

Abstract — A Body Sensor Network (BSN) must be designed
to work autonomously. On the other hand, BSNs need
mechanisms that allow changes in their behavior in order to
become a clinically useful tool. The purpose of this paper is to
present a new programming model that will be useful for
programming BSN sensor nodes. This model is based on an
intelligent intermediate-level compiler. The main purpose of
the proposed compiler is to increase the efficiency in system
use, and to increase the lifetime of the application, considering
its requirements, hardware possibilities and specialist
knowledge. With this model, it is possible to maintain the
autonomous operation capability of the BSN and still offer tools
that allow users with little grasp on programming techniques to
program these systems.

Keywords— Body Sensor Network (BSN), deployment-time
programmability, application-domain requirements,
transparency.

I. INTRODUCTION
ervasive monitoring demands great adaptation capability
of the Body Sensor Networks (BSNs) [1]. In BSNs,

cases in which the decision made by the system is different
from the decision that would have been made by a
healthcare professional are frequent. In order to become a
clinically useful tool, BSNs need intelligent algorithms for
autonomous operation, and mechanisms that allow changes
in their behavior. According to Baldus et al. [2], “the BSN
has to work automatically, but has also to be always under
explicit control of any clinician”.

This paper introduces a deployment-time programming
model that could be useful for people with little grasp on
programming techniques. Deployment-time
programmability refers to the definition of software artifacts
and algorithms that are embedded in the sensor nodes [3,4].
The inclusion of this functionality in BSNs requires a
programming interface that is suitable for healthcare
personnel, and intelligent compilers. Such compilers should
be capable of handling implicit functional and non-

Manuscript received April 2, 2007.
T. M. G. de A. Barbosa and I. G. Sene Jr. are with the Department of

Computing, Catholic University of Goias, Goiania, GO 74605-110 Brazil
(e-mail:talles@ucg.br, iwens@ucg.br).

A. F. da Rocha and F. A. de O. Nascimento are with the Department of
Electrical Engineering, University of Brasília, Brasília, DF 70910-900
Brazil (e-mail: adson@unb.br, assis@unb.br).

J. L. A. Carvalho is with the Department of Electrical
Engineering, University of Southern California, Los Angeles, CA
90089-2564 USA (e-mail: jcarvalh@usc.edu).

H. S. Carvalho is with the Medical School and with the Department of
Electrical Engineering, University of Brasília, Brasília, DF 70910-900
Brazil (e-mail: carvalho@unb.br).

functional requisites of a program. Deployment-time
programmability could be useful for adding mechanisms and
policies for energy saving to the BSN, for example.

BSN research usually uses a bottom-up approach, where
the sensor network hardware is usually chosen based on its
availability. Software engineering abstractions are used in
order to avoid low-level hardware issues, usually by
including an intermediate-level compiler between the high-
level programming model and the hardware programming
tools. For example, BeanWatcher [5] allows the generation
of applications based on a visual description of the
components. Abstract Regions [6] offers an Application
Programming Interface (API) to hide details of the radio
transmitter, the routing protocols and the data sharing
programming. VM* [7] is a framework that has been
developed to allow application programming using Java
syntax. In the ATaG [8], application programming is done
using two graphs: the “abstract task graph” is responsible for
defining the functionalities of the applications, and the
“network graph” describes the network topology. These two
information sets are processed by an intermediate-level
compiler, which produces application source codes that may
be compiled into binary code using traditional compilers like
gcc. While being able to increase the transparency levels
between the hardware and the programmers, such solutions
assume that the BSN user has programming language skills.
Moreover, these solutions do not take application-domain
requirements and organization into consideration.

The solution presented in this paper addresses these
issues, and is based on an intelligent intermediate-level
compiler. An intelligent compiler is capable of defining
mechanisms and adjusting policies that will compose the
system software image deployed into sensor nodes. Its main
purpose is to increase the efficiency in system use, therefore
increasing the lifetime of the application. Such compilers
should consider application domain requirements, and
hardware possibilities. The specialist’s knowledge should
also be taken into consideration, as the medical expert could
help in scheduling resources according to each application.
The proposed model can increase the BSNs capability for
autonomous operation, and offer tools that allow people
with little grasp on programming techniques to program
these systems.

This work is organized as follows. First, the description of
the new model for BSN software programming is presented.
Next, we show that it is possible to increase the lifetime of
the applications by taking into account some hardware

A New Model for Programming Software in Body Sensor Networks
Talles M. G. de A. Barbosa, Iwens G. Sene Jr, Adson F. da Rocha, Francisco A. de O. Nascimento,

Joao L. A. Carvalho and Hervaldo S. Carvalho

P

Proceedings of the 29th Annual International
Conference of the IEEE EMBS
Cité Internationale, Lyon, France
August 23-26, 2007.

ThD11.4

1-4244-0788-5/07/$20.00 ©2007 IEEE 1515

characteristics, associated with application-domain
requirements and the specialist’s knowledge during the
sensor node programming. In conclusion, we propose this
model as a framework for future research.

II. A NEW MODEL FOR PROGRAMMING SOFTWARE IN BODY
SENSOR NETWORKS

An overview of the activities defined by the BSN
programming model is presented in Fig. 1. The core of this
model is an intermediate-level compiler, called agent
generator. The functionality selection (shown in number 1)
refers to the description of mechanisms and policies that will
compose an application. This activity may be executed by
any clinician through the graphical user programming
interface. Next, the applications requirements are sent to
the agent generator. The agent generator is composed of
three modules: (i) Parser Module, (ii) Selector Module and
(iii) Generator Module. The “Parser” module is responsible
for extracting relevant information for the “Selector”
module. In practice, these informations are related to
parameters, such as the objective of the application, the
number of tasks, the types of tasks, and the selected alarms,
among others. The values of these parameters are used for
filling a table of parameters that will be used by the selector

module. The “Selector” module chooses the agent that
maximizes the potential of each application, guaranteeing a
longer lifetime for the system. In practice, the selector
module is a decision tree [9] that is responsible for the
choice of the best agent, from a set of possible agents, called
agent family, that are deposited in an agent repository. This
choice is made based on the table of values that is made
available by the “Parser” module. The definition of this tree
(selection algorithm) is based on the medical knowledge that
influences the values of each parameter in the table. As an
example, Fig. 2a shows an ECG agent family while Fig. 2b
shows an ECG agent selected from that family.

After choosing the best agent, the “Generator” module
generates the “agent.c” file, which is the application source
code. A description of the code libraries and system calls
that are needed should be used for this task. This description
is stored in the agent repository, along with the functional
description of each agent. During the agent selection, this
configuration file is used by the “Generator” module for
assembling the “agent.c” file. After that, the compilation
and deployment in the target platform is executed (third
activity). In order to do so, traditional compilers like gcc
should be used. In this project, the MSPGCC [10], a tool for
Texas Instruments MSP430 microcontrollers, was used. The

Fig.1. The BSN programming model activities centered in the intelligent compiler.

1516

final activity (number 4 in the Fig. 1) is the system
initialization, which provides the monitored signals to the
healthcare professional. In the example in Fig 1, a healthcare
assistant evaluates an ECG signal, which is being displayed
in a cell phone screen.

An ECG agent family is shown in Fig. 2a. This
representation shows one set of tradeoff (tasks scheduling)
possibilities for the ECG system, according to the
specialist’s knowledge. Specifically for these automata,
tradeoff events may be influenced by noise characteristics,
depending on the number of ECG leads, and the sampling
rate. Noise analysis may or may not take into account the
needs of the ECG diagnosis process. In fact, there are many
other configuration possibilities for an ECG agent family
that were not considered in this picture.

Each sub-set of an agent family may be considered an
agent. It represents a piece of the specialist’s knowledge
delimited by specific application requirements captured
during the functionalities selection stage. Fig 2b shows a
selected ECG agent based on the functionality selection
showed in the graphical programming interface screen
presented in Fig 1.

Energy saving can be obtained by using Dynamic Power
Management (DPM) concepts, whereby the sensor node is

shut down if no interesting event occur, or slowed down
during periods of reduced activity [11]. It is desirable that
the node has graceful energy quality scalability so that, if the
application demands, the user is able to extend the mission
lifetime at the cost of sensing accuracy.

In order to allow DPM appliance in the BSNs,
application needs should be taken into account, otherwise an
efficient “graceful degradation” can not be reached.
Moreover, systems should consider the hardware
possibilities and the specialist’s knowledge, since the
medical expert could help in scheduling resources according
to each application.

The selected agent presented in Fig 2b represents an
application that was programmed to support only two
functionalities: the ECG 1 and the ECG 3 Leads.
Mechanisms and policies were associated to each
functionality, based on the specialist’s knowledge, in order
to promote the energy saving. As a consequence, the
application lifetime will be extended in a elegant and
efficient way. Mechanisms allow dynamic changes in
hardware configuration, while policies are responsible for
determining when these changes should occur.

III THE CPU POWER-SAVING MODES PERFORMANCE
In this work, we extend the DPM feature presented in a

previous work [3] by taking into account specific
characteristics of the hardware used in this project. In
particular, we investigated the performance of the new
energy saving possibilities when changes in the CPU Power-
Saving modes occur (see Fig 2b).

Our hardware system, presented in Fig. 1, was assembled
based on the Olimex MSP430-P149 kit [12], with a
bluetooth radio BlueSMiRF Basic [13]. The ECG
acquisition system was built based on the differential
amplifier (Texas Instruments, USA).

The TI MSP430 MCUs may be configured to support
dynamic changes in the operating modes. The processor has
five low power modes: active mode, LPM0, LMP1, LMP2,
LPM3 and LPM4. In each mode, the MSP430 has the option
of shutting down the processor portion of the device, by
using the CPUOff bit in the Status Register. As the current
consumption increases with the clock frequency, the
MSP430 also allows dynamic frequency adjusting in order
to save energy.

Experiments to quantify the current consumption have
been performed to evaluate the energy consumption of some
possible configurations of the ECG sensor node. An
overview of the results is presented in Fig. 3. The frequency
range was chosen such that these frequencies would not shut
down other MCU parts, like the A/D converter and the
USART ports.

Fig. 2. (a) An ECG agent family. (b) An ECG agent selected from (a).

1517

IV DISCUSSION
Although the energy saving obtained from the dynamic

changes in CPU modes are not as high as the savings
obtained by when the bluetooth radio transmitter is in stand-
by (see Fig 2b), the results presented in Fig 3 reveal that
there are many mechanisms that can be used for improving
energy saving in BSN, when hardware possibilities are also
considered. In order to manage these mechanisms in an
efficient and elegant way, we proposed a solution that is
executed during the programming stage.

IV CONCLUSIONS AND FUTURE WORKS
In the model presented in this paper, software

programming is executed in four main activities (Fig. 1).
Only the first activity is executed by programmers, while the
remaining ones are system activities. A software architecture
for BSNs has been developed to support these transparency
levels [3].

This work presented a proposal for a paradigm shift in
BSN programming. More suitable tools, such as
programming interfaces and intelligent compilers, enable
healthcare workers to become the actual programmers and
maintainers of this technology. The possibility of
developing and/or testing new applications without the need
of specific technical knowledge on programming techniques
and computational models can facilitate the popularization
of this technology.

Intelligent compilers that are capable of embedding,
during the programming at deployment time of the sensor
nodes, mechanisms and policies that increase the
effectiveness of the application, should also be targeted by
new developments. These compilers should operate in a
transparent way to the user, and must be based on the

knowledge of specialists, since the medical expert could
help in scheduling resources according to each application.

Future efforts will be concentrated on usability tests for
measuring how well healthcare personnel can use this
programming software model.

REFERENCES
[1] G. Yang, Body Sensor Networks. London, England: Springer-Verlag,

2006.
[2] D. Baldus, K. Klabunde and G. Müsch, “Reliable set-Up of medical

body-sensor networks”, Lecture Notes in Computer Science,
2920/2004, 2004, pp.353-363.

[3] T. M. G. de A. Barbosa, I. G. Sene Jr, H. S. Carvalho, A. F. da Rocha,
F. A. do Nascimento, and J. F. Camapum, J. F, “Application-oriented
programming model for sensor networks embedded in the human
body,” in Proc. of the 28th Annual International Conference IEEE
Engineering in Medicine and Biology Society (EMBC), pp. 6037-
6040, 2006.

[4] T. M. G. de A. Barbosa, I. G. Sene Jr, H. S. Carvalho, A. F. da Rocha,
F. A. do Nascimento, and J. L. A. de Carvalho, “Programming Body
Sensor Networks (Book chapter-Submitted for publication)”,
Encyclopedia of Healthcare Information Systems, submitted for
publication.

[5] A. Lins, E. Nakamura, L. Rocha, A. A. F. Loureiro, and C. Coelho,
“Semi-automatic generation of monitoring applications for wireless
networks”, in Proc. of the 9th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA'03), 2003.

[6] M. Welsh and G. Mainland, “Programming Sensor Networks Using
Abstract Regions”, in Proc. of the USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI '04), USENIX
Press, San Francisco, 2004.

[7] J. Koshy and R. Pandey, “VM* synthesizing scalable runtime
environments for sensor networks”, in Proc. 3rd ACM Conference on
Embedded Networked Sensor Systems, ACM Press, San Diego, 2005.

[8] A. Pathak and V. K. Prasanna, “Issues in design a compilation
framework for macroprogrammed networked sensor systems”, in
Proc. 6th International Conference on Integrated Internet ad hoc and
sensor networks, ACM Press, Nice, 2006.

[9] H. T. Cormem, E. C. Leisersin and L. R. Rivest, Algorithms. MIT
Press, Cambrige, MA, 1997.

[10] D. Dirky and C. Liechti, “The GCC toolchain for the Texas
Instruments MSP430 MCUs” [Online]. Available:
http://mspgcc.sourceforge.net/

[11] A. Sinha and A. Chandrakasan, “Dynamic Power Management in
Sensor Networks (book chapter)”, Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems, CRC Press, 2004.

[12] Olimex. “MSP430-P149 MPS430F149 HEADER BOARD” [Online].
Available: http://www.olimex.com/dev/index.html

[13] Spark Fun. “Bluetooth Modem - BlueSMiRF Basic” [Online]
Available:http://www.sparkfun.com/commerce/product_info.php?prod
ucts_id=158

Fig 3. The performance of the CPU Power-Saving Modes. This
picture represents the current consumption obtained from the ECG
sensor node CPU when dynamic configurations in the operating
modes and in the frequency operation were executed.

1518

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

