
  

 

Abstract—This paper presents a myoelectric knee joint angle 
estimation algorithm for control of active transfemoral 
prostheses, based on feature extraction and pattern 
classification. The feature extraction stage uses a combination 
of time domain and frequency domain methods (entropy of 
myoelectric signals and cepstral coefficients, respectively). 
Additionally, the methods are fused with data from 
proprioceptive sensors (gyroscopes), from which angular rate 
information is extracted using a Kalman filter. The algorithm 
uses a Levenberg-Marquardt neural network for estimating the 
intended knee joint angle. The proposed method is 
demonstrated in a normal volunteer, and the results are 
compared with pattern classification methods based solely on 
electromyographic data. The use of surface electromyographic 
signals and additional information related to proprioception 
improves the knee joint angle estimation precision and reduces 
estimation artifacts. 

Keywords - Electromyographic signals, proprioceptive sensors, 
entropy, cepstral coefficients, Kalman filter, transfemoral 
prostheses. 

I. INTRODUCTION 

LECTRONIC knees can be designed for providing 
different levels of damping during swing, and for 

adjusting to different walking speeds, assuming they have 
the appropriate sensors and control algorithms for estimating 
the knee joint angle and the walking speed. With the 
appropriate control algorithm, it is possible to program the 
prosthesis to allow the knee to flex and extend while bearing 
a subject’s weight (stance flexion). This feature of normal 
walking is not possible with conventional prostheses. 

Electronic knees use some form of computational 
intelligence to control the resistive torque about the knee. 
Several research groups have been involved in designing 
prototype knee controllers. Grimes et al. [1] developed an 
echo control scheme for gait control, in which a modified 
  
Alberto L. Delis is with the Dept. of Electrical Engineering, University of 
Brasília, Brasília-DF, Brazil, and the Medical Biophysics Center, University 
of Oriente, Santiago de Cuba, Cuba (lopez_delis@yahoo.com). João L. A. 
Carvalho, Geovany A. Borges, Icaro dos Santos, and Adson Ferreira da 
Rocha are with the Department of Electrical Engineering, University of 
Brasília, Brasília-DF, Brazil (joaoluiz@gmail.com, gaborges@ene.unb.br, 
adson@unb.br, icaro@ieee.org). Suélia S. Rodrigues is with the UnB-Gama 
Faculty, University of Brasília, Gama-DF, Brazil 
(rodrigues.suelia@gmail.com). 

 
 

knee trajectory from the sound leg is played back on the 
contralateral side. Popovic et al. [2] presented a battery- 
powered active knee joint actuated by DC motors, together 
with a finite state knee controller that utilizes robust position 
tracking control algorithm for gait control. A small number 
of companies have also developed electronic knee for 
clinical uses. For example, the Otto Bock C-leg [3] provides 
adjustable resistance for flexion and extension in swing 
through onboard intelligence and a special software 
package. 

Processing of surface electromyographic (SEMG) signals 
may be used in actively powered myoelectric prostheses for 
extracting command signals from muscle in the residual 
limb [4]. We recently proposed two different algorithms for 
estimating the intended knee joint angle from SEMG signals 
measured on opposing muscles of the upper-leg [5],[6]. The 
first method uses the auto-regressive model for feature 
extraction and a Levenberg-Marquardt (LM) multi-layer 
perceptron neural network for pattern classification [5]. The 
second method uses time-domain and frequency-domain 
SEMG feature extraction (amplitude histogram and AR 
model, respectively), self-organizing maps for feature 
projection, and a LM neural classifier [6]. 

For the development of an active leg prosthesis that also 
possesses ankle and foot axes, it is necessary to use other 
sources of information besides the SEMG signal (e.g. 
proprioceptive data). This could improve the precision of the 
prosthesis during movements of knee flexion and extension. 
Data fusion applied to myoelectric signals and 
proprioceptive sensors is capable of providing reliable 
myoelectric control [7].  

The level of activity of muscles, either in isometric or 
isotonic contraction in dynamic limb motion, is the most 
important process to be recognized in myoelectric control. 
The combination of time domain features that represent the 
term of energy in the SEMG signal, with frequency domain 
features that show the muscle’s level of activation, provides 
good classification precision, is computationally efficient, 
and is more robust to electrode displacement [8]. 

This paper proposes an algorithm for estimation of 
intended knee joint angle from SEMG signals and 
proprioceptive sensor data, for the control of active 
transfemoral leg prostheses (Fig. 1). Two channels of SEMG 
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Fig. 1: Block diagram of the proposed knee angle estimation algorithm. 

 
signals are simultaneously acquired from bipolar pairs of 
electrodes placed on different muscles. The angular rate 
information from two gyroscope sensors placed on the upper 
and lower legs is also measured. The entropy and the 
cepstral coefficients associated with the SEMG signals are 
calculated, and a Kalman filter is used to estimate the knee’s 
angular rate. The intended knee joint angle is estimated from 
this set of features using a Levenberg-Marquardt multi-layer 
perceptron neural network. The proposed method is 
demonstrated in a normal volunteer, and the results are 
compared with our previous knee joint angle estimation 
methods, which were based solely on classification of 
electromyographic data. 

I. METHODOLOGY 

A. Data Collection 

A specifically-designed microcontrolled bioinstrumenta-
tion system was constructed [9] as part of the project of an 
active transfemoral prosthesis [10]. The system implements 
up to four channels of front-end amplifiers for SEMG signal 
acquisition, and a channel connected to an electrogoniome-
ter, for measuring the knee joint angle. In this work, two 
channels, connected to gyroscope sensors that provide knee 
angular rate information, were added to the system. Two 
channels of amplified SEMG signal, the angular 
displacement signal and the data from the gyroscope sensors 
are analogically multiplexed and sampled using a 13-bit 
analog-to-digital converter, which is electrically isolated 
from the microcontroller and the power supply using an 
optocoupler and a DC-DC converter. The sampling rate was 
1043.45 Hz per channel. Analog filters are used to limit the 
SEMG signal to the 20–500 Hz frequency range. The 
microcontrolled system implements a digital real-time 
adaptive notch filter, which maintains a running estimate of 
the 60 Hz power line interference [9]. The data is transferred 
to a personal computer through a serial interface. 

For a preliminary evaluation of the myoelectric algorithm, 
the following experimental protocol was designed. Two 
pairs of 10-mm Ag/AgCl surface electrodes were placed in 
bipolar configuration over a pair of antagonist muscles 
(rectus femoris and semitendinosus muscle) of a healthy 
subject (Fig. 2a and 2b). These muscles correspond to the 
flexion and extension movements of the knee joint, 
respectively. The distance between the centers of the 
electrodes of each pair was 3–5 cm. The reference electrodes 
were placed over the lateralis and medialis epicondyles 
bones. An electrogoniometer was placed and strapped over 

the external side of the leg, and the gyroscope sensors were 
placed over the upper and lower legs, respectively (Fig. 2c). 
The difference between the signals measured by the 
gyroscopes reflects the angular rate of the knee joint. 
 

 
Fig. 2: Placement of SEMG electrodes (a,b), electrogoniometer and 
gyroscope sensors (c). 

 
Figure 3 presents an example of SEMG signals and 

proprioceptive sensor data (electrogoniometer and 
gyroscope sensors), which were simultaneously-acquired 
while the subject was walking in a constant direction and at 
a constant pace, for 15 seconds. 
 

 
Fig. 3: Representative set of simultaneously-acquired SEMG signals (rectus 
femoris and semitendinosus muscles), electrogoniometer angle (knee), and 
gyroscope measurements (upper and lower legs). 

B. Feature Extraction 

In this work, cepstral analysis is used for frequency-
domain SEMG signature discrimination. The cepstrum of a 
signal is defined as the inverse Fourier transform of the 
logarithm of the squared magnitude of the Fourier transform 
of a signal, as follows: 
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If all transfer function poles are inside the unit circle, the 
logarithmic transfer function can be represented as a Laurent 
expansion [11]. From (1), it is possible to derive the 
following recursive relation: 
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Using (2), the first P cepstral coefficients (ck) can be 
obtained from the Pth order coefficients (ak) of the 
autoregressive (AR) signal model. Even though the cepstral 
coefficients are derived directly from the AR coefficients, 
they do not contain exactly the same information, because 
the recursive operation changes the distribution of the 
features nonlinearly [11]. The cepstral coefficients were 
obtained using a sixth-order AR model and (2). The cepstral 
coefficients obtained from each of the two SEMG channels 
form a feature vector for the pattern classification process. 

The entropy of each SEMG channel is calculated and used 
as a time-domain feature vector [12].  We focus on the 
difference in entropy between stationary SEMG in a 
relaxated state and in movement. Assuming that 
electromyographic signals can be approximated by a normal 
distribution process with zero mean, the entropy of the 
distribution is 
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(3) 

where 2
i represents the variance estimated from the signal 

measured from each electrode, and xi(n) is a vector 
containing N EMG samples from the i-th electrode [12]. For 
each SEMG channel, the calculated entropy is concatenated 
with the cepstral feature vector. This combination provides 
robustness in weak SEMG signals. 

In addition, angular rate information from the gyroscopes 
is used to increase angle estimation precision and reduce 
estimation artifacts. Feature extraction is performed using a 
Kalman filter. The goal of Kalman filters is the estimation of 
nonstationary signals buried in noise, by minimizing the 
mean squared error (i.e., recursive least squares for 
stochastic models). The estimated signal (e.g., angular rate) 
is modeled using a state-space formulation, describing its 
dynamical behavior [13], according to the following linear 
stochastic model:  

),()()(

)()1()(

kvkxky

knkxkx




 
 

(4) 

where, in this work, x(k) is the joint angular rate; n(k) is 
noise modeling the evolution of the joint angular velocity 

between two sampling intervals; y(k) is the measured 
angular rate, obtained from subtracting the angular rate 
values measured on the upper and lower legs, respectively; 
and v(k) is the measurement noise. It is assumed that n(k) 
and v(k) have zero mean, uncorrelated Gaussian 
distributions, with variances q2

 and r2, respectively. When 
applying the Kalman filter to this model, one obtains 

)/(ˆ kkx  as an optimal estimate of x(k), in the least-squares 

sense. It can be shown that, for this specific problem, this 
filter is equivalent to a unity-gain, low-pass, first-order filter, 
with time-varying cutt-off frequency. This cutt-off 
frequency is computed considering noise variances q2

 and r2, 

as well as the error variance associated to )/(ˆ kkx  [13]. The 

value of )/(ˆ kkx  is an optimal estimate of the mean of the 

knee joint angular rate at sampling step k. At each time 

instant k, the angular rate estimate )/(ˆ kkx , along with the 

SEMG cepstral and entropy coefficients, are used as input to 
the neural classifier, discussed next. 

C. Pattern Classification 

This stage attempts to estimate the intended knee joint 
angle from the SEMG feature vector and the angular rate 
estimate. This is implemented using a Levenberg-Marquardt 
multi-layer perceptron neural network [14]. Similarly to the 
quasi-Newton methods, the Levenberg-Marquardt algorithm 
was designed to approach second-order training speed 
without computing the Hessian matrix.  The key step in the 
LM algorithm is the computation of the Jacobian matrix, 
which can be computed through standard backpropagation 
techniques [14], which are much less complex than 
computing the Hessian matrix. Although the computational 
requirements of the LM algorithm become much higher after 
each iteration, this is fully compensated by its higher 
efficiency, especially when high precision is required. 

Network training and testing were performed in Matlab 
(The MathWorks, Inc., Natick, MA, USA). For each SEMG 
channel, the proposed algorithm was implemented such that 
the feature extraction process (cepstral analysis and entropy) 
was performed for 200 samples (192 ms) windows, using a 
sliding window approach. Similarly, for each new pair of 
gyroscope sensor samples, an updated Kalman filter angular 
rate estimate was calculated. This results in a 15-coefficient 
feature vector (6 cepstral coefficients and 1 entropy 
coefficient per SEMG channel, plus 1 angular rate 
coefficient) per sample interval. This information is 
transferred to a three-layer LM neural network, with 15 
nodes in the input layer, 6 nodes in the hidden layer, and 1 
node in the output layer, which represents the estimated 
knee joint angle. The network architecture and size was 
empirically chosen. The true displacement angle measured 
with the electrogoniometer is used as training reference. 

 Training and testing were performed using two different 
set of signals obtained from the same subject, with a 20-
minute rest interval between acquisitions. Each signal was 
15-second long (15640 samples per data channel). 
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III. RESULTS AND DISCUSSION 

The results in Fig. 4 demonstrate the performance of the 
proposed algorithm in a representative 15-second 
experiment, compared with two knee angle estimation 
methods based solely on electromyographic data [5],[6]. The 
correlation between estimated and electrogoniometer-
measured knee joint angles was 0.87 for the proposed 
method, and 0.62 and 0.81 for methods [5] and [6], 
respectively, in this example. The results obtained with 
methods [5] and [6] presented significant artifacts, which 
may be interpreted by the leg prosthesis as false positives, 
depending of their duration. These errors peaks may be due 
to noise in the SEMG feature space. The use of 
proprioceptive data considerably improved upon those 
methods with respect to this issue. 
 

 
Fig. 4: Measured and estimated knee angle displacements: (a) algorithm 
from ref. [5]; (b) algorithm from ref. [6]; (c) proposed algorithm. 
 

The processing time for these 15-second long signals 
were 1.5 seconds for method [5], 41 seconds for method [6], 
and 2.3 seconds for the proposed method. These were 
measured on a 1.6 Ghz AMD Sempron CPU, and refer to 
the testing stage only. The proposed method is 20 times 
faster than method [6], and is computationally equivalent to 
method [5], but provides considerably better results and 
robustness. These results shows that the algorithm may 
potentially be used in real-time on the leg prosthesis. 

IV. CONCLUSION 

This paper introduced a knee angle estimation algorithm 
for control of active transfemoral leg prostheses. The 
proposed algorithm implements data fusion of SEMG 

signals and proprioceptive sensor information, which 
improves the angle estimation precision when compared 
with algorithms based solely on SEMG data. The concepts 
used in this algorithm may be useful in the development of a 
control algorithm for active leg prostheses, in which signals 
from many different sensors may be fused and used in the 
conception of a movement predictive model. Future 
experiments will include a multi-subject evaluation, and 
tests under variable conditions of moving direction and 
speed. 
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