Accelerated Spiral Fourier Velocity Encoding using UNFOLD and Partial Fourier Reconstruction

Joao L. A. Carvalho and Krishna S. Nayak Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

Joao L. A. Carvalho SIPI, EEB Room 412 3740 McClintock Ave University of Southern California Los Angeles, CA 90089 – 2564 Phone: 213-740-4652 Fax: 213-740-4651 jcarvalh@usc.edu Krishna S. Nayak SIPI, EEB Room 406 3740 McClintock Ave University of Southern California Los Angeles, CA 90089 – 2564 Phone: 213-740-3494 Fax: 213-740-4651 knayak@usc.edu

Author's preference: Oral presentation

Accelerated Spiral Fourier Velocity Encoding using UNFOLD and Partial Fourier Reconstruction

Introduction: In phase contrast MRI, scan time can be reduced by sacrificing temporal and spatial resolution, but data inconsistency and partial-volume effects can lead to the loss of diagnostic information [1,2]. Fourier velocity encoding (FVE) eliminates partial-volume problems, but requires longer scan time [3]. We recently demonstrated slice-selective FVE with single-shot spiral acquisitions that fully resolves velocity distributions with 52 ms–19 cm/s time-velocity resolution in an 8-heartbeat breath-hold [4]. Under-sampling of FVE data causes blurring and ghosting, which can be corrected by filtering the aliased signals (UNFOLD), but this requires some sort of pulsatility removal (flattening) [5]. In this work, we improve the temporal resolution of spiral FVE to 13 ms using a similar approach, and propose two new flattening methods that are effective even when a distribution of velocities exists (flow jets). We also show 60% velocity resolution improvement using partial Fourier [6]. Experiments were performed on a GE Signa Excite HD 3T scanner.

Acceleration using UNFOLD: We acquired fully sampled spiral FVE datasets with 13 ms temporal resolution, from a flow phantom and from healthy volunteers, in 30-second acquisitions. Under-sampled datasets were then generated by discarding 75% of acquired data. Temporal filtering was applied, and flattening was performed using peak-tracking [5] and two new approaches.

In the first approach, the first two heartbeats acquire the two central lines of k_v -t, with maximum temporal resolution. A phase-contrast measurement is obtained from these lines, and is used as reference for flattening. The acquisition time previously used for these k_v levels is used to increase the sampling rate for the neighboring levels.

In the second approach, the k_v -t sampling scheme is changed so that alternating but continuous portions of k_v are acquired every TR. From the central portions, unaliased (but blurred) velocity distributions are reconstructed and used as reference for flattening. Blurring is reduced by phase-corrected conjugate synthesis [6]. Only temporal frames containing central portions were used, and the average velocity was then calculated.

In the healthy aortic valve flow profile (Fig. 1), the most important benefit of pre-processed UNFOLD is the ability to resolve the acceleration at the beginning of systole and at the closing of the valve (circled).

Peak-tracking fails when a distribution of velocities is present (Fig. 2). In an experiment using a flow phantom with such a distribution, the phase-contrast reference approach is more accurate. The unaliased reference approach has similar performance, but shows ringing artifacts.

Acceleration using partial Fourier: Feasibility was evaluated in healthy volunteer and patient studies, by discarding up to 47% of acquired data, and then using homodyne reconstruction [6]. Velocity resolution was increased by 60% in a 5-heartbeat aortic stenosis study using homodyne reconstruction (Fig. 3), as it can be verified from the narrower lines.

Conclusions: In spiral FVE imaging, UNFOLD and partial Fourier can each be used to reduce scan time by a factor of up to 4 and 1.9 respectively, as demonstrated in our studies of flow phantoms and normal and abnormal aortic flow. This translates to shorter breath-holds and/or

Fig. 1: Aortic valve flow corrected with UNFOLD.

for UNFOLD (phantom).

Fig. 3: Partial Fourier reconstruction (patient with aortic stenosis).

improved time-velocity resolution. We are currently working on ways of combining these two techniques.

References: [1] Clarke GD, et al. JMRI 6:733, 1996. [2] Tang C, et al. JMRI 3:377, 1993. [3] Moran PR. MRI 1:197, 1982. [4] Carvalho JLA, et al. Proc ISMRM 14:1906, 2006. [5] Macgowan CK, et al. Proc ISMRM 14:872, 2006. [6] Noll DC, et al. IEEE TMI 10:154, 1991.