
 

 

 

  

Abstract—Despite the growing interest in the transmission 

and storage of electromyographic signals for long periods of 

time, only a few studies dealt with the compression of these 

signals. In this article we propose a novel algorithm for EMG 

signal compression using the wavelet transform. For EMG 

signals acquired during isometric contractions, the proposed 

algorithm provided compression factors ranging from 50 to 

90%, with an average PRD ranging from 1.4 to 7.5%. The 

proposed method uses a new scheme for normalizing the 

wavelet coefficients. The wavelet coefficients are quantized 

using dynamic bit allocation, which is carried out by a 

Kohonen Neural Network. After the quantization, these 

coefficients are encoded using an arithmetic encoder. The 

compression results using the proposed algorithm were 

compared to other algorithms based on the wavelet transform. 

The proposed algorithm had a better performance in 

compression ratio and fidelity of the reconstructed signal.    

I. INTRODUCTION 

LECTROMYOGRAPHIC (EMG) signals are a useful 

tool in the assessment of muscle behavior [1,2]. The 

storage and transmission of this signal is usually an issue 

(e.g., in telemedicine applications), as EMG signals are 

usually digitized with sampling rates ranging from 1 to 20 

kHz and with a precision between 12 and 16 bits/sample 

[1]. 

 Previous works have dealt with the compression of 

other kinds of biomedical signals, such as the 

electrocardiogram [3,4,5] and the electroencephalogram [6]. 

Few works addressed EMG signal compression. 

Norris and Lovely [7] investigated the compression of 

EMG signals, using ADPCM (Adaptive Differential Pulse 

Code Modulation). Guerrero and Maihes [8] used different 

lossless compression methods, and compared the results 

with those of other methods, including methods based on 

orthogonal transforms. Such methods had a better 

performance regarding the compression rate and the signal 

to noise ratio. The compression of EMG signals using the 
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Embedded Zero-Tree Wavelet has also been studied [9,10]. 

More recently, Berger et al. [11], proposed an algorithm for 

EMG signal compression using the wavelet transform, and 

a scheme for the dynamic allocation of the bits that 

represent the wavelet coefficients. 

In this work, we propose a new algorithm for the EMG 

signal compression, based on the algorithm presented in 

[11]. In the proposed method, EMG signals are transformed 

to the wavelet domain, and the wavelet coefficients are 

normalized before the quantization stage. The quantization 

is performed by a dynamic bit allocation process, using a 

Kohonen neural network. The resulting coefficients are then 

quantized by an arithmetic encoder.  

II. MATERIALS AND METHODS 

A. Wavelet Transform Compression 

The wavelet transform is a time-scale decomposition with 

basis functions that are translations and dilations of a 

prototype function called mother wavelet [12]. The basis 

functions are based on a scale function, in such a way that: 

ϕ(t) = g(k) 2ϕ(2t − k)
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ψ j,k t( )= 2 j/2ψ(2 jt − k); j,k =1,2,... (3) 

  

The coefficients g(k) are the coefficients of the scale 

function. The h(k) coefficients are the coefficients of the 

wavelet function, or the wavelet filter. With the appropriate 

choice for g(k) and h(k), any continuous function can be 

decomposed into a series expansion, according to the 

following equation: 
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In this equation, the first summation yields the resolution 

function – jo –, which is a low resolution approximation of 

x(t). In the second summation, for each increment of j, a 

higher resolution function is added to x(t), and fine detail is 

successively added. The set of coefficients represented by 

equation (4) is called the discrete wavelet transform (DWT).  
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The DWT coefficients, in the j-th scale, are related to the 

coefficients in the j+1-th scale, according to the following 

equations: 
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where cj(k) are the approximation coefficients, and dj(k) are 

the detail coefficients. The above equations provide a 

recursive way for calculating the DWT coefficients. In 

practice, it is assumed that a discrete signal in its original 

resolution is equivalent to the approximation coefficients.  

Thus, if the set of filters h(k) and g(k) are chosen in such 

a way that they have a finite number of non-zero 

coefficients, that is, they are FIR filters, the DWT can be 

calculated by the filter bank shown in Figure 1, up to the jo–

th scale, where ĥ(k)=h(-k) and ĝ(k)=g(-k). The set of filters 

that are used in this work were the biorthogonal 9/7, that 

have been shown to be very effective in the compression of 

ECG signals [4,5]. 

 
Fig. 1. Wavelet Decomposition Algorithm. 

B. Wavelet Coefficient Normalization 

In this work we propose a new scheme for the 

normalization of the wavelet coefficients. In the proposed 

approach, the coefficients are multiplied by two scale 

factors, calculated by equations 6 and 7: 
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where k is the index of the transformed coefficient and Jk is 

the decomposition scale to which the k coefficient belongs, 

and 

λ
i
=

2Q

max X i[k]{ }
 (7) 

where i is the index of the block that is being processed, Q 

is the quality factor and Xi[k] are the transformed 

coefficients of the i-th element. 

The scale factors of the ε
k
-th scale need not be 

transmitted to the decoder, since the values of ε
k
 can be 

calculated by the decoder once the resolution of the wavelet 

transform is chosen. The goal of this normalization stage is 

to compensate the gains of the analysis filters of the wavelet 

decomposition process. On the other hand, the 

normalization factors – λ
i
 – need to be transmitted as 

overhead information to the decoder, as they depend on the 

input signal, and not only on the resolution that was chosen 

for the wavelet transform.  

The normalization process, along with the DWT and 

the quantization, leads to the appearance of many null 

coefficients in the quantization stage. This combination 

leads to a thresholding effect that adapts itself locally to 

the statistics of the signal, and yields a better signal-to-

noise ratio than traditional transform-based coders, 

which employ a fixed threshold for each block. Another 

advantage of this normalization approach is that it 

provides a method for controlling the quality of the 

reconstructed signal. In this method, the number of 

coefficients that are null, or that can be quantized with 

few bits, is proportional to the specified quality factor. 

The normalization factor λi is proportional to the value 

of 2Q in equation 6. Therefore, a small 2Q value leads to 

a small number of bits being allocated for the 

transformed coefficients. 

C. Encoding of Wavelet Coefficients 

The encoding algorithm proposed in this work can be 

represented by the block diagram in Figure 2. The input 

signal is divided in blocks of 2048 samples, and each block 

is transformed to the wavelet domain. The wavelet 

coefficients are normalized as described in the previous 

section. 

After normalization, each block of 2048 transformed 

coefficients is divided in 16 sub-bands. For each sub-band, 

the amount of bits that the transformed coefficients need is 

calculated, and this calculation leads to a 16-sample 

temporary bit allocation vector.   
 

 
Fig. 2. Block-diagram of the proposed encoder and decoder. 

 

The bit allocation vector is determined with the aid of a 

Kohonen layer as illustrated in Figure 3. Each block of 

2048 coefficients is divided into 16 sub-bands of 128 

spectral lines. The ideal bit allocation for each sub-band is 
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calculated. A vector with the ideal bit allocation scheme for 

all sub-bands in the signal segment is then built. This 

temporary bit allocation vector is applied to a Kohonen 

layer neural network. After processing by the Kohonen 

layer, a new approximated vector is chosen, which yields 

the final bit allocation vector. 
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Fig. 3. - Illustration of the bit allocation algorithm. 

 

The Kohonen network that was used has a rectangular, 

8x8 neurons topology, which represents a dictionary with 

64 vectors. The Kohonen network was trained with the 

Winner Takes Most (WTM) algorithm, assuming a 

Gaussian neighborhood function. It is important to notice 

that Kohonen layer training is done completely off-line and 

a real-time implementations of the proposed algorithm, 

although possible, would depend on the latency of the 

encoder hardware architecture. Six bits per block are needed 

for transmitting the index of the bit allocation vector to the 

decoder. Once this vector is determined, the transformed 

block is quantized. More details on the bit allocation and 

the quantization of the transformed coefficients are 

presented in [11]. The blocks with the quantized wavelet 

coefficients are grouped into a single sequence, which is 

encoded using arithmetic coding [13]. In order to achieve 

optimal entropy coding, the probability distribution of the 

alphabet symbols should be known a priori. In practice, this 

probability distribution is not known, and should be 

“learned” by the encoder and decoder, based on past 

observations of the encoding/decoding process. In this 

sense, a source with a reduced-size alphabet provides higher 

compression gains. The normalization process described in 

the previous section favors the use of the arithmetic coder, 

as it provides  automatic control for the gains of the wavelet 

coefficients, which reduces the number of symbols of the 

input alphabet. 

III. RESULTS AND DISCUSSIONS 

The compression algorithms presented in the last section 

was tested with EMG signals that were collected from the 

biceps brachii in 14 subjects during isometric contractions 

at 60% of the maximum voluntary contraction. These 

signals were sampled at 2 kHz, and quantized using a 12-

bits analog to digital converter. The duration of each signal 

ranged from 3 to 6 minutes. 

The performance of the signal compression algorithm 

was measured using two criteria: the compression factor 

(CF) and the percentage root mean difference (PRD). These 

two criteria are currently the most commonly used criteria 

for assessing the quality of EMG signal compression.  The 

compression factor is defined as: 
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where OS is the number of bits that is needed to store the 

original data, and CS is the number of bits needed for 

storing the compressed data.  

The percentage root mean difference is defined as: 
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where [ ]nx  is the original signal, [ ]nx~  is the 

reconstructed signal and N is the size of the signal segment. 

Several tests with the proposed algorithm were carried 

out for different values of quality factors Q. The PRD was 

measured such that the results of the CF ranged from 50 to 

100%. Figure 4 shows the results of CF versus PRD for all 

EMF signals tested, as well as the mean result. As the 

quality factor Q decreases, the compression factor CF 

increases. As a result of the increase in CF, the PRD 

remains almost unchanged up to the compression level of 

85%. After this point, any small increase in the 

compression factor leads to a great deterioration in the 

reconstructed signal. This has already been observed in 

[11], where the same bit allocation scheme for the wavelet 

coefficient was used. Note that, using the proposed 

algorithm, it was possible to encode the EMG signals with a 

CF ranging from 50 to 90%, and PRD ranging from 1.4 to 

7.5%, while, in [11], the CF ranged from 50 to 85%, and 

the PRD ranged from 2.4 to 7%. The comparison between 

these two results is accurate, as the same set of signals was 

used. 

At this point it is not possible to compare, in an accurate 

and reliable way, the results of the proposed algorithm with 

the results presented in [9], as in that work the EMG were 

not measured at the skin surface, and were sampled at 10 

kHz and quantized with 12 bits. These signals are very 

different from the signals used in this work, and a direct 

comparison with the proposed algorithm would not be 
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possible.  
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Fig. 4. Compression rates for the proposed algorithm 

 

The algorithm proposed by Norris et al. [10] was tested 

with EMG signals measured during isometric and isotonic 

contractions. The isometric EMG signals were measured 

from the biceps brachii muscle, sampled at 2 kHz, and 

quantized with 12 bits. Thus, the signals are reasonably 

equivalent to the ones used in this work. In Figure 5, we 

compare the proposed algorithm with the Norris algorithm 

[10], and also with the algorithm by Berger et al. [11]. In 

the figure, it is clear that the algorithm proposed in this 

work had a better performance. However, It is important to 

highlight that the differences in performance between 

Norris’s work and the proposed method may just reflect the 

fact that the sets of data used for the two methods may be 

have different characteristics. Although at a first glance the 

signals are similar to the ones used in the present work, 

details such as interelectrode distance and %MVC were not 

reported in Norris’ work, and it is possible that the signals 

used in that work were different from the signals used in 

this one. 
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Fig. 5. Comparison between the proposed algorithms, and previous methods 

[10,11]. The method proposed in this article had a better performance. 

IV. CONCLUSION 

In this article, we proposed a new algorithm for the 

compression of surface EMG signals. Each block of the 

EMG signal is transformed using the DWT, normalized, 

and quantized using a dynamic bit allocation scheme based 

on a Kohonen neural network. The set of quantized 

coefficients is then encoded by an arithmetic coder. The 

compression of the EMG signals was evaluated with a set of 

14 EMG signals measured during isometric compressions. 

The results showed that the compression factors ranged 

from 50 to 90%, and the PRD ranged from 1.4 to 7.5%. The 

performance of the proposed algorithm was better than that 

of existing algorithms that use the discrete wavelet 

transform. 
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