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Abstract
The goal of this work is to study the behavior of electromyographic variables
during the menstrual cycle. Ten female volunteers (24.0 ± 2.8 years of age)
performed fatiguing isometric contractions, and electromyographic signals
were measured on the biceps brachii in four phases of the menstrual cycle.
Adaptations of classical algorithms were used for the estimation of the root
mean square (RMS) value, absolute rectified value (ARV), mean frequency
(MNF), median frequency (MDF), and conduction velocity (CV). The CV
estimator had a higher (p = 0.002) rate of decrease at the end of the follicular
phase and at the end of the luteal phase. The MDF (p = 0.002) and MNF (p =
0.004) estimators had a higher rate of decrease at the beginning of the follicular
phase and at the end of the luteal phase. No significant differences between
phases of the menstrual cycle were detected with the ARV and RMS estimators
(p > 0.05). These results suggest that the behavior of the muscles in women
presents different characteristics during different phases of the menstrual cycle.
In particular, women were more susceptible to fatigue at the end of the luteal
phase.
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1. Introduction

The study of injuries and muscle pain is relevant in areas such as ergonomics, sports and the
treatment of chronic pain. Non-contact tears and rupture of the anterior cruciate ligament are
the most common injuries in collective sports and athletics, and have received special attention
by the scientific community (Sandler 2009, Farina and Merletti 2004). There is also special
interest in shoulder and back pains (Rainoldi et al 2004, Salomoni 2008).

One consequence of muscle contraction is the increase in the concentration of lactic
acid, a metabolic product (Cifrek et al 2009). During sustained isometric contractions,
in which the muscle length and tension are held constant, the increased concentration of
lactates is responsible for changes in intracellular pH and, as a result, muscle fiber conduction
velocity (CV) decreases (Brody et al 1991), directly changing the shape of the motor unit
action potential (MUAP) waveform (Cifrek et al 2009). This phenomenon is correlated with
a decrease of the mean (MNF) and median (MDF) frequencies of the spectra of surface
electromyographic (S-EMG) signals (Sadoyama et al 1988).

In several works, gender differences have been observed in muscular activities. Women
are usually able to sustain a contraction for longer periods of time than men, especially at lower
contraction intensities (Hicks et al 2001, Clark et al 2005, Hunter et al 2006), but not at maximal
contractions (Baudry et al 2007). The most common explanations for these differences are
men’s greater muscle strength and women’s lesser reliance on glycolytic metabolism. Men
are typically stronger than women, thus they must activate a larger muscle mass to exert the
same relative force, which will be accompanied by larger intramuscular pressures and a greater
occlusion of blood flow (de Ruiter et al 2007). Muscle biopsies have shown lower glycolytic
enzyme activity in women, indicating a decreased potential for anaerobic glycolysis (Ettinger
1998), which would enhance their endurance. In general, these differences lead to lower
sensitivity to fatigue in women. This lower sensitivity may subject women’s muscle fibers to
long lasting fatigue and, in extreme cases, contribute to lesions (Gandevia 2001, Hägg et al
2004).

The menstrual cycle is another important factor influencing muscle fatigability in women.
There is a strong link between hormone levels and laxity of joints, making women more
vulnerable to injuries (Masterson 1999). The level of estrogen, which strengthens the
muscles and tendons, is significantly reduced in the middle of the cycle. At the end of
the cycle, the level of the relaxin hormone increases, which also weakens the tendons. The
difference in concentration of sex hormones may also explain differences in neuromuscular
control (Slauterbeck et al 2002). Women in menopause typically go through less intense
hormonal changes, and generally display greater resistance to fatigue (Farina and Merletti
2004).

This work investigates the changes in several S-EMG estimators—root mean square
(RMS) value, absolute rectified value (ARV), MNF, MDF and CV—along four phases of the
menstrual cycle: beginning and end of the follicular phase, and beginning and end of the luteal
phase, respectively. S-EMG signals were collected during long-term isometric contractions
performed in four weekly sessions, and the rates of change of estimator values during the
contractions in each of the phases of the menstrual cycle were compared.

The aim of this work is to identify periods of higher and lower sensitivity to fatigue in
women. This knowledge can potentially be used to optimize performance during physical
training or rehabilitation therapy, for example. Also, this work may be of interest to those
involved in the study of pathophysiology of chronic muscular pain, which is more frequent in
women than in men, such as fibromyalgia.
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Figure 1. Position of the subject during the exercise. An adapted chair was used to fix the elbow
such that the only possible movement of the arm was isometric elbow flexion. The load cell was
fixed in a hook at the side of the chair with adjustable cables, such that the elbow joint was flexed
at an angle of 90◦.

2. Methods

2.1. Subjects

Twenty three female subjects volunteered to participate in the study. Due to desistance,
hormonal problems and high noise levels in the S-EMG measurements, only ten volunteers
(24.0 ± 2.8 years of age) were included in the analysis. All subjects were right handed and
had no known neurological disorders. All females had regular menstrual cycles, were not
practicing regular exercises and were not using any hormonal medicine or contraceptive for
at least 6 months. All subjects provided informed consent, and the experimental protocol was
approved by the research ethics committee of the University of Brasilia.

2.2. Experimental protocol

The same experimental protocol was used with all subjects. Each subject performed the
experimental protocol in four sessions, with an interval of 1 week between sessions.

The subjects sat on a chair specially adapted to firm the elbow such that the only possible
movement of the arm was isometric elbow flexion (figure 1). This was done to minimize
contractions of other muscles that could interfere with the results of the experiment.

An EMG 16 electromyograph (OT Bioelettronica s.n.c., Italy), connected to a laptop
computer with a PCMCIA card, was used to acquire the S-EMG and force signals.

A load cell with 50 kgf of maximal load, model TS (AEPH do Brasil, Sao Paulo, Brazil),
connected to a biomechanical signal amplifier MISO II (OT Bioelettronica s.n.c., Italy),
was used to measure the subjects’ force level. The amplification gain was set to 1. Three
3 s isometric contraction measurements were performed at the beginning of each session to
determine the maximal voluntary contraction (MVC) of the subject. However, the MVC
measured during the first session was adopted as MVC for all sessions; the other MVC
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Figure 2. Mapping of the tendons and innervation zones of the biceps brachii muscle, using a 16-
electrode array (Ag, 10 mm × 1 mm area, 5 mm inter-electrode distance, OT Bioelettronica s.n.c.,
Italy). In this example, an innervation zone was found near the pair of electrodes corresponding
to channel 9. The optimal regions for S-EMG recording are the regions right above or right below
this pair of electrodes.

acquisitions were performed only to guarantee the repeatability of the protocol in all sessions.
Strong verbal encouragement was used for each MVC. After each MVC estimation, the subject
rested for 1 min.

A 16-electrode array (Ag, 10 mm × 1 mm area, 5 mm inter-electrode distance, OT
Bioelettronica s.n.c., Italy) was used for mapping the optimal S-EMG region of the biceps
brachii in each session. The sample rate was 2048 Hz and an analog gain of 2000 in the single
differential configuration was used. The force level was 30% of the MVC. A 3 s signal was
used for the estimation of the optimal position. A sample result is shown in figure 2, where
the innervation zone and optimal regions for acquisition are clearly distinguishable. After this
effort, the subject rested for 2 min.

After mapping, S-EMG signals were acquired with an array of eight surface electrodes
(Ag–AgCl, 10 mm × 1 mm area, 5 mm inter-electrode distance, OT Bioelettronica s.n.c.,
Italy), which was placed on the optimal region of the short head of the biceps brachii. The
skin was cleaned and conductive gel was applied between the skin and each electrode. The
single differential configuration was used, resulting in one 7-channel S-EMG signal for each
acquisition. A reference electrode was placed on the right wrist. A sample rate of 2048 Hz and
an analog gain of 2000 were used. The position where the electrode array was placed is show
in figure 3. After 5 min of rest, an isometric contraction was performed for 90 s using 40%
of the previously registered MVC. A representative example of the S-EMG signals measured
during this contraction is shown in figure 4.
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Figure 3. Placement of the flexible 8-electrode array (Ag–AgCl, 10 mm × 1 mm area, 5 mm
inter-electrode distance, OT Bioelettronica s.n.c., Italy) on the optimal region of the short head of
biceps brachii, after identification of the innervation zone. Conductive gel was applied between
the skin and each electrode of the array.

Figure 4. Segment of a 7-single differential S-EMG signal acquired with an 8-electrode array
(Ag–AgCl, point electrode, 5 mm inter-electrode distance, OT Bioelettronica s.n.c., Italy) from the
biceps brachii short head. The sampling frequency was 2048 Hz. This segment has approximately
0.3 s of length.

2.3. S-EMG estimators

The signal was evaluated using five estimators: rms amplitude, average rectified value, MNF,
MDF and CV. These estimators were calculated independently for each analysis window (a
N-sample segment of the signal), as described next.
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Signal amplitude. The most commonly used estimators for evaluating the amplitude
characteristics of the S-EMG signal are the RMS amplitude and the average rectified value
(Farina and Merletti 2000). These estimators were calculated for the channel with the highest
signal amplitude (peak value) as follows:

RMS =
√√√√ 1

N

N∑
n=1

|x[n]|2 (1)

ARV = 1

N

N∑
n=1

|x[n]|, (2)

where x[n] is the n-th sample of the S-EMG signal and N is the total number of samples in the
analysis window.

Spectral shift. The S-EMG signals’ mean and median frequencies were calculated, in order
to estimate the signals’ spectral changes as a function of time, due to fatigue. These two
estimators are often used in combination (Farina and Merletti 2000), because each one has
advantages and disadvantages over the other. MDF values are less susceptible to noise and
more sensitive to fatigue than MNF values (Farina and Merletti 2000, Stulen and de Luca
1981). On the other hand, MNF values typically present smaller standard deviation than MDF
values (Farina and Merletti 2000, Stulen and de Luca 1981). These estimators were calculated
for the channel with the highest signal amplitude (peak value) as follows:

MNF =
∑M

m=1 fmP [m]∑M
m=1 P [m]

, (3)

MDF = fmo
s.t.

mo∑
m=1

P [m] ≈
M∑

m=mo

P [m] ≈ 1

2

M∑
m=1

P [m], (4)

where P [m] is the m-th frequency bin of the power spectral density function of x[n], and fm
is the frequency (in Hz) associated with the m-th bin (Farina and Merletti 2000). The power
spectra were calculated by taking the squared magnitude of the discrete Fourier transform of
the signals. Only positive frequencies were used, i.e. f0 = 0 Hz and f

M+1 = fs/2, where fs is
the sampling frequency.

Conduction Velocity. We used the algorithm proposed by Farina et al (2001) for calculating CV
from S-EMG signals acquired with an array of electrodes, with adaptations. This algorithm
uses maximum likelihood estimation (MLE) and a generalization of the classical spectral
waveform alignment algorithm (McGill and Dorfman 1984). The algorithm is based on the
idea that by assuming the CV to be constant during voluntary isometric contractions of low
intensity, and by knowing the inter-electrode distance, the estimation of the delay between
adjacent channels allows the direct calculation of the mean CV. The problem is moved to the
frequency domain in order to improve accuracy. The CV is estimated with high precision
by finding the temporal shift (or frequency-domain phase) that minimizes the mean squared
difference between the spectra of adjacent channels. Our implementation of the algorithm
follows the following steps.

We used a single differential low-pass filter to highlight the peaks of the signal, allowing
for a more accurate result (McGill and Dorfman 1984). The filter’s difference equation is

y[n] = x[n + 1] − x[n − 1], (5)
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where x[n] is the n-th sample of the original signal and y[n] is the n-th sample of the filtered
signal. The above filter also reduces high-frequency noise, as opposed to a true differentiator,
which enhances high-frequency components (McGill and Dorfman 1984).

The multi-channel S-EMG signal may be modeled as follows. In the ideal case, the
signals detected by different electrodes along the muscle fibers are merely delayed versions
of each other, plus white Gaussian noise:

yk[n] = s [n − (k − 1) θ ] + w[n], (6)

where s[n] is the n-th sample of the basic waveform, k = 1, . . . , K is the channel number, θ

is associated with the temporal delay between adjacent channels—the actual inter-electrode
temporal delay is given by (θ × fs)

−1— and w[n] is white Gaussian noise.
The basic waveform was estimated by aligning and averaging the signals that were

measured in each of the K channels (Farina et al 2001) as follows:

ŝ[n] = 1

K

K∑
k=1

yk[n + (k − 1)θ ]. (7)

Assuming a constant CV in the region of measurement, the estimation of θ allows the
direct calculation of the CV. The maximum likelihood estimate is the value of the delay that
minimizes the mean squared error of all signals with respect to the estimated basic signal,
ŝ[n]. The total squared error is

e2
MLE =

K∑
k=1

N∑
n=1

(yk[n] − ŝ[n − (k − 1)θ ])2, (8)

where N is the total number of samples in the analysis window. This may be rewritten (Farina
et al 2001) as

e2
MLE =

(
1 − 1

K

) K∑
k=1

e2
k, (9)

e2
k =

N∑
n=1

⎛
⎝yk[n] − 1

K − 1

K∑
i=1,i �=k

yi[n + (i − k)θ ]

⎞
⎠

2

. (10)

If e2
MLE is minimized in the time domain, the accuracy in θ estimation will be limited

by the sampling frequency. In order to avoid this limitation, the equation was carried to the
frequency domain (McGill and Dorfman 1984, Farina et al 2001), in which θ is no longer a
discrete-valued (quantized) variable. Equation (10) becomes

e2
k = 2

N

N/2∑
m=1

∣∣∣∣∣∣Yk[m] − 1

K − 1

K∑
i=1,i �=k

Yi[m] e
j2πm(i−k)θ

N

∣∣∣∣∣∣
2

, (11)

where Yi and Yk are the discrete Fourier transforms of yi and yk, respectively, calculated as
follows: Yk[m] = ∑N

n=1 yk[n] e−j2π(m−1)(n−1)/N .
The value of θ that minimizes e2

MLE was calculated using the Newton–Raphson method.
We used an initial value of 0.39 for θ . This corresponds to a CV of 4 m s−1, which is within
the range of typical physiological values (2–7 m s−1 (Farina et al 2001)). The stop criteria
were (i) e2

MLE < 5 × 10−5, or (ii) a maximum of 25 interactions. All the signals analyzed in
this work have met the first criterion. However, it is important to include a second criterion in
order to avoid an infinite loop in the algorithm.
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Once the optimal value of θ had been estimated, CV was calculated as follows:

CV = d × θ × fs, (12)

where d is the inter-electrode distance.
We used data from only three adjacent electrodes (two differential channels) for CV

estimation. This is because we observed that, in many of the exercise sessions, one or more
channels did not present acceptable signal quality, due to poor electrode contact with the
skin. When using an 8-electrode array, a single electrode with poor contact may render up
to two differential channels to be useless. As a result, out of the seven differential channels,
only two or three adjacent channels would provide acceptable signal. Thus, in order to avoid
discarding subjects, we used only two channels for CV estimation (K = 2). For each exercise
session, two channels were selected by estimating the cross-correlation between each pair of
differential channels, and then selecting the pair with the highest cross-correlation coefficient.
In all selected pairs, the cross-correlation was greater than 75%.

2.4. Fatigue quantitation

The S-EMG estimators described above (RMS, ARV, MDF, MNF and CV) were calculated
independently for multiple segments of each signal. A 3.6 s rectangular sliding window was
used for CV, with a window step of 1.8 s. A 0.5 s rectangular sliding window was used for the
other four estimators, with a window step of 0.25 s. The window was longer for CV because
the calculation of this estimator is more computationally demanding.

The above process results in a temporal function associated with each estimator. The rate
in which each estimator varies during the acquisition was estimated by linear regression. The
estimator values and the angular coefficient of the regression were normalized by dividing by
the linear coefficient of the regression’s linear equation. This normalization was performed
to compensate for biases due to differences in subcutaneous tissue thickness. The normalized
angular coefficients were used for evaluating fatigue.

2.5. Analysis tool

An analysis tool was designed in Matlab (The MathWorks, Inc., Natick, MA, USA) to calculate
the S-EMG estimators evaluated in this work: RMS, ARV, MNF, MDF and CV.

On the tool’s setup window (figure 5), the user enters the following information: the name
of the file that contains the S-EMG data, the length of the analysis window, the acquisition
channels to be processed, the graphs to be displayed, the inter-electrode distance, the sampling
rate, the MVC value and percentage and the name of the file in which the results are to be
saved. When the ‘ok’ button is pressed, the selected graphs are displayed and the calculated
estimators for each analysis window are saved onto a Microsoft Excel 2007-compatible
spreadsheet file.

All S-EMG estimators were calculated according to equations (1)–(4) and (12). The
Matlab tool allows the selection of a subset of differential channels, so that the user can
discard channels associated with innervation zones or tendon regions.

2.6. Data analysis

The date of each subject’s first session was scheduled without considering the subject’s
menstrual cycle, i.e. some of the subjects began the protocol during the follicular phase, others
during the luteal phase (table 1). After 4 weeks, the results from each session of each subject
were cyclically reordered so that the first set of results would correspond to the session that
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Figure 5. S-EMG signal analysis tool: setup window. After starting the program on Matlab, this
window is shown and the following information is entered by the user: name of the input file,
number of channels to be analyzed, number of channels for CV estimation, starting channel for CV
estimation, size of the window used for processing, graphs to be displayed, sampling frequency,
inter-electrode distance, MVC and MVC percentage level, and name of the output file.

Table 1. Cyclic session labeling, based on the week during which menses occurred.

Week of menses Session 1 Session 2 Session 3 Session 4

First F1 F2 L1 L2
Second L2 F1 F2 L1
Third L1 L2 F1 F2
Fourth F2 L1 L2 F1

took place on the date closest to the subject’s menses. After reordering, the results from each
session were labeled F1 and F2 for the follicular phase and L1 and L2 for the luteal phase.
For example, if the second session took place one day after the subject’s menses, then the
second session was considered as the first week of the menstrual cycle and was labeled F1,
the third session was considered as the second week and was labeled F2, the fourth session
was considered as the third week and was labeled L1 and the first session was considered as
the fourth week and was labeled L2.

The analysis tool shown in figure 5 was used for calculating the fatigue estimators from
the acquired S-EMG signals.
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Figure 6. Normalized regression angular coefficients (mean and standard deviation) for different
S-EMG estimators (RMS, ARV, MNF, MDF and CV) for each phase of the menstrual cycle (F1, F2,
L1, and L2). The data have passed the Shapiro–Wilk normality test (p > 0.05). The differences
in the rate of decrease in CV between different phases of the menstrual cycle were statistically
significant. Subjects presented a significantly higher rate of decrease in CV during phases F2
and L2 than during phases F1 and L1. Significant differences were also found for the angular
coefficients calculated from the MNF and MDF variables. A significantly higher rate of decrease
in MNF and MDF was observed during phases F1 and L2 than during phases F2 and L1. The
differences were not significant for the angular coefficients calculated from the ARV and RMS
variables.

2.7. Statistical analysis

The normalized value of the angular coefficient calculated for each estimator (RMS, ARV,
MNF, MDF and CV) and for each phase of the menstrual cycle (F1, F2, L1 and L2) was tested
by Shapiro–Wilk’s normality test. In the Shapiro–Wilk test, the null hypothesis is that the
population is normally distributed. If the p-value is less than the chosen alpha level, then the
null hypothesis is rejected (i.e. the data are not from a normally-distributed population). If
the p-value is greater than the chosen alpha level, then the null hypothesis is not rejected. For
example, for an alpha level of 0.05, a data set with a p-value of 0.40 does not result in rejection
of the hypothesis that the data are from a normally distributed population. Bartlett’s test was
used to evaluate the homoscedasticity of the distribution. ANOVA for repeated measures
was performed to evaluate if there was significant difference between the data from different
phases of the menstrual cycle. Bonferroni’s post hoc test was then used to identify which
estimators and which phases of the menstrual cycle presented significant differences in the
rate of increase or decrease.

3. Results

The normalized angular coefficients for each estimator in each phase of the menstrual cycle
for all selected subjects are shown in table 2.

Figure 6 shows the mean normalized angular coefficients (and standard deviations) for
each estimator in each phase of the menstrual cycle. The normalized angular coefficients of
all the estimators follow a normal distribution, according to the Shapiro–Wilk normality test
(p > 0.05).
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Table 2. Normalized angular coefficients for each estimator in each phase of the menstrual cycle,
for all analyzed subjects. F1, F2, L1 and L2 stand for follicular 1, follicular 2, luteal 1 and luteal
2, respectively. P stands for phase, μ stands for mean and σ stands for standard deviation. The
normalized angular coefficients represent the angular coefficient, a, in the regression’s normalized
linear equation y(x) = ax + 1. All values were multiplied by 1000 for visualization purposes.

Subjects

P 1 2 3 4 5 6 7 8 9 10 μ ± σ

RMS (normalized angular coefficients × 1000)

F1 3.2 2.3 3.9 7.1 5.5 2.7 7.0 5.5 6.7 3.1 4.7 ± 1.8
F2 3.8 6.0 7.8 10.1 3.4 3.6 11.4 11.6 3.1 5.3 6.6 ± 3.2
L1 −3.7 7.7 7.9 3.3 5.8 7.4 17.9 7.0 12.4 1.0 6.7 ± 5.6
L2 −1.8 4.7 6.4 6.7 14.8 0.3 18.3 11.7 7.1 6.7 7.5 ± 5.8

ARV (normalized angular coefficients × 1000)

F1 2.6 2.5 3.7 7.6 5.4 2.8 6.3 5.5 6.9 3.2 4.7 ± 1.8
F2 3.1 6.5 7.7 5.1 3.7 3.8 11.2 1.07 2.7 5.1 6.0 ± 2.9
L1 −4.1 7.5 7.8 3.2 5.7 7.3 17.6 6.6 12.1 0.9 6.5 ± 5.6
L2 −2.3 5.0 6.4 6.9 14.8 0.5 18.4 12.4 6.8 7.0 7.6 ± 6.0

MNF (normalized angular coefficients × 1000)

F1 −1.1 −3.2 −2.1 −6.5 −3.1 −3.5 −2.9 −2.7 −3.5 −2.0 −3.1 ± 1.3
F2 −0.4 −3.9 −2.0 −5.3 −2.1 −2.0 −2.1 −1.4 −1.3 −1.7 −2.2 ± 1.3
L1 −0.5 −2.6 −3.0 −3.4 −2.7 −2.9 −3.0 −2.0 −2.6 −1.2 −2.4 ± 0.9
L2 −0.3 −3.8 −2.7 −5.8 −4.3 −3.1 −5.6 −3.4 −2.2 −2.7 −3.4 ± 1.5

MDF (normalized angular coefficients × 1000)

F1 −1.4 −3.4 −2.1 −6.2 −3.0 −4.1 −2.5 −2.8 −3.6 −1.3 −3.0 ± 1.4
F2 0.1 −3.7 −1.7 −5.2 −2.0 −2.3 −2.1 −1.4 −1.0 −1.4 −2.1 ± 1.4
L1 −0.1 −2.8 −2.7 −3.4 −2.6 −3.0 −2.8 −1.9 −2.1 −1.3 −2.3 ± 0.9
L2 −0.3 −4.0 −2.6 −5.9 −4.0 −2.8 −5.4 −3.2 −1.8 −2.5 −3.2 ± 1.6

CV (Normalized angular coefficients × 1000)

F1 −1.2 −1.7 0.03 −0.8 −0.2 −1.4 −0.4 −1.7 −2.0 −0.8 −1.0 ± 0.7
F2 −1.0 −4.0 −1.1 −3.7 −1.9 −1.2 −3.1 −0.5 −1.4 −1.3 −1.9 ± 1.2
L1 −0.1 −0.5 −0.1 −1.8 −1.0 −0.8 −1.0 −0.9 −0.6 −1.7 −0.9 ± 0.5
L2 −0.4 −1.4 −1.5 −3.8 −3.0 −2.3 −3.1 −1.9 −2.5 −2.1 −2.2 ± 0.9

According to the ANOVA test, significant difference was found in the CV (p = 0.002),
MDF (p = 0.028) and MNF (p = 0.004) angular coefficient values.

For the CV estimator, phases F2 and L2 had higher mean slopes (−0.0019 and −0.0022),
and phases F1 and L1 had lower mean slopes (−0.0010 and −0.0009). Bonferroni’s test
indicated statistically significant differences between groups F1 and L2 (p = 0.022), F2 and
L1 (p = 0.045) and L1 and L2 (p = 0.007). Even though there seems to be a difference
between groups F1 and F2, this was not statistically significant (p = 0.119) for this number
of subjects (n=10). No significant differences were found between groups F1 and L1 and
between groups F2 and L2.

The MDF (p = 0.002) and MNF (p = 0.004) estimators had a higher rate of decrease
during phases F1 and L2. For the MDF estimator, significant differences were found between
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Figure 7. Mean normalized regression lines obtained with the CV estimator for each phase of the
menstrual cycle, during the 90 s contractions. Phases F2 and L2 presented a higher rate of decrease
in CV than phases F1 and L1, which suggests that the volunteers were more susceptible to fatigue
during those periods.

groups F1 and F2 (p = 0.043), F2 and L2 (p = 0.009) and L1 and L2 (p = 0.037). For the
MNF estimator, greater differences were found between groups F1 and F2 (p = 0.010), and
L1 and L2 (p = 0.036).

The ANOVA test found no significant differences in RMS (p = 0.35) and ARV values
(p = 0.31). However, there was a clear increase in the variance of the angular coefficients
from phase F1 to phase L2, for both estimators (figure 6).

Figure 7 presents the mean normalized regression lines obtained with the CV estimator
for each phase of the menstrual cycle during the 90 s contractions. Note that phases F2 and
L2 present faster decreases in CV than F1 and L1, which suggests that the volunteers were
more susceptible to fatigue during those periods.

4. Discussion

The main goal of this work was to study fatigue in women trough the menstrual cycle. Shifts
in the S-EMG frequency spectrum are the most traditional fatigue indicators in the literature.
The results observed with the frequency-domain estimators (MNF and MDF) showed higher
rate of decrease during phases F1 and L2 than during phases F2 and L1 (figure 6). Most of
these differences were statistically significant.

Decreases in CV might represent a more robust and reliable fatigue indicator than
decreases in MNF and MDF, because CV provides information not only about changes in
the frequency spectrum (De Luca 1984) but also regarding fiber membrane properties and
peripheral muscle fatigue (Farina 2002). CV changes are also indicative of muscle fiber-
type constituency and particular muscle training (Sadoyama et al 1988). Based on the CV
estimator, phases F1 and L1 presented a lower level of fatigue (slower decrease of CV over
time), while the fatigability during phases F2 and L2 was higher. The differences between the
results associated with the CV estimator and with the MNF and MDF estimators may be due
to factors such as differences in fiber recruitment strategies.



On the behavior of S-EMG variables during the menstrual cycle 555

The increased fatigability in females during certain periods of the menstrual cycle indicates
a need for special attention. According to the overload injury model (Kibler et al 1992),
exercise with fatigue and repetition is related to musculo-tendinous injuries. Repetitive muscle
use may eventually lead to inflexibility, muscle weakness and imbalance in muscle strength in
a particular area. Continued use may cause pathological injury. Overuse injuries are the most
common type of injury in exercising populations.

The phases of the menstrual cycle in which higher fatigability was observed with the
CV estimator (F2 and L2) coincide with periods of sharp estrogen decreases (Hewett et al
2006). Estrogen has direct effects on muscle, and fluctuations in levels of estrogen and of
other female sex hormones may play a role in dynamic muscle control (Hewett et al 2007).
Estrogen receptors have been reported in skeletal muscle (Huijing and Jaspers 2005). Recent
reports that estrogen does not influence the mechanical properties of knee ligaments suggest
that the effects of the menstrual cycle and hormones may be related to neuromuscular effects
(Warden et al 2006). In addition, it has been shown that fluctuations in estrogen levels may
affect neuromuscular firing patterns in female athletes (Florini 1986). These findings are
corroborated by a study that showed that athletes taking hormonal contraceptives had a lower
injury rate, because the elevated estrogen and progesterone levels in oral contraceptive pills
inhibit ovulatory hormone oscillations and prevent ovulation directed by the hypothalamus
(Moller-Nielson and Hammar 1991).

No significant differences during the menstrual cycle were observed with the time-domain
amplitude estimators (RMS and ARV). S-EMG signal amplitude depends not only on the
fatigue state, but also on the force production of the muscle under test. Changes in signal
amplitude cannot be unequivocally attributed to muscular fatigue (Luttmann et al 2000).
Although these amplitude-based estimators were unable to provide significant indication of
increased fatigue, a progressive increase in the variance of these estimators was observed
through the menstrual cycle (see figure 6).

5. Conclusion

The results obtained with the CV estimator suggest that females are more susceptible to
fatigue during the end of both follicular and luteal phases of the menstrual cycle. These
phases coincide with periods of high decrease in hormone concentration. Frequency-domain
estimators indicated increased fatigue on different phases of the menstrual cycle. These
differences could be due to factors such as fiber recruitment strategies or firing rate differences,
for example. However, both results suggest a significant variation along the menstrual cycle
in susceptibility to muscular fatigue during isometric contractions.

Fatigue levels may be associated with injuries (Gefen 2002, Stacoff et al 1996, Grimston
et al 1993). Therefore, ignoring the hormonal fluctuations in females on training programs
or in sports may increase the risk of muscular injuries. The results herein presented suggest
that individual training programs that take into account the menstrual cycle may lead to better
performance by female athletes.
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