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This paper presents a myoelectric knee joint angle estimation algorithm for 
control of active transfemoral prostheses, based on feature extraction and 
pattern classification. The feature extraction stage uses a combination of 
time domain and frequency domain methods (entropy of myoelectric signals 
and cepstral coefficients, respectively). Additionally, the methods are fused 
with data from proprioceptive sensors (gyroscopes), from which angular rate 
information is extracted using a Kalman filter. The algorithm uses a 
Levenberg-Marquardt neural network for estimating the intended knee joint 
angle. The proposed method is demonstrated in a normal volunteer, and the 
results are compared with pattern classification methods based solely on 
electromyographic data. The use of surface electromyographic signals and 
additional information related to proprioception improves the knee joint 
angle estimation precision and reduces estimation artifacts.

II. METHODOLOGY

A. Data Collection and experimental protocol

For a preliminary evaluation of the myoelectric algorithm, the following 
experimental protocol was designed. Two pairs of 10-mm Ag/AgCl surface 
electrodes were placed in bipolar configuration over a pair of antagonist 
muscles (rectus femoris and semitendinosus muscle) of a healthy subject 
(Fig. 1a and 1b). These muscles correspond to the flexion and extension 
movements of the knee joint, respectively. The distance between the centers 
of the electrodes of each pair was 3�5 cm. The reference electrodes were 
placed over the lateralis and medialis epicondyles bones. An 
electrogoniometer was placed and strapped over the external side of the leg, 
and the gyroscope sensors were placed over the upper and lower legs, 
respectively (Fig. 1c). The difference between the signals measured by the 
gyroscopes reflects the angular rate of the knee joint.

Fig. 1 :  Placement of SEMG electrodes (a,b), electrogoniometer and gyroscope 
sensors (c).

Figure 2 presents an example of SEMG signals and proprioceptive sensor 
data (electrogoniometer and gyroscope sensors), which were simultaneously-
acquired while the subject was walking in a constant direction and at a constant 
pace, for 15 seconds.

Fig. 2 :  Representative set of simultaneously-acquired SEMG signals (rectus 
femoris and semitendinosus muscles), electrogoniometer angle (knee), and 
gyroscope measurements (upper and lower legs).

B. Data Processing

In this work, cepstral analysis and the entropy are used for frequency and 
time domain SEMG signature discrimination respectively. The cepstrum of a 
signal is defined as the inverse Fourier transform of the logarithm of the squared 
magnitude of the Fourier transform of a signal, as follows [1]:
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Assuming that electromyographic signals can be approximated by a normal 
distribution process with zero mean, the entropy of the distribution is:

∑
=−

=

=

N

n
ii

ii

nx
N

eH

1

22

2
2

)(
1

1

)2(log
2
1)(

σ

σπσ
 (2)

 In addition, angular rate information from the gyroscopes is used to increase angle 
estimation precision and reduce estimation artifacts. The goal of Kalman filters is 
the estimation of nonstationary signals buried in noise, by minimizing the mean 
squared error (i.e., recursive least squares for stochastic models) [2], according to 
the following linear stochastic model: 
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This information is transferred to a three-layer LM neural network [3], with 15 

nodes in the input layer, 6 nodes in the hidden layer, and 1 node in the output layer, 
which represents the estimated knee joint angle. The network architecture and size 
was empirically chosen. The true displacement angle measured with the 
electrogoniometer is used as training reference (Fig. 2). 

Fig. 4 : Measured and estimated knee angle displacements: (a) algorithm from ref. 
[4]; (b) algorithm from ref. [5]; (c) proposed algorithm.

III. RESULTS AND DISCUSSION

The results in Fig. 4 demonstrate the performance of the proposed algorithm 
in a representative 15 second experiment, compared with two knee angle estimation 
methods based solely on electromyographic data [4], [5]. The correlation between 
estimated and electrogoniometer-measured knee joint angles was 0.87 for the 
proposed method, and 0.62 and 0.81 for methods [4] and [5], respectively, in this 
example. The results obtained with methods [4] and [5] presented significant 
artifacts, which may be interpreted by the leg prosthesis as false positives, 
depending of their duration. These errors peaks may be due to noise in the SEMG 
feature space. The use of proprioceptive data considerably improved upon those 
methods with respect to this issue.

Fig. 3 :  Block diagram of the proposed knee angle estimation algorithm.

IV. CONCLUSION

The proposed algorithm implements data fusion of SEMG signals and 
proprioceptive sensor information, which improves the angle estimation precision 
when compared with algorithms based solely on SEMG data. The concepts used in 
this algorithm may be useful in the development of a control algorithm for active 
leg prostheses, in which signals from many different sensors may be fused and used 
in the conception of a movement predictive model. 
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