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ABSTRACT

Fourier velocity encoding (FVE) is a promising magnetic res-
onance imaging (MRI) method for assessment of cardiovas-
cular blood flow. FVE provides considerably higher signal-
to-noise ratio than phase contrast (PC) imaging, is robust to
partial-volume effects and can be acquired rapidly using spi-
ral readouts. On the other hand, FVE data do not directly
provide a velocity map. These maps are useful for calculating
the actual blood flow through a vessel, or for guiding compu-
tational fluid dynamics simulations (CFD). In this paper, FVE
data were simulated from PC velocity maps from a pulsatile
carotid flow phantom; velocity maps were then reconstructed
from these FVE data, and used to guide CFD simulations.
FVE-guided CFD velocity fields were qualitatively and quan-
titatively compared with the PC-measured velocity field, with
the pure CFD solution, and with PC-guided CFD. The results
show that FVE-guided CFD achieves better agreement with
the PC-measured velocity field than pure CFD. Compared
with PC-guided CFD, FVE provides considerably better re-
sults than PC with similar scan time, and equivalent results
when compared with PC with 9 times longer scan time.

Index Terms— Computational fluid dynamics, magnetic
resonance imaging, Fourier velocity encoding

1. INTRODUCTION

The current gold standard for magnetic resonance imaging
(MRI) flow quantification is phase contrast (PC) [1]. How-
ever, PC suffers from partial-volume effects when a wide dis-
tribution of velocities is contained within a voxel [2]. Par-
ticularly, this is problematic when flow is turbulent and/or
complex, or at the interface between blood and vessel wall.
This issue is typically addressed by increasing the spatial res-
olution, which dramatically affects the signal-to-noise ratio
(SNR) and increases the scan time.

Fourier velocity encoding (FVE) [3] is an alternative to
phase contrast imaging. FVE provides considerably higher
SNR than PC, due to its higher dimensionality and larger
voxel sizes. Furthermore, FVE is robust to partial voluming,

as it resolves the velocity distribution within each voxel. Spi-
ral FVE (sFVE) is a rapid method for FVE-based velocity-
distribution measurement [4]. It consists in combining slice-
selective spiral imaging along the spatial k-space (kx-ky) with
phase-encoding along the through-plane velocity (w) Fourier
dimension (kw).

FVE data is usually acquired with low spatial resolution,
due to scan-time restrictions associated with its higher dimen-
sionality. FVE is capable of providing the velocity distribu-
tion associated with a large voxel, but does not directly pro-
vides a velocity map. Velocity maps, however, are useful for
calculating the actual blood flow through a vessel, or for guid-
ing computational fluid dynamics simulations [5].

In this paper, sFVE data was simulated from the through-
plane velocity component of a 3DFT PC dataset acquired
from a pulsatile flow phantom. Then, a velocity map was
extracted from the simulated sFVE data, using the method-
ology proposed in Ref. [6]. Finally, CFD simulations guided
by the recovered velocity map were performed using the
methodology described in Ref. [5].

2. METHODS

2.1. Data acquisition

High-spatial-resolution four-dimensional PC data of a pul-
satile carotid flow phantom (Phantoms by Design, Inc., Both-
ell, WA) (Fig. 1) were obtained using a 3DFT SPGR pulse
sequence. The scan parameters were: 0.5×0.5×1 mm3 spa-
tial resolution; field-of-view 4.0×3.5×5.0 cm3; TR 11.4 ms;
flip angle 8.5o; temporal resolution 91.2 ms; VENC 50 cm/s;
40 min per scan; 9 NEX. The data were acquired on a GE
Discovery MR750 3T system, with a 32-channel receive-only
head coil array (Nova Medical, Inc., Wilmington, MA, USA).
The phantom’s pulse cycle was set to 60 bpm. The velocity
map for each spatial axis — upc, vpc, and wpc — was recon-
structed using data from all channels of the receive coil array.
The lumen was segmented by manually outlining the vessel
borders from a stack of 2D axial images, obtained from the
reconstructed 3D volume.
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Fig. 1. Pulsatile carotid flow phantom (Phantoms by Design,
Inc., Bothell, WA) used to validate the proposed method.

2.2. sFVE Signal Model

If two-dimensional PC is used to measure the through-
plane velocities across a vessel, for example, then two two-
dimensional functions are obtained: m(x, y) and wpc(x, y),
the magnitude and velocity maps, respectively. If these maps
are measured with sufficiently high spatial resolution and
flow is laminar, one can assume that the spatial-velocity
distribution associated with the object is approximately:

s(x, y, w) = m(x, y)× δ [w − wpc(x, y)] , (1)

where δ(α) is the Dirac delta function.
The spatial-velocity distribution may be measured in MRI

using FVE [3]. Spiral FVE acquisitions follows a stack-of-
spirals pattern in kx-ky-kw space (the k-space associated with
the s(x, y, w) distribution) [6]; k-space data are truncated to
a cylinder with diameter 1/δr and height 1/δw, where δr and
δw are the spatial and velocity resolutions, respectively.

The associated spatial-velocity blurring kernel can be
modeled as a convolution of the true distribution s(x, y, w),
with jinc

(√
x2 + y2/δr

)
and sinc (w/δw), resulting in:

ŝ(x, y, w) =

[
m(x, y)× sinc

(
w − wpc(x, y)

δw

)]
∗ jinc

(√
x2 + y2

δr

)
, (2)

where ŝ(x, y, w) is the measured spatial-velocity distri-
bution, ∗ denotes the convolution operation, sinc(α) =
sin(πα)/(πα), and jinc(α) = J1(πα)/(2α), where J1(α) is
a Bessel function of the first kind [7].

Simulated sFVE distributions were derived from the PC
data, using the formulation presented in Eq. 2. This was
performed only for the through-axis velocity component (w),
and for a cardiac phase corresponding to the phantom’s mid-
systole. The 9-NEX PC dataset was used in this process, so
that the FVE distributions were computed from low-noise ve-
locity maps (as in Ref. [4]). This is because FVE has con-
siderably higher SNR than PC in general, due to its higher di-
mensionality and larger voxel size. Two different sFVE distri-
butions were obtained for each slice of the volume: one using

δr = 1 mm, and one using δr = 2 mm. The velocity resolution
was δw = 10 cm/s, over a 120 cm/s velocity field-of-view.

2.3. Estimating the velocity map from a FVE distribution

The deconvolution algorithm proposed in Ref. [8] was then
used to reduce spatial blurring effects due to finite spatial
resolution in ŝ(x, y, w), assuming the blurring kernel to be
jinc(r/δr). This deblurred distribution is assumed to be

s̃(x, y, w) ≈ m(x, y)× sinc

(
w − wpc(x, y)

δw

)
. (3)

Assuming a high-resolution spin-density map, m̃(x, y) ≈
m(x, y), was available (this could be acquired in a sepa-
rate scan), the velocity ŵfve associated with a given spatial
coordinate (xo, yo) could be estimated from s̃(x, y, w) as:

ŵfve(xo, yo) = argmin
ω

∥∥∥∥ s̃(xo, yo, w)m̃(xo, yo)
− sinc

(w − ω
δw

)∥∥∥∥
2

, (4)

for m̃(xo, yo) 6= 0, otherwise ŵfve(xo, yo) = 0.
This minimization process was used to reconstruct esti-

mated velocity maps from the simulated sFVE distributions.
The spin-density map from the PC acquisition was used as
our high-resolution map, m̃(x, y). This was repeated for each
pixel of each slice of the volume, and for both values of δr.

2.4. FVE-guided computational fluid dynamics

Computational fluid dynamics calculations guided by MRI
data were performed using a modified version of the SIM-
PLER algorithm [5]. The phantom’s blood mimicking fluid
was assumed to be a Newtonian, isothermal, and incompress-
ible fluid, with constant viscosity µ and density ρ.

The discretization of the Navier–Stokes equations [9],
given by:

ρ

(
∂~ν

∂t
+ ~ν · ∇~ν

)
= −∇p+ µ∆~ν, (5)

where ~ν = (u, v, w) is the velocity field, produces three linear
systems:

Au,nun+1 = bu,n, (6)
Av,nvn+1 = bv,n, and (7)
Aw,nwn+1 = bw,n, (8)

where Au,n, Av,n, and Aw,n are hepta-diagonal square ma-
trices containing information about µ, ρ and the velocities
from the previous time iteration; and bu,n, bv,n, and bw,n
are column vectors also containing information about µ, ρ,
previous iteration velocities and pressure.

In the proposed approach, additional rows are included in
matrices Au, Av , and Aw, and in vectors bu, bv , and bw, in
order to incorporate the MRI-measured velocity values. This
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approach assumes that the velocity measured with PC-MRI
for a given voxel can be expressed as a linear combination of
the velocities on the underlying CFD calculation grid. The
new overdetermined systems are solved in the least-squares
sense for each step of the SIMPLER algorithm. The algorithm
calculations are performed forward in time in order to obtain
a steady-state solution, i.e.:

~ν∞ = lim
t→∞

~ν(t). (9)

Each of the two ŵfve(x, y, z) velocity maps reconstructed
from the simulated sFVE distributions — one for δr = 1 mm,
and one for δr = 2 mm — were used to guide a CFD solution.
Calculations assumed fluid viscosity of µ = 0.005 Pa·sec and
density of ρ = 1100 kg/m3 (values provided by manufac-
turer), and were performed with time step δt = 0.25 ms on a
Cartesian grid of 0.5×0.5×1 mm3 voxel size. The CFD sim-
ulation domain was rectangular of size 32.5×9.0×41.0 mm3.
Each iteration required about 10 seconds of computation time
on an Intel Core i7 processor running at 2.8 GHz.

The two FVE-guided CFD velocity fields were qualita-
tively and quantitatively compared with the PC-measured ve-
locity field; with the pure CFD solution, i.e., a CFD solution
which uses MRI measurements — ~νpc = (upc, vpc, wpc) —
only as inlet and outlet boundary conditions; and with two
PC-guided CFD velocity fields: one obtained using a single
NEX of the PC scan (which corresponds to approximately the
same scan time as the FVE scan with δr = 1 mm), and one ob-
tained using all 9 NEX (i.e., 9 times longer scan time).

2.5. Quantitative evaluation

The CFD-simulated velocity fields were quantitatively com-
pared with the PC measurements by means of the signal-to-
error ratio (SER). We considered the PC velocity field, ~νpc, as
our ground-truth “signal”; consequently, the estimation error
is the vector difference between the CFD-estimated velocity
field, ~ν∞ = (u∞, v∞, w∞), and the ground-truth field, ~νpc.
Thus, the SER is calculated (in decibels) as:

SER~ν = 10 log10

( ∑
i,j,k ‖~νpc(i, j, k)‖

2∑
i,j,k ‖~ν∞(i, j, k)− ~νpc(i, j, k)‖2

)
, (10)

where integers i, j, and k represent grid-point indexes along
the x, y, and z axes, respectively. The SER was also calcu-
lated individually for u, v, and w. Using these SER values,
the CFD approaches — pure CFD, and CFD driven by ŵfve

— were quantitatively evaluated and compared.

3. RESULTS

The spin-density maps shown in Fig. 2a illustrate the spatial
blurring associated with each value of δr, for a slice perpen-
dicular to the phantom’s bifurcation. Fig. 2b presents the
FVE-estimated velocity maps, ŵfve, for each spatial resolu-
tion value. Fig. 2c shows the associated errors (relative to

the PC map, wpc, shown in Fig. 2b, left). The results show
that lower error levels were obtained when FVE data with
finer spatial resolution was used. In this slice, the absolute
error was greater than 5 cm/s for only 9% of the voxels when
δr = 1 mm was used; while 26.5% of the voxels presented
error greater than 5 cm /s when δr = 2 mm was used.
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Fig. 2. (a) Spin-density maps for PC (0.5 mm spatial resolu-
tion, 9 NEX), FVE with 1 mm spatial resolution, and FVE
with 2 mm spatial resolution, for a slice perpendicular to
a carotid phantom’s bifurcation; (b) corresponding velocity
maps; and (c) absolute error for the FVE-estimated velocity
maps, relative to the PC reference.

Figure 3 shows the PC-measured velocity field; and the
CFD-simulated velocity fields, obtained using pure CFD, PC-
driven CFD (1 and 9 NEX), and FVE-driven CFD (δr = 1 and
2 mm). Considerable qualitative improvement – with respect
to agreement with the PC reference – can be appreciated in the
FVE-driven results, when compared with the pure CFD result
and with PC-driven CFD with similar scan time (1 NEX).

Finally, Table 1 presents the measured SER relative to the
PC reference, for the CFD results shown in Fig. 3. Both
FVE-driven solutions achieved higher SER than pure CFD
and single-NEX PC-driven CFD. When evaluating the three-
dimensional velocity vector ~ν, the SER gain relative to pure
CFD was 1.49 dB for δr = 1 mm, and 0.80 dB for δr =
2 mm; relative to single-NEX PC-driven CFD the gain was
3.65 dB for δr = 1 mm (similar scan time), and 2.96 dB
for δr = 2 mm (3 times faster); relative 9-NEX PC-driven
CFD (which requires much longer scan time), the SER was
only 0.32 dB lower for δr = 1 mm (9 times faster), and only
1.01 dB lower for δr = 2 mm (27 times faster). When eval-
uating only the y-axis velocity component (v), there was a
0.11-0.35 dB loss in SER (relative to pure CFD) with the pro-
posed method. This is most likely be a positive effect of de-
noising, since the velocities along that axis are extremely low
(vpc’s total energy is 15.7 dB lower than that of wpc). Never-
theless, the SER gains for the u and w components more than
compensate for this.
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Fig. 3. Vector field visualization of the velocity field (~ν) over the entire tridimensional volume of the carotid bifurcation of the
phantom: PC; pure CFD; CFD guided by wpc, reconstructed from 1 NEX and 9 NEX; CFD guided by ŵfve, recovered from
simulated sFVE data with δr = 1.0 mm and 2.0 mm.

Table 1. Signal-to-error ratio between each of the CFD approaches and the PC reference.
pure CFD CFD + 1D PC CFD + 1D PC CFD + sFVE CFD + sFVE

1 NEX 9 NEX δr = 1.0 mm δr = 2.0 mm
SERu 2.97 dB 2.72 dB (↓) 4.16 dB (↑) 3.93 dB (↑) 3.81 dB (↑)
SERv −0.25 dB −0.88 dB (↓) −0.30 dB (↓) −0.36 dB (↓) −0.60 dB (↓)
SERw 5.44 dB 6.21 dB (↑) 16.53 dB (↑↑↑) 10.97 dB (↑↑) 7.22 dB (↑)
SER~ν 6.57 dB 4.41 dB (↓) 8.38 dB (↑) 8.06 dB (↑) 7.37 dB (↑)

4. CONCLUSIONS

This work presented a method for using FVE data to guide
CFD simulations. The results show that FVE-guided CFD
achieves better agreement with the PC-measured velocity
field than pure CFD. Compared with PC-guided CFD, FVE
provides considerably better results than PC with similar scan
time. This is because a 1-mm resolution sFVE dataset could
be acquired in the same scan time as 1 NEX of a 0.5-mm
resolution PC dataset with the above parameters; however the
FVE dataset would have SNR 23 dB higher than that of PC
(the scan time of 2-mm resolution sFVE would be 3 times
shorter, and the SNR would still be 8 dB higher than that of
PC). When compared with CFD guided by high-SNR PC,
FVE provides equivalent results in much shorter scan time.
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