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Abstract

Magnetic resonance (MR) based flow quantitation is important for
the evaluation of many cardiovascular conditions, including valvular
abnormalities, congenital defects, and coronary artery disease. Re-
cently, a new approach to undersampling of MR data has peen pro-
posed, using a compressed sensing framework. In this work, we apply
this technique to Fourier velocity encoding (FVE) datasets. A different
random subset of FVE samples is acquired in each temporal frame, and
sparsity in velocity-frequency space is explored. We evaluate accelera-
tion factors from 1.5 to 4 in FVE imaging using the proposed method
(kv-t SPARSE). Although sparsity evaluation experiments suggested
great potential for a compressed sensing approach to FVE imaging,
the proposed method did not work as well as expected. kv-t SPARSE
was able to reduced background noise due to undersampling, but clin-
ically important information was lost. Acceptable results with 1.5-fold
acceleration are presented, and possible approaches to improving the
performance are proposed.

1 Introduction

Accurate flow quantitation is important for the evaluation of many car-
diovascular conditions, including valvular abnormalities, congenital defects,
and coronary artery disease. In cardiac magnetic resonance imaging (MRI),
speed is of particular importance, as the acquisition time is typically limited
to the duration of a breath-hold. Typical slice-selective MRI datasets are
two-dimensional, i.e. an image (x, y). In cardiac MRI, the data is commonly
time-resolved within the cardiac cycle, and datasets are three-dimensional
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(x, y, t). In flow imaging, an additional dimension - the velocity distribution
- is acquired (x, y, v, t).To obtain such a dataset in a single breath-hold with
clinically useful resolution, different fast imaging techniques have been pro-
posed [1–3]. Resolution may be further improved by using undersampling
techniques, in which only portions of the data is acquired. The most widely
used undersampling techniques are partial Fourier [4], variable-density sam-
pling [5, 6], temporal acceleration [7, 8] and parallel imaging [9, 10].

Recently, a new undersampling approach based on compressed sensing
theory [11] has been proposed [12–14]. In this framework, the time required
to image objects which are known to be sparse is some domain (e.g., x-
f space in dynamic cardiac imaging, object domain in 3D angiography) is
reduced by randomly undersampling the data. In this work, we apply this
technique to Fourier velocity encoding (FVE) datasets.

In FVE [15] the velocity information is acquired in Fourier domain. Typ-
ically, 16 to 48 samples of the Fourier transform of the velocity distribution
are obtained, and the acquired data (kv) is inverse Fourier transformed to
the velocity domain (v). This is repeated for each temporal frame (i.e., car-
diac phase), and for each step of the spatial information acquisition process.
After reconstruction, the time-velocity distribution (v-t space) in a region of
interest of the object (e.g., aortic valve, common carotid artery) is displayed.

Our approach consists in acquiring a different random subset of these
FVE samples in each temporal frame (i.e., undersampling in kv-t space),
and explore sparsity in v-f space (f denotes temporal frequency) using
compressed sensing. We evaluate acceleration factors from 1.5 to 4 in FVE
imaging using the proposed method (kv-t SPARSE).

2 Theory

2.1 Fourier Velocity Encoding Datasets

The velocity distribution in a “voxel” or a region of interest of the im-
age can be represented by a two-dimensional matrix, where different rows
represent different velocities, different columns represent different temporal
frames, and the numerical values represent the amount of blood flowing with
a particular velocity in a particular time instant. The data is visualized in
v-t space, where v denotes velocity in a particular direction (e.g., through-
plane) and t denotes time within a cardiac cycle. Figure 1 shows typical
aortic valve velocity distributions for a healthy subject and a patient with
aortic stenosis.

However, MRI data is typically acquired in Fourier domain. In MR
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Figure 1: Aortic valve velocity distributions in a healthy subject (a) and a
patient with aortic stenosis (b).

flow imaging, velocity information is obtained by acquiring samples of the
Fourier transform (S(kv)) of the velocity distribution (s(v)). Typically, 16-
48 kv samples are acquired in each phase of the cardiac cycle, thus the actual
dataset that is acquired is in kv-t space. An inverse Fourier transform along
the velocity dimension is used to obtain the time-velocity distribution.

Additionally, a Fourier transform along the temporal dimension will con-
vert the time-velocity distribution (v-t) to velocity-frequency space (v-f),
where f denotes temporal frequency. Although velocity distributions in
healthy subjects are considerably sparse in v-t domain, this is not necessar-
ily true in patients (Figure 1). However, in v-f space, the data is likely to
be sparse for both healthy subjects and patients [16]. Thus, this represen-
tation can be used in a compressed sensing framework to reduce scan time.
Figure 2 illustrates typical FVE datasets acquired in kv-t space, and their
counterparts in v-t and v-f spaces.

2.2 Compressed Sensing

Conventional sampling theory defines the minimum sampling rate for a sig-
nal as at least twice its highest frequency component. According to this
dogma, in order to acquire velocity distributions with 10 ms temporal reso-
lution and 25 cm/s velocity resolution over a 600 cm/s velocity field-of-view,
24 FVE samples would have to be acquired in each temporal frame, and only
one “view” (one velocity encode combined with one spatial readout) could
be acquired during each heartbeat. This could imply in prohibitively long
scan times.
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Figure 2: Typical FVE datasets acquired in kv-t space (left) and their coun-
terparts in v-t (center) and v-f spaces (right), from a healthy subject (top)
and a flow phantom with a wide distribution of velocities (bottom). The
distribution in the flow phantom shows characteristics that resembles dis-
tributions in patients.

However, velocity distributions are considerably sparse in v-f space (Fig-
ure 2, right). Compressed sensing theory states that signals that are known
to be sparse in some known transform domain can be recovered from ran-
domly under-sampled data [11,17]. If a signal s of length d can be expressed
efficiently (few coefficients) in an orthonormal basis Ψ (the sparsity matrix),
than we can write s ≈ Ψθ, where θ is a vector with m non-zero entries
(m � d). Instead of acquiring d samples of s, we take N random linear
measurements of s, where m ≤ N ≤ d. This can be viewed as multiplica-
tion y = Φs, where Φ is a N × d measurement matrix. The signal s can
be recovered from the undersampled data y using several algorithms, such
as l1 minimization [18], tree-based matching pursuit [19], and orthogonal
matching pursuit (OMP) [20]. In this work, we use OMP to reconstruct the
signals. The OMP algorithm is summarized in Table 1 [17].

In kv-t SPARSE, we write s(v, t) = Ψθ(v, f), and y(kv, t) = Φs(v, t).
In other words, s is the time-velocity distribution, θ is its sparse represen-
tation in v-f space, and y is the acquired MR data (in kv-t space). The
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Initialize residual r0 = y.
For t=1,2,...,N do
A. Find the column it of ΦΨ such that it = argmaxi| < rt−1, (ΦΨ)i > |.
B. Compute the new residual rt = y − Pty where Pt is the orthogonal
projector onto the span of the t columns chosen from ΦΨ.
Output Columns {it} and coefficients {θ̂it} s.t. Pny =

∑N
t=1 θ̂it(ΦΨ)it

.

Table 1: Orthogonal matching pursuit reconstruction algorithm

sparsity matrix Ψ is an inverse Fourier transform along the temporal fre-
quency dimension, and the measurement matrix Φ is a Fourier transform
along the velocity dimension, with N length-d rows corresponding the ran-
domly picked kv values in each temporal frame t. The distribution s(v, t)
is obtained from the randomly undersampled data y(kv, t) using the OMP
algorithm described above, and inverse Fourier transforming the output (in
v-f space) along the temporal frequency dimension to obtain s(v,t).

3 Methods

3.1 Sparsity Evaluation

In order to evaluate the actual sparsity in FVE data, we acquired fully sam-
pled FVE datasets using spiral FVE [3]. The data was transformed to v-f
space and the coefficients were sorted in descending order of magnitude val-
ues. From 1/3 to 15/16 of the lowest magnitude coefficients were discarded,
and the data was reconstructed with only 2/3 to 1/16 of the originally ac-
quired data. The goal of this experiment is to evaluate how sparse the data
actually is in v-f space.

3.2 Choice of Sampling Grid

Next, we designed an experiment to choose a sampling grid (in kv-t space)
that would potentially provide better reconstruction results in v-t, by avoid-
ing coefficient misdetection in v-f . For each dataset being analyzed, and
for each acceleration factor being evaluated (1.5 to 4), a large set of 5000
different random sampling grids was obtained using a random number gen-
erator (uniform distribution). The point-spread function of these sampling
grids was obtained by Fourier transforming into v-f space. The point-spread
functions were normalized by dividing all coefficients by the absolute value
of the largest coefficient in each set. Then, the second largest normalized
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coefficient in each set was taken, and the set with the smallest value was
selected as the sampling grid of choice. The point-spread functions of the
chosen sampling grids are expected to have low magnitude sidelobes in v-f
space, reducing the risk of coefficient misdetection.

3.3 Data Acquisition and Reconstruction

Rather than modifying the acquisition system to acquire random velocity
encode levels at each temporal frame, we acquired fully sampled datasets,
and simply discarded specific samples according to the sampling grid se-
lected from the previous experiment. We used spiral FVE [3] to acquire two
datasets, measuring through-plane velocities in the aortic valve of a healthy
subject, and in a pulsatile flow phantom, respectively. The data was recon-
structed in Matlab (Mathworks, Inc., South Natick, MA) using the OMP
algorithm described in Table 1. The reconstruction algorithm was written
from scratch, with the exception of the basis orthogonalization step, which
was performed using the built-in function orth. For performance evalua-
tion, the reconstructed velocity distributions were qualitatively compared
with distributions obtained from the fully sampled datasets, and also to
the undersampled datasets reconstructed with direct reconstruction (inverse
Fourier transform along kv).

4 Results

The results from the sparsity evaluation experiment are show in Figure 3.
These results show that FVE data can be accurately reconstructed from
only 1/4 of the v-f space coefficients, and adequately reconstructed from
only 1/8 of the coefficients. Artifacts become significant if only 6% or less
of the coefficients are used in reconstruction, and considerable blurring is
observed. As a rule of thumb, the acceleration factor used in compressed
sensing should be 1/2 to 1/3 of the true sparseness [21]. Thus, kv-t SPARSE
is not expected to work well for acceleration factors higher than 4.

The sampling grids selected for the in vivo and phantom datasets are
shown in Figures 4 and 5, respectively. The corresponding point-spread
functions suggest that aliasing artifacts due to undersampling will be in-
coherent, as the point-spread functions consist of a single “spike” at the
v-f space origin, with random noise in the background with a much lower
magnitude.

Figure 6 shows the reconstruction results for the in vivo data at 1.5-
fold acceleration. Although the kv-t SPARSE result (bottom, right) clearly
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reduced the background noise when compared to the direct reconstruction
(bottom, center), considerable distortion is observed when compared to the
fully sampled data (bottom, left). The distortion becomes even more severe
when 2-fold acceleration (Figure 7, bottom, right), or higher, is used.

Figure 8 shows the reconstruction results for the phantom data at 1.5-
fold acceleration. As observed in the in vivo results, kv-t SPARSE (bottom,
right) was able to reduced the background noise, but the low amplitude
information is completely distorted. This is problematic, as flow jets due to
stenosis and/or regurgitation will have similar low amplitude components,
and such distortion could affect the ability of determining peak-velocities.
The results for 2-fold acceleration or higher show even more severe distortion
(not shown).
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Figure 3: Sparsity evaluation in data obtained from a healthy volunter (left)
and a pulsatile flow phantom (right). The data is resconstructed with 6.25%
(bottom) to 100% (top) of the v-f space coefficients, which were sorted in
descending order of magnitude values.
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Figure 4: Sampling grids (left) and corresponding point-spread functions
(right) used in the in vivo experiments, discarding from 33% (top) to 75%
(bottom) of the acquired kv-t samples. Black pixels in the sampling grids
reflect discarded samples. Point-spread functions show in log scale with a
40 dB dynamic range.
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Figure 5: Sampling grids (left) and corresponding point-spread functions
(right) used in the phantom experiments, discarding from 33% (top) to 75%
(bottom) of the acquired kv-t samples. Black pixels in the sampling grids
reflect discarded samples. Point-spread functions show in log scale with a
40 dB dynamic range.
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Figure 6: kv-t SPARSE result for 1.5-fold acceleration in a healthy subject
(right) compared to direct reconstruction (center) and fully sampled data
(left), in v-f (top) and v-t spaces (bottom).
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Figure 7: kv-t SPARSE result for 2-fold acceleration in a healthy subject
(right) compared to direct reconstruction (center) and fully sampled data
(left), in v-f (top) and v-t spaces (bottom).
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Figure 8: kv-t SPARSE result for 1.5-fold acceleration in a flow phantom
(right) compared to direct reconstruction (center) and fully sampled data
(left), in v-f (top) and v-t spaces (bottom).

5 Discussion

Although the sparsity evaluation experiment suggested great potential for a
compressed sensing approach to FVE imaging, the proposed method did not
work as well as expected. kv-t SPARSE is able to reduce background noise
due to undersampling, but clinically important information may be blurred,
distorted or even lost. Although FVE data is in fact sparse in v-f space, we
usually observe a few very large coefficients at the v-f space origin, which
may overshadow the numerous smaller amplitude coefficients - which are
also clinically important - when convolved with the point-spread function of
the sampling grid.

Acceptable results were observed at 1.5-fold acceleration in the healthy
subject experiment. The results for the flow phantom experiment were not
as good, probably due to the long repetition time (TR), which limited the
number of temporal frames and reduced the temporal frequency bandwidth.
With a shorter TR, such as the one used in the in vivo experiment, the
number of temporal frames is increased, making the signal sparser in v-f
space. Thus, we expect to achieve results comparable to that in Figure 6
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when imaging patients.
The proposed sampling grid selection procedure is signal independent,

and could easily be performed during pre-scan, which is performed right
before signal acquisition. In this case, an appropriate sampling grid could
be designed based on the current heart-rate and specified undersampling
factor, velocity resolution and velocity field-of-view.

Several approaches could be applied to improve the performance of kv-t
SPARSE. One possible approach consists in finding a sparser representation
for FVE data. A Fourier transform along time, along with a wavelet trans-
form along the velocity dimension should provide better results [21]. Also,
an alternate reconstruction approach could improve the method’s efficiency.
Orthogonal matching pursuit might not be the most adequate algorithm
for this application, as significant background noise was observed in the
reconstructed data. A non-linear approach such as l1 minimization could
potentially provide a sparser solution [18]. Finally, this technique could be
directly combined to compressed sensing in spatial domain [13] to achieve
much higher acceleration factors. For example, in spiral FVE, in each car-
diac phase a random velocity encode associated with a random “perturbed”
spiral readout [12] could be acquired, exploring sparsity in x, y, v-f space or
in an alternate sparser representation (e.g., wavelet-based).

6 Conclusions

In this work, the performance of the compressed sensing framework in a flow
quantitation application has been evaluated. Although sparsity evaluation
experiments suggested great potential for a compressed sensing approach,
the proposed method did not work as well as expected. kv-t SPARSE was
able to reduced background noise due to undersampling, but clinically im-
portant information was lost.

Acceptable results were observed at 1.5-fold acceleration. Better results,
and/or higher acceleration factors could be achieved using a different recon-
struction algorithm (e.g., l1 minimization) or a sparser representation (e.g.,
wavelet-based). Also, kv-t SPARSE may be directly combined to compressed
sensing in spatial domain to achieve much higher acceleration factors.
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