by the second and third strategies. We also found that the results obtained
with the second and third strategies are equivalent with respect to all the evaluated
metrics.

3.4. Evaluation of the robustness to movement artifacts

Figure 9(a) shows a sEMG signal with movement artifacts, along with measured
knee joint angles. Figures 9(b)–9(d) show the measured and estimated joint angles
for the same set of signals, as estimated by the sEMG-based algorithms from Fer-
reira et al. [2005], Delis et al. [2009] and Wang et al. [2006], respectively, as well
as the absolute differences between these estimates and the measured angles. Sim-
ilarly, Figs. 9(e)–9(g) compare the measured values with those estimated with the
three proposed fusion-based approaches. False positives were observed on the results
obtained with the methods from Ferreira et al. [2005] and Delis et al. [2009], and
with the three proposed methods. The EWP-PCA algorithm was not able to esti-
mate the joint angle from these data (Fig. 9(d)). Qualitatively, the best results were
obtained with the third proposed strategy. These results suggest that this approach
may be more robust to movement artifacts.

3.5. Evaluation of the robustness to 60Hz interference

The results shown in Fig. 10 are related to the robustness of the algorithms to
60Hz interference. Figure 10(a) shows a sEMG signal added with artificial 60Hz
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Fig. 9. Qualitative evaluation of the algorithms’ robustness to movement artifacts. (a) sEMG sig-
nal with movement artifacts, and measured knee angles. Knee angles (and corresponding absolute
errors) estimated using: (b) the algorithm from Ferreira et al. [2005]. (c) The algorithm from Delis
et al. [2009]. (d) The algorithm from Wang et al. [2006]. (e) The first data fusion strategy. (f) The
second data fusion strategy. (g) The third data fusion strategy.
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Fig. 10. Qualitative evaluation of the algorithms’ robustness to 60Hz power line interference.
(a) sEMG signal with added artificial 60 Hz interference, and measured knee angles. Knee angles
(and corresponding absolute errors) estimated using: (b) the algorithm from Ferreira et al. [2005].
(c) The algorithm from Delis et al. [2009]. (d) The algorithm from Wang et al. [2006]. (e) The
first data fusion strategy. (f) The second data fusion strategy. (g) The third data fusion strategy.
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interference, along with measured knee joint angles. Figures 10(b), 9(c), and 9(d)
show the measured and estimated joint angles for the same set of signals, as esti-
mated by the SEMG-based algorithms from Ferreira et al. [2005], Delis et al. [2009]
and Wang et al. [2006], respectively, as well as the absolute differences between these
estimates and the measured angles. Similarly, Figs. 10(e), 9(f), and 9(g) compare
the measured values with those estimated with the three proposed fusion-based
approaches. The EWP-PCA algorithm (Fig. 10(d)) was able to somewhat follow
the knee joint motion, but the estimated angles differed considerably from the
measured values. All other methods were able to track the knee joint movement
reasonably well, but we found that the proposed data fusion strategies provided
slightly better results than those provided by the methods based solely on the
sEMG data.

4. Discussion

The quantitative analysis of the experimental results shows that the first proposed
data fusion strategy leads to a statistically significant reduction of the maximum
amplitude of error, when compared with the methods from Ferreira et al. [2005],
Delis et al. [2009] and Wang et al. [2006]. We attribute this difference to the data
fusion, in the LM neural network, between the extracted features (fractal dimen-
sion, slope sign changes, waveform length and cepstral coefficients) and the inertial
signals. In fact, this fusion reduces the noise in the estimated knee joint angle, due
to the use of a Kalman-filter, which, in this application, is equivalent to a low-pass
filter with time-varying cut-off frequency.

The proposed strategies showed significantly better results than the EWP-PCA
myoelectric algorithm [Wang et al. (2006)]. A possible explanation for these results
could be that PCA analysis minimizes the redundancy among the feature vectors,
and does not take into account the relationship between these vectors and the
myoelectric classes during the estimation procedure. Furthermore, time domain and
AR features have been shown to outperform time-frequency features for stationary
or slowly changing data, and to provide equivalent results for steady-state sEMG
signals [Huang et al. (2005)].

The proposed fusion-based algorithms showed an improved performance with
respect to 60Hz interference, when compared with methods based solely on sEMG
data (see Fig. 10). The observed error peaks may be caused by noise in the feature
space, and by an insufficient number of neurons in the LM network’s hidden layer.
This problem may be addressed by increasing the number of neurons, by increasing
the number of sEMG channels and by increasing the length of the sliding window
used in the fractal dimension, slope sign changes, waveform length and cepstral
coefficients analyses. However, these approaches would result in increased compu-
tational complexity and convergence time, and could increase the response time of
the prosthesis.
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A. López-Delis et al.

The addition of other variables associated with leg proprioception may improve
the precision and reduce artifacts, without significantly increasing the computa-
tional complexity of the myoelectric algorithms.

The three proposed strategies incur equivalent computational costs. Quanti-
tatively, the first proposed strategy provided better performance concerning the
maximum amplitude of error event, when compared with the second and third pro-
posed strategies. This improvement may be significant when error events that are
long enough to be noticed by the leg prosthesis occur, especially if these error events
cause the joint estimation to exceed the workspace limits. On the other hand, the
third proposed strategy seems to be more robust to movement artifacts than all
other evaluated methods. In this work, the main objective was demonstrating that
is possible the continue estimation prediction the angle for a transfemoral leg pros-
theses. In first instance, the proposals algorithms based on data fusion was tested in
off-line mode without evaluated the complexity of framework and aspects as time-
response during the testing process. In future work, will be evaluated the proposals
algorithms in on-line mode as well as the complexity aspects of the framework to
implement an optimization toolbox.

The data fusion configuration associated with the correction process in the
Kalman-filter, combined with a statistical distance test, provides better perfor-
mance when poor electrode contact or sudden changes in the electrode–electrolyte
interface are observed. The latter is common in fatigue processes. With an appro-
priate calibration of the gyroscope sensors, the orientation estimate diverges at
most 1 degree every 10 s. Therefore, in case of a long-duration fault in the sEMG
acquisition system, the joint angle estimation algorithm would have time to detect
and correct these problems. This joint angle correction capability makes the third
method the most appropriate amongst all evaluated strategies.

5. Conclusion

This work introduced three variants of a myoelectric algorithm for estimating
intended knee joint angles using the data fusion of surface electromyographic and
inertial signals. The estimated angles may provide the information needed to control
active transfemoral leg prostheses.

Our experimental results suggest that the proposed methods result in sta-
tistically significant improvements with respect to the EWP-PCA method.
Furthermore, they showed an increased robustness with respect to 60Hz noise
and to movement artifacts, in comparison with methods based solely on sEMG
data. Quantitatively, the first proposed strategy provided better performance with
respect to the maximum amplitude of error event. This improvement may be sig-
nificant when error events that are long enough to be noticed by the leg prosthesis
occur. On the other hand, the third proposed strategy seems to be more robust to
movement artifacts than all other evaluated methods.

In future works, we will include other sensors on the patient’s body, such as
accelerometers, magnetometers and pressure sensors in the shoes. These will further
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aid parameter estimation, and therefore improve the prosthesis performance. The
data fusion concepts we used in our algorithms may be useful in the development
of an algorithm in which signals from many different sensors are fused and used in
the development of a predictive movement model.
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