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Abstract— Real-time spiral phase contrast magnetic reso-
nance imaging (MRI) is capable of non-invasively measuring
the stroke volume associated with each individual heartbeat.
The quality of these measurements depends on how good
the segmentation of the interface between aortic wall and
lumen is. Such process is hampered by the low-resolution and
low-contrast nature of real-time images. Image segmentation
using traditional techniques has proven not robust. This paper
presents a novel model-based approach, which is capable of
very accurately segmenting aortic flow. Instead of attempting
to achieve a millimetrically-accurate segmentation of the wall–
lumen interface, the proposed algorithm focuses on separating
the aortic flow from neighboring flows. This provides robust-
ness, even when this interface is not visually distinguishable.
The proposed segmentation takes real-time MRI one step
further towards becoming the non-invasive gold standard for
assessment of stroke volume variability.

I. INTRODUCTION

Cardiac output measurement allows evaluating and moni-

toring the severity of cardiac dysfunctions in patients. How-

ever, there is no gold standard for its assessment. Moreover,

there is interest in measuring the stroke volume associated

with each individual heartbeat, as stroke volume variability

provides unique information about autonomic activity, con-

necting heart rate variability to blood pressure and venous

return variabilities [1].

Real-time spiral phase contrast magnetic resonance imag-

ing (MRI) is capable of non-invasively measuring stroke

volume variability [2-7]. The quality of these measurements

depends on how good the segmentation of the interface

between aortic wall and lumen (in cross-section) is. Such

process is hampered by the low-resolution and low-contrast

nature of the images provided by this method, especially

when 3 Tesla (or higher-field) scanners are used, as off-

resonance effects are increased. Image segmentation using

simple thresholding [2-5] and/or traditional image segmenta-

tion techniques — such as denoising, filters, and morphologic

operations — has proven not robust [9]. More sophisticated

algorithms have proven efficient when applied to certain

methods of acquisition, in which contrast and resolution

conditions are better [10].

This paper presents a novel, consistent and reliable ap-

proach, which is capable of very accurately segmenting aortic

flow, for real-time stroke volume measurement. Instead of

attempting to achieve a millimetrically-accurate segmenta-

tion of the wall–lumen interface, the proposed algorithm

focuses on separating the aortic flow from neighboring

flows. This provides robustness even when this interface
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is not visually distinguishable. Segmentation is performed

on a model image, constructed by multiplying a high-pass

version of the original morphological image by a two-

dimensional Gaussian function, centered at the centroid of

the aorta. The centroid is estimated for each frame, using

a barycenter-based iterative process, which uses template

images to highlight both aortic lumen and wall. The proposed

segmentation takes real-time spiral phase contrast MRI one

step further towards becoming the non-invasive gold standard

for assessment of stroke volume variability.

II. MATERIALS AND METHODS

A. Image acquisition

Data acquisition was performed using real-time spiral

phase contrast MRI, with 57 ms temporal resolution, and

3 mm spatial resolution [2-4]. Slice prescription was per-

formed perpendicular to the ascending aorta. In addition to

a morphological image, which maps the T1-weighted spatial

distribution of 1H nuclei, phase contrast MRI provides a map

of the through-plane velocity of the spins.

Data acquisition was performed on a Signa 3T EXCITE

HD MRI scanner (GE Healthcare, Inc.). Seven healthy volun-

teers participated of the research. The ethics committee of the

University of Southern California approved the experimental

protocols. All volunteers provided informed consent.

B. Image reconstruction

Image reconstruction and processing were performed in

MATLAB (The Mathworks, Inc., Natick, USA). Frame rate

was increased by 4-fold using a sliding window recon-

struction [8]. This does not improve temporal resolution,

but inserts redundant frames, resulting in smaller aortic

displacements between two consecutive frames.

C. Image cropping and initialization parameters

The proposed image segmentation algorithm requires two

input parameters: an initial estimate of the aortic centroid,

(xo,yo) (Fig. 1c), and an estimate of the mean aortic radius

(R) (Fig. 1b). These are calculated after the aortic lumen

is manually circled (Fig. 1b) on a 10-fold magnified mor-

phological image, obtained by averaging frames from a 5.6-

second window (Fig. 1a). The radius vector (Fig. 1b) pro-

vides not only the mean radius, but also the maximum axis

size direction and eccentricity. After the input parameters

are calculated, all frames are cropped around the prescribed

region of interest (Fig. 1c). The position and dimension of

such region are automatically calculated based on the two

parameters described above. The cropped region is large

enough to accommodate for intra-beat motion of the aorta

during the entire acquisition.
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Fig. 1. Image cropping and initialization parameters: (a) 10-fold magnified
morphological image, obtained by averaging frames from a 5.6-second
window; (b) manual definition of the aortic lumen, from which the radius
vector, the mean aortic radius (R), and the aortic centroid, (xo,yo), are
calculated; (c) a cropped image. The position and dimension of the cropped
region are automatically calculated based on R and (xo,yo).

D. Image segmentation

A flow diagram of the entire segmentation process is

shown in Fig. 2. Each step is described next.
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Fig. 2. Block diagram of the proposed segmentation algorithm.

1) Automatic tracking of the aortic centroid: The iterative

process for tracking the aortic centroid is illustrated in

Fig. 3. The algorithm starts by centering two ellipsoidal

template images — whose radii and eccentricity are defined

as shown in Fig. 1b — at the current centroid, (xn,yn). For

the first iteration within a frame, (xn,yn) is set to (xc′ ,yc′),
the estimated centroid for the previous frame. For the first

iteration of the first frame, (xn,yn) is set to the manually

defined centroid, (xo,yo).
Template I (Fig. 3a) is a two-dimensional combination of

Gaussians, and highlights the aortic lumen in a low-pass im-

age, obtained using unsharp masking after Gaussian filtering

(Fig. 3b). This low-pass image is pixel-wise multiplied by

Template I, and the resulting image is binarized, using a

threshold level of 60% of its maximum amplitude.

Template II (Fig. 3c) is also a combination of two

Gaussians, and highlights the aortic contour in a high-pass

version of the cropped image, obtained using a Laplacian

of Gaussian (LoG) filter (Fig. 3d). The high-pass image is

pixel-wise multiplied by Template II, and the resulting image
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Fig. 3. Block diagram of the iterative algorithm for aortic centroid
estimation.

is binarized at 10% of its maximum amplitude.

Template I and these two binarized images are combined

using weighted averaging (examples of these combined im-

ages are shown in Fig. 4). Gain I — associated with the low-

pass-based binary image — performs a coarse adjustment.

Gain II(d) — associated with the high-pass-based binary

image — performs fine adjustment, and is proportional to the

standard deviation (d) of the cropped image. Gain III(n)(d)
— associated with Template I — controls the displacement

amplitude, and is proportional to the iteration number, n

(this makes the process begin with a coarse adjustment,

followed by a fine adjustment), and to the standard deviation,

d (this makes the processs perform fewer iterations for low

contrast images). The relationship between the variation in

pixel intensities along the cardiac cycle and the construction

of the barycenter image is illustrated in Fig. 5.

i) Crr = 0.439

∆s = 1.22

x) Crr = 1

∆s = 0.04
iv) Crr = 0.739

∆s = 0.44

vii) Crr = 1.15

∆s = 0.86

Fig. 4. A 10-iteration example of the iterative aortic centroid tracking
process. Barycenter images obtained in iterations (i), (iv), (vii), and (x)
are shown. The displacement (∆s) and the normalized (by the last value)
combined cross-correlation (Crr) for each frame are indicated.

The barycentre displacement ∆s from position sn to po-

sition ~sn+1 is then calculated, and ~sn+1 = (xn+1,yn+1) =
(

a

∑
i=1

b

∑
j=1

(i.B[i, j], j.B[i, j])

)

/

(

a

∑
i=1

b

∑
j=1

(B[i, j])

)

. If ∆s is

larger than a minimum displacement value εs, the center of

the templates, ~sn, is updated to ~s(n+1). The value of εs ranges

from 1% and 10% of the prescribed radius R, according to
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Fig. 5. Relationship between the variation in pixel intensities along the
cardiac cycle (b) and the construction of the barycenter image. Morpholog-
ical and barycenter images associated with (a) peak flow (highest standard
deviation), and (c) end diastole (lowest standard deviaton) are shown. Note
the difference in contour weight and definition in the barycenter images.

image quality (which is manually prescribed for the dataset,

after visual inspection).

The centroid tracking process stops when ∆s is smaller

than εs. This is the point of maximum equilibrium, where the

barycentre of B[i, j] is an approximation of the centroid of

the aorta. Hence, ~s(n+1) is used to update our estimate of the

aortic centroid, (xc,yc). An adjustment based on similarity is

performed if Crrn, the combined cross-correlation (a geomet-

ric mean of correlations) for the iteration is bigger than the

combined cross-correlation for the previous iteration, Crrn−1.

2) Segmentation based on a model image: Final segmen-

tation is actually performed on a “model image”, obtained

based on a high-pass version of the original image. This may

not provide the most millimetrically-accurate segmentation

of the wall–lumen interface, but is robust in successfully

separating aortic flow from neighboring flows. This is suf-

ficient for calculating the aortic flow, which is the end-goal

of this work.

This model image (Fig. 2e) is obtained by pixel-wise

multiplication of: i) an offset high-pass image (Fig. 2c),

obtained by subtracting a low-pass Gaussian-filtered image

from the original image (Fig. 2b), where the offset level

controls the shape of the segmented region (Fig. 6) (from

perfectly round to very-closely following the contour of

the high-pass image); and ii) a two-dimensional Gaussian,

G(x,y), centered at the estimated aortic centroid, (xc,yc)
(Fig. 2d). The radius of this Gaussian is defined by the R

value calculated during preprocessing, as follows:

G(x,y) = e−[(x−xc)
2+(y−yc)

2]/2R
2

. (1)

The model image is magnified by 10-fold using bicubic

interpolation, normalized to the [0,1] interval, and then

segmented by thresholding (i.e., binarization). The threshold

level L = e−1/2 = 0.61 is associated with the point where

(x−xc)
2+(y−yc)

2 =R
2
, i.e., the point where G(x,y) = 0.61.

The use of the threshold level L = 0.61, applied to all

images, assumes that the model image is the Gaussian itself.

Thus, it provides a binary mask (Fig. 2g), whose format is

close to a circle with radius R. In order to avoid small errors

in flow estimation due to radius variations associated with

(a) offset = 0 (c) offset = 3 (d) offset = 7(b) offset = 1

Fig. 6. The offset determines the smoothness of the segmentation from a:
(a) not connected region to a; (d) to a region with great similarity with the
aortic shape. Bigger offsets provide perfect circular regions

vessel dilatation and contraction during systole and diastole,

respectively, the radius R is adaptively adjusted, based on

the total flow in the cropped region of the velocity map

from each frame. The curve of total cropped region flow

(Fig. 7) is closely related to the actual aortic flow curve.

Therefore, we assume that such curve also reflects aortic

dilatation and contraction, i.e.: the higher the total flow, the

larger the segmented radius should be. Therefore, we used

this total flow information to adjust R, and, hence, adjust

the segmented area along the cardiac cycle. This adjustment

factor is linearly associated with the total flow, and does not

exceed 2 mm.

100 120 140 160
(b)(a) (c) 

Total flow in cropped area × Frame

Fig. 7. Relationship between total flow at the cropped region along the
cardiac cycle and aortic dilatation and contraction: (a) segmented image
associated with the lowest total flow within a heartbeat (end diastole); (b)
variation of total flow along one cardiac cycle; and (c) segmented image
associated with the highest total flow within the same heartbeat (peak flow).
Note the difference in aortic radii between images (a) and (c).

Using L = 0.61, we obtain a binary mask (Fig. 2g), which

is the final goal of this paper. The measured velocities within

this mask are averaged, and this average blood velocity is

multiplied by the mask area, which results in the aortic flow

associated with the current temporal frame. By integrating

the flow waveform within each heartbeat, we estimate the

stroke volume associated with each individual heartbeat.

III. RESULTS

Due to the high temporal resolution requirements of flow

measurement, and the use of real-time spiral MRI at 3 Tesla,

all images display low resolution and low contrast. Still, the

acquired datasets may be classified according to their image

quality. Fig. 8 shows segmentation results for six temporal

frames (covering systole) from three different subjects: one

presenting reasonably good image quality (Fig. 8a); one pre-

senting medium image quality (Fig. 8b); and one presenting
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poor image quality (Fig. 8c). In all three cases, the proposed

segmentation algorithm was able to track and isolate the

aortic flow from neighboring flows, even though the interface

between aortic wall and lumen is not visually well-defined.
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Fig. 8. Segmentation results for six temporal frames (covering systole)
from three different subjects: (a) one presenting reasonably good image
quality; (b) one presenting medium image quality; and (c) one presenting
poor image quality.

Fig. 9a presents the flow waveform measured during five

heartbeats from the subject in Fig. 8a. Similarly, Fig. 9b

presents the flow waveform measured during one heartbeat

from the subject in Fig. 8c. The smoothness of these curves

illustrate how temporally-stable the algorithm is.
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Fig. 9. Flow waveforms measured during (a) approximately five heartbeats
from the subject in Fig. 8a; and (b) one heartbeat from the subject in Fig. 8c.

IV. DISCUSSION

In our method, segmentation errors are typically caused

by an overestimation or underestimation of the radius, or by

inaccurate aortic centroid estimation. Slight overestimation

of the aortic area does not incur in flow estimation errors, as

long as the segmented region does not include significant

flow external to the aorta. Slight underestimation of the

aortic area may incur in flow estimation errors; however,

this may not be significant, as aortic flow distant from

the valve generally presents a parabolic profile. Pixels near

the aortic wall — which would be neglected if there was

underestimation of the aortic area — are very likely to

present very low velocities, and, therefore, generally do not

significantly contribute to the overall aortic flow. Assuming a

parabolic profile, a 10% underestimation of the aortic radius

or a 10% error in aortic centroid estimation would result in

less than 4% error in flow estimation.

V. CONCLUSIONS

We presented a new model-based method for segmenting

aortic flow in real-time spiral MRI images acquired at 3

Tesla. This allows more accurately measuring the stroke vol-

ume associated with each individual heartbeat, providing a

non-invasive method for assessing stroke volume variability.

The proposed algorithm stands out from typical image

segmentation methods by focusing on accurately separating

the aortic flow from neighboring flows, instead of attempting

to achieve a millimetrically-accurate segmentation of the

interface between aortic wall and lumen. This provides

robustness for measuring aortic flow, even when the interface

between aortic wall and lumen is not visually distinguishable.
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