
  

 

Abstract—We have recently introduced an algorithm for 
semi-automatic segmentation of the left ventricular wall in 
short-axis echocardiographic images (EMBC 30:218–221). In 
its preprocessing stage, the algorithm uses temporal averaging 
for image denoising. Motion estimation is used to detect and 
reject frames that do not correlate well with the set of images 
being averaged. However, the process of estimating motion 
vectors is computationally intense, which increases the 
algorithm’s computation time. In this work, we evaluate the 
viability of replacing the motion estimation stage with less 
computationally intense approaches. Two alternative 
techniques are evaluated. The ventricular contours obtained 
from each of the three algorithm variants were quantitatively 
and qualitatively compared with contours manually-segmented 
by a specialist. We show that it is possible to reduce the 
algorithm’s computational load without significantly reducing 
the segmentation quality. The proposed algorithms are also 
compared with three other techniques from the literature. 
Keywords: segmentation, echocardiographic images, motion 
estimation, area variation, boundary detection. 

I. INTRODUCTION 

Echocardiography is the current non-invasive gold 
standard for real-time assessment of cardiac function. The 
segmentation of ventricular walls in echocardiographic 
images is used for measuring ventricular volume, which is 
important in evaluating many cardiovascular conditions [1]. 

Several algorithms for ventricular wall segmentation have 
been proposed in the literature. These include algorithms 
designed for short-axis [2]–[4] and long-axis images [5], [6], 
semi-automatic algorithms [1], [3], and fully-automated 
algorithms [6]–[8]. In the preprocessing stage, several 
different approaches have been used for denoising, such as 
morphologic filtering [1], the discrete wavelet transform [7], 
and temporal averaging [9]. 

We have recently introduced an algorithm for semi-
automatic segmentation of left ventricular (LV) wall in 
sequences of short-axis echocardiographic images [10]. The 
preprocessing stage consists of (i) temporal averaging 
denoising, (ii) contrast enhancement, using a self-reinforced 
edge-enhancement hi-pass filter and a Laplacian of Gaussian 
(LoG) filter, and (iii) morphological closing. The 
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segmentation stage consists of histogram-based 
thresholding, region labeling, and neighborhood operations. 
The latter is used to detect the LV boundary pixels. In the 
temporal averaging step, this algorithm uses motion 
estimation to detect and reject frames that do not correlate 
well with the set of images being averaged. However, the 
process of estimating motion vectors is computationally 
intense, which increases the algorithm’s computation time. 

In this work, we evaluate the viability of replacing the 
motion estimation stage with less computationally intense 
approaches. Two alternative techniques are evaluated. In the 
first approach, motion detection is performed by taking the 
pixel-by-pixel difference between frames. In the second 
approach, motion detection and frame rejection are not 
performed, but a smaller temporal window is used for 
averaging. The ventricular contours obtained from each of 
these three algorithm variants were quantitatively and 
qualitatively compared with contours manually-segmented 
by a specialist. The computation times are also evaluated. 
Finally, the proposed algorithms are compared with three 
other approaches from the literature. 

II. METHODS 

A. Image segmentation algorithm 

The proposed algorithm for segmentation of 
echocardiographic image sequences is designed in two 
stages, and six substages: 

1. Preprocessing 
a. temporal averaging denoising 
b. contrast enhancement 
c. morphological closing 

2. Segmentation 
a. histogram-based thresholding 
b. region labeling 
c. neighborhood operation. 

In our original implementation [10], temporal averaging 
denoising is implemented as follows. A set of ten 
consecutive images are used to produce a temporally-
averaged image. A sliding-window approach is used to 
produce one averaged image for each new image in the 
sequence, i.e., the sliding window step is one (Fig. 1). For 
each window, the optic flow matrix (motion vectors) 
between adjacent frames is calculated for the set of ten 
images (Fig. 2). The motion estimation process consists in 
segmenting the image in macroblocks (16×16 in this work), 
and then searching, within a region-of-interest of the 
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reference image, the best correlated block of pixels of the 
same size. In our implementation, diamond search was used. 
Then, the total motion is quantified by taking the sum of all 
motion vector magnitudes in the optic flow matrix. The five 
frames with stronger motion are removed from the image 
set, and the remaining five images are averaged (pixel-by-
pixel), producing a denoised image. These numbers were 
empirically chosen. 
 

 
Fig. 1.   Sets of ten consecutive frames are selected in a sliding window 
fashion. 

 

 
Fig. 2.   Optic flow measured from two consecutive frames. 

 
The next step of preprocessing is contrast enhancement, 

using a self-reinforced edge-enhancement hi-pass filter, and 
a LoG filter. Then, morphological closing is used to obtain a 
uniform LV cavity. In the segmentation stage, the LV 
boundary pixels are detected using three processes, in 
sequence: (i) histogram-based thresholding, (ii) region 
labeling, and (iii) neighborhood operations. The left 
ventricular area is calculated by counting the number of 
pixels within the segmented contour and multiplying this by 
the pixel area. The LV area is calculated for each image in 
the sequence, i.e., for each sliding window position. The 
area variation curve associated with a complete cardiac cycle 
is constructed by interpolating the measured areas, using 
10th-order polynomial fit (see Fig. 7, discussed later). A 
more detailed description of this algorithm is presented in 
ref. [10]. 
 

B. Motion quantification using image subtraction 

 
In the temporal averaging denoising stage (step 1a) of the 

segmentation algorithm discussed above, the calculation of 
the degree of motion between images may be more simply 
performed by calculating the absolute mean of the pixel-by-

pixel difference between two adjacent frames (i.e., image 
subtraction). This process is significantly less 
computationally intense than calculating the optic flow 
matrix, as originally proposed. However, it may also be less 
precise, especially in the presence of noise. 

In this alternate implementation of the algorithm, the same 
10-frame step-1 sliding window approach is used (Fig. 1). 
For each sliding window position, the pixel-by-pixel 
difference between each pair of adjacent images is 
calculated (Fig. 3). Then, the absolute sum of all pixels in 
the difference image is calculated. This is used as an 
estimate of the degree of motion between the two images. 
The five frames with stronger motion are removed from the 
image set, and the remaining five images are averaged 
(pixel-by-pixel), producing a denoised image. The 
subsequent preprocessing and segmentation steps are 
performed exactly as described in the previous section. 

 

 
              (a)                              (b)                            (c) 

Fig. 3. A pair of temporally-adjacent frames (a,b), and the pixel-by-pixel 
difference between the two (c).  

C. Temporal averaging without frame rejection 

Alternatively, temporal averaging denoising may be 
performed without frame rejection, thus eliminating the need 
for motion quantification. However, in this case it is 
necessary to use a smaller sliding window size. 

In this implementation of the algorithm, a 5-frame step-1 
sliding window approach was used (Fig. 4). All five 
temporal frames in the window are averaged (pixel-by-
pixel), producing a denoised image. The subsequent 
preprocessing and segmentation steps are performed exactly 
as described in section II.A. 

 

 
Fig.4. Sliding window approach for temporal averaging denoising, using a 
smaller window size. 

D. Performance evaluation 

 
A set of 25 short-axis echocardiographic images from 13 

patients was used to evaluate the performance of the 
proposed algorithms. Images were acquired on a Philips 
ATL HDI-3500 system. A cardiologist, specialist in the field 
of echocardiography, manually segmented the LV wall 
boundary in each image, and classified the images in three 
groups: good quality (10 images), average quality (10 
images), and poor quality (5 images). This classification was 
based on image contrast and boundary definition. 
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The LV contours obtained with each method were 
quantitatively compared with the manually-segmented 
contours, using four metrics: cross-correlation coefficient 
(CCC), percent error (PE) [11], error sum (ES) [11], and 
edge-positioning error (EPE) [12]. Let M and A be m×n 
binary images, associated with the manually segmented and 
semi-automatically segmented contours, respectively, in 
which pixels within the contour (inclusive) are set to 1, and 
all other pixels are set to 0. Then, CCC is a measurement of 
similarity between images M and A, PE is a measurement of 
the area estimation error, and ES and EPE are measurements 
of the edge-positioning error, as follows: 
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where |X| is the sum of all pixels in image X, xXX 
~

, 
where x is the mean value of image X, i.e., )( nmXx  , 

YX   denotes pixel-by-pixel image multiplication, X  is the 
complement of image X (binary pixel inversion), ρ is the 
perimeter of the manually-segmented contour (in pixels), 
and ∩ denotes intersection. 
 The algorithms were implemented on Matlab 6.5 (The 
MathWorks, Inc., Natick, MA, USA), and the processing 
time for each algorithm variant was measured for a sequence 
of 90 images (81 contours) on a personal computer with an 
Intel Pentium 4 processor with 3.2GHz clock and 1GB of 
RAM, running Microsoft Windows XP. 

III. RESULTS AND DISCUSSION 

 
Figures 5 and 6 show contours obtained with each 

algorithm variant and their superposition with the manually-
segmented contours, for representative images classified as 
of good and medium qualities, respectively. All three semi-
automatic approaches presented good agreement with the 
manually-segmented contours, especially for good quality 
images. The results achieved by the proposed methods were 
considered accurate by two echocardiography specialists. 

Figure 7 presents the area variation curve calculated for 
a representative healthy volunteer, over a complete cardiac 
cycle, using each algorithm variant. This curve provides 
additional information to the cardiologist or specialist about 
the subject’s ventricular function [10]. The algorithms based 
on motion quantification produce better results than the 
small sliding window approach. Fewer false negatives (area 
= 0) are observed, and the curves present fewer abrupt 
discontinuities and overestimation/underestimation artifacts, 
resulting in a smoother waveform. Such variations do not 
represent physiological behavior and are considered 
artifacts. Nevertheless, the results obtained with the small 

sliding window approach show reasonably agreement with 
the other two methods, and the observed small reduction in 
accuracy may be compensated by the significant reduction in 
processing time and complexity. 
 

   (a)   (b) (c)       (d) 

 
Fig. 5. Left ventricular wall contours for good quality images: (a) manually-
segmented; (b) optic flow method; (c) image subtraction method; (d) small 
sliding window method. Bottom row presents a superposition over the 
manually-segmented contour. 
 

   (a)   (b) (c)       (d) 

 
Fig. 6. Left ventricular wall contours for medium quality images: 
(a) manually-segmented; (b) optic flow method; (c) image subtraction 
method; (d) small sliding window method. Bottom row presents a 
superposition over the manually-segmented contour. 
 

The results from the quantitative comparison are 
presented in Table 1. The results show that the proposed 
methods are capable of providing LV-wall contour estimates 
with a high degree of accuracy, especially for good and 
medium quality images. The results for the low quality 
images were not completely satisfactory, but this is an 
expected result, since the manual segmentation of low 
quality echocardiography images is also commonly 
inaccurate. The results obtained with the small sliding 
window approach were equivalent to those obtained with the 
approach based on image subtraction, but at a considerably 
lower computational load. These two approaches resulted in 
slightly higher error levels than the method based on optic 
flow calculation, but achieved a significant reduction in 
processing time. 

Results from literature (refs. [3], [7] and [12]) are also 
presented in Table 1, for comparison. For good quality 
images, the method based on optic flow calculation achieves 
mean errors equivalent to those reported by de Andrade et 
al. [7]. However, the proposed methods presented lower PE 
and ES standard deviation, which implies better consistency. 
For good quality images, the proposed methods achieved 
equivalent or better cross-correlation with manual-
segmentation than those reported by Klingler et al. [3], 

509



  

however their work does not specifies image quality 
conditions. The proposed methods achieved larger edge-
positioning errors than those reported by Coppini et al. [12], 
however their work focused on apical images rather than 
short-axis images.  

 

Fig. 7.  Area variation curve for a representative subject, measured with 
each algorithm: (a) optic flow; (b) pixel-by-pixel subtraction; (c) small 
sliding window. Blue circles indicate measured areas, and solid black lines 
represent the interpolated curves. The phases of the cardiac cycle are 
indicated: (1) isovolumetric contraction; (2) ejection; (3) isovolumetric 
relaxation; (4) rapid filling; (5) reduced filling; (6) atrial systole. 

IV. CONCLUSIONS 
 

We have proposed and demonstrated an algorithm for 
accurate semi-automatic segmentation of left ventricular 
wall in short-axis echocardiographic images. Three different 
approaches to frame-selection in temporal averaging 
denoising were qualitatively and quantitatively evaluated. 
The results show that it is possible to eliminate the 
computationally-intense process of calculating the optic flow 
matrix by using a smaller sliding window for temporal 
averaging, at the expense of a small reduction in 
segmentation precision. The results were also shown to be 
equivalent or more accurate than other methods from the 

literature. The proposed algorithm may facilitate the 
diagnosis of various cardiac conditions that affect left 
ventricular function. 
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Table 1 – Quantitative comparison between the three proposed approaches and other methods from the literature. 

 image quality - # of images CCCa PE (%)b ES (%)b EPEc Proc. Timed 

Optic flow [10] 
good - 10 

medium - 10 
low - 5 

0.95 
0.90 
0.68 

3.52 1.24 
11.96 3.38 
21.98 7.04 

9.47 2.02 
16.49 2.15 
35.50 7.27 

1.04<EPE<1.21 
2.01<EPE<2.61 
5.04<EPE<5.95 

20 min 

Pixel-by-pixel 
subtraction 

good - 10 
medium - 10 

low - 5 

0.94 
0.90 
0.67 

6.15 2.56 
12.71 4.36 
23.65 8.36 

11.38 3.05 
13.32 3.99 
36.32 8.32 

1.14<EPE<1.41 
2.61<EPE<2.91 
5.91<EPE<6.95 

10 min 

Small sliding window 
good - 10 

medium - 10 
low - 5 

0.93 
0.88 
0.63 

6.40 2.60 
14.36 3.95 
24.99 8.55 

11.98 3.19 
14.01 4.02 
36.02 9.08 

1.25<EPE<1.52 
2.97<EPE<3.99 
6.08<EPE<7.11 

6 min 

de Andrade et al. [7] good - 20 0.98 2.49 ± 2.46 9,62 ± 7,9 - - 

Klingler et al. [3] - 0.93 - - - - 

Coppini et al. [12] 500 - - - 0.53<EPE<0.77 - 
a mean value; b mean ± standard deviation; c dynamic range; d processing time for a sequence of 90 images (81 contours). 
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