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ABSTRACT
Fourier velocity encoding (FVE) is a promising magnetic res-
onance imaging (MRI) method for measurement of cardio-
vascular blood flow. FVE provides considerably higher SNR
than phase contrast imaging, and is robust to partial-volume
effects. FVE data is usually acquired with low spatial reso-
lution, due to scan-time restrictions associated with its higher
dimensionality. Thus, FVE is capable of providing the ve-
locity distribution associated with a large voxel, but does not
directly provides a velocity map. Velocity maps, however,
are useful for calculating the actual blod flow through a ves-
sel, or for guiding computational fluid dynamics simulations.
This work proposes a method to derive velocity maps with
high spatial resolution from low-resolution FVE data using a
hyper-Laplacian prior deconvolution algorithm. Experiments
using numerical phantoms, as well simulated spiral FVE data
derived from real phase contrast data, acquired using a pul-
satile carotid flow phantom, show that it is possible to obtain
reasonably accurate velocities maps from low-resolution FVE
distributions.

Index Terms— MRI; phase contrast; Fourier velocity en-
coding; FVE; blood flow; cardiovascular disease

1. INTRODUCTION

The current gold standard for MRI flow quantification is
phase contrast (PC) [1]. However, PC suffers from partial-
volume effects when a wide distribution of velocities is con-
tained within a voxel [2]. Particularly, this is problematic
when flow is turbulent and/or complex (e.g., flow jets due
to stenosis), or at the interface between blood and vessel
wall (viscous sublayer). This issue is typically addressed by
increasing the spatial resolution, which dramatically affects
the signal-to-noise ratio (SNR) and increases the scan time.
Therefore, PC may be inadequate for estimating the peak
velocity of stenotic flow jets, for example.

Fourier velocity encoded (FVE) MRI is an alternative to
phase contrast imaging. FVE provides considerably higher
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SNR than PC, due to its higher dimensionality and larger
voxel sizes. Furthermore, FVE is robust to partial volum-
ing, as it measures the velocity distribution within each voxel.
This makes FVE particularly useful for assessment of flow
jets due to stenotis [3]. Spiral FVE is a rapid method for FVE-
based velocity-distribution measurement [3]. It consists in
combining slice-selective spiral imaging along the spatial k-
space (kx-ky) with phase-encoding along the velocity Fourier
dimension (kv).

FVE data is usually acquired with low spatial resolution,
due to scan-time restrictions associated with its higher dimen-
sionality. Thus, FVE is capable of providing the velocity dis-
tribution associated with a large voxel, but does not directly
provides a velocity map. Velocity maps, however, are useful
for calculating the actual blod flow through a vessel, or for
guiding computational fluid dynamics simulations [4].

This work proposes a method to derive velocity maps with
high spatial resolution from low-resolution FVE data. The
proposed method is based on a mathematical model of the
FVE distribution, s(x, y, v), and involves deconvolving the
low-resolution FVE velocity distribution kernel calculated
based on the kx-ky coverage of the k-space trajectory of the
FVE acquisition. Experiments using numerical phantoms,
as well simulated spiral FVE data derived from real phase
contrast data, acquired using a pulsatile carotid flow phan-
tom, show that it is possible to obtain reasonably accurate
velocities maps from low-resolution FVE data.

2. METHODOLOGY

A signal model that incorporates spiral FVE k-space trunca-
tion effects [5] (described below) was used to derive a pro-
cedure to determine a high-resolution velocity map from the
low-resolution FVE data. This model shows that the FVE
velocity distribution can be modeled from high-resolution ve-
locity maps, using the blurring kernel associated with the kx-
ky coverage of the k-space trajectory of the FVE acquisition.
Thus, we propose deconvolving the measured spiral FVE data
with this known blurring kernel. In order to estimate the ve-
locity map, we compare the measured FVE velocity distribu-
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tion, s(v), to a sinc function, which models blurring along the
velocity dimension due to finite coverage (truncation) of the
velocity k-space (kv). We will describe these steps in further
detail next.

2.1. Spiral FVE signal model

Fourier velocity encode resolves the distribution of velocities
s(v) within each voxel by Fourier encoding along at least one
velocity axis [6]. In this work, velocity (v) is encoded only
along the through-plane axis (z), and the data are spatially re-
solved along two in-plane axes (x, y). The FVE signal mea-
sured at each cardiac phase is a three-dimensional function
s(x, y, v).

Standard phase contrast measurements provides two two-
dimensional functions, m(x, y) and vo(x, y), the magnitude
and velocity maps, respectively. If these maps are measured
with sufficiently high spatial resolution and flow is laminar,
one can assume that each voxel contains only one velocity,
and therefore the spatial-velocity distribution associated with
the object is approximately

s(x, y, v) = m(x, y)× δ [v − vo(x, y)] , (1)

where δ(z) is the Dirac delta function.
Spiral FVE acquisitions follows a stack-of-spirals pattern

in kx, ky , kv space (the k-space associated with the s(x, y, v)
distribution) (Fig. 1) [3]. Consequently, k-space data are trun-
cated to a cylinder, i.e., a circle along kx , ky (with diameter
1/∆r), and a rectangle along kv (with width 1/∆v), where
∆r and ∆v are the prescribed spatial and velocity resolutions,
respectively. The associated object domain spatial-velocity
blurring can be modeled as a convolution of the true distribu-
tion s(x, y, v), with jinc

(√
x2 + y2/∆r

)
and sinc (v/∆v),

resulting in

ŝ(x, y, v) =

[
m(x, y)× sinc

(
v−vo(x, y)

∆v

)]
∗ jinc

(√
x2 + y2

∆r

)
(2)

where ŝ(x, y, v) is the measured spatial-velocity distribu-
tion, ∗ denotes the two-dimensional convolution operation,
sinc(z) = sin(πz)/(πz), jinc(z) = J1(πz)/(2z), and J1(z)
is a Bessel function of the first kind.

2.2. Deconvolution algorithm

Let B be an image obtained by filtering the original image S
with a point spread function (PSF) J, and degraded by addi-
tive noise ε, i.e.:

B = S ∗ J + ε. (3)

Given the degraded image B, the PSF J, and the noise
ε, recovering the original image S is a difficult task. This
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Fig. 1. Spiral FVE acquisitions follows a stack-of-spirals
pattern in kx, ky , kv space (the k-space associated with the
s(x, y, v) distribution).

problem is called non-blind deconvolution. It is an ill-posed
problem, i.e., there may exist more than one image S that fits
Eq.(3).

There are many efficient algorithms and techniques that
may be used to find the best approximation of S that satis-
fies Eq.(3). We used the deconvolution algorithm recently
proposed by Krishnan and Fergus [7]. From a stochastic
perspective, this method looks for the maximum a pos-
teriori estimate of S, i.e. from Bayes’ theorem we have
p(S|B,J) ∝ p(B|S,J)p(S), and we are interested in the
maximum of p(S|B,J). Here, the first term is a zero mean
Gaussian distribution and the second being a hyper-Laplacian
image prior (p(z) ∝ e−k|z|

α

). Maximizing p(S|B,J) is
equivalent to minimizing the cost function − ln p(S|B,J):

min
S

N∑
i=1

(
λ

2
(S ∗ J−B)2i + |(S ∗ f1)i|α + |(S ∗ f2)i|α

)
,

(4)
where i is the pixel index, ∗ is the two dimensonal convolution
operator and f1 = [1 − 1] and f2 = [1 − 1]T are two first-
order derivative filters.

Using the half-quadratic penalty method [8], is possible to
introduce an auxiliary variable w = [w1

i w
2
i ] (the numbers j

in wji are indices, not power) at each pixel i that allows move
the (S ∗ fj)i terms outside the | · |α expression, giving a new
cost function:

min
S,w

N∑
i=1

[
λ

2
(S ∗ J−B)2i +

β

2

(∥∥(S ∗ f1)i − w1
i

∥∥2
2

(5)

+
∥∥(S ∗ f2)i − w2

i

∥∥2
2

)
+ |w1

i |α + |w2
i |α
]

where β is a weight that will vary during the optimization.
As β →∞, the solution of Eq.(5) converges to that in Eq.(4)
[8]. Minimizing Eq.(5) for a fixed β is performed alternating
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between two steps, in the first step we solve Eq.(5) for S,
given a fixed value for w, and in the second step we solve an
auxiliary equation for w for fixed S [7].

2.3. Estimating the velocity map

Assuming that the spiral FVE blurred image measured can be
written as Eq.(2), then, after deconvolving this image by the
PSF jinc(r/∆r), we should obtain

s̃(x, y, v) = m(x, y)× sinc

(
v − vo(x, y)

∆v

)
, (6)

which is a high spatial resolution FVE dataset. Assuming a
high-resolution spin-density map, m(x, y), is available (this
may be acquired in a separate scan), the velocity vo associ-
ated with a given pixel (xo, yo) may be estimated from the
s̃(x, y, v) as

v̂(xo, yo) = arg min
vo

∥∥∥∥ s̃(xo, yo, v)

m(xo, yo)
− sinc

(
v − vo

∆v

)∥∥∥∥
2

,

(7)

for m(x0, y0) 6= 0, otherwise vo(x0, y0) = 0.

2.4. Validation

Two sets of experiments were used as a proof-of-concept of
the proposed approach.

First, simulated FVE data with 1 mm spatial resolution
was derived — using Eq. (2) — from a numerical phantom:
a parabolic velocity map, with 0.33 mm spatial resolution
(m(x, y) was assumed to be equal to 1 for the entire image).
Then, the proposed approach was used estimate the original
velocity map. The map estimated from the FVE data was then
compared with the original map.

Then, simulated FVE data with 1 mm spatial resolution
was derived — using Eq. (2) — from measured phase con-
trast MRI data: the through-plane velocity map, measured
with 0.33 mm spatial resolution, at the carotid bifurcation (in
cross-section) of a a pulsatile carotid flow phantom (Phan-
toms by Design, Inc., Bothell, WA) (Fig. 2). Fig. 3 illustrates
the difference in spatial resolution between the phase contrast
aqcuisition and the simulated FVE data. A CINE gradient-
echo 2DFT phase contrast sequence with high spatial resolu-
tion and high SNR (0.33 mm resolution, 10 averages, 80 cm/s
Venc) was used to acquire the reference velocity map. The
acquisition was prospectively gated, and the following scan
parameters were used: 11.6 ms pulse repetition time, 30◦

flip angle, 3 mm slice profile, and 23.2 ms temporal reso-
lution. The total scan time was 40 minutes. However, the
scan time of an FVE acquisiton (with scan parameters equiv-
alent to the ones used to generate the simulated data) would
be under 1 minute. The proposed approach was used esti-
mate the original velocity map (for this, the high-resolution

magnitude image reconstructed from the phase-contrast data
was used as m(x, y)). The velocity map estimated from the
low-resolution FVE data was then compared with the original
high-resolution phase-contrast map.

Fig. 2. The pulsatile carotid flow phantom (Phantoms by De-
sign, Inc., Bothell, WA) used to validate the proposed method.
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Fig. 3. Magnitude images associated with the cross-section of
the phantom’s bifurcation, where the phase contrast velocity
map was measured: (a) phase contrast data (spatial resolution:
0.33 mm); and (b) FVE data (spatial resolution: 1 mm).

3. RESULTS

Figure 4 presents the results of the validation experiment us-
ing the parabolic flow numerical phantom. Spatial deconvolu-
tion did not improve reconstruction quality in this experiment,
thus we only show the results obtained without spatial de-
convolution. The velocity map estimated from the simulated
low-resolution FVE data was accurate within 3% for about
85% of the pixels. This is a very important result, as carotid
flow distant to the bifurcation — which is typically used as in-
put and output profiles in computational fluid dynamics sim-
ulation (CFD) — is typically approximately parabolic. This
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means that FVE may potentially be used for modelling CFD
simulations of carotid flow, instead of phase contrast. The lat-
ter has issues with low SNR and partial volume effects, which
are overcome by FVE.

x position (mm)

y 
po

si
tio

n 
(m

m
)

−16 −8 0 8 16

−16

−8

0

8

16

0

1.25

2.5

3.75

5

0

10

20

30

40

velocity (cm
/s)

error (%
)

(a) (b)

ve
lo

ci
ty

 m
ap

er
ro

r

Fig. 4. Validation experiment using a parabolic flow numer-
ical phantom: (a) reference velocity map; (b) velocity map
estimated from the simulated low-resolution FVE data, and
associated error percentages.

Figure 5 presents the results of the validation experiment
using the phase contrast velocity map aquired at the pulsatile
carotid flow phantom’s bifurcation. The velocity maps esti-
mated from the simulated low-resolution FVE data are very
similar (qualitatively) to the reference map. The error images
show that the velocity map obtained using spatial deconvolu-
tion (Fig. 5c) was more accurate than the one obtained with-
out spatial deconvolution (Fig. 5b). These good results are
also important, as the velocity profile measured at the carotid
bifurcation may be used for improving CFD simulation qual-
ity [4]. This means that FVE may potentially be used also for
driving CFD simulations, with considerably higher SNR and
robustness to partial voluming.

4. CONCLUSION

We proposed a method for deriving high-resolution velocity
maps from low-resolution FVE measurements. The results
showed that it is possible to obtain reasonably accurate ve-
locities maps from the FVE distributions. This suggests that
FVE may potentially be used for driving CFD simulations of
carotid flow [4], with considerably higher SNR and robust-
ness to partial voluming than phase contrast MRI.
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