Universidade de Brasília

Using Fourier velocity encoded MRI data to guide CFD simulations

Vinicius de Carvalho Rispoli* (vrispoli@pgea.unb.br) Jon-Fredrik Nielsen[†] (jfnielse@umich.edu) Krishna Nayak[‡] (knayak@usc.edu) Joao Luiz Azevedo de Carvalho* (joaoluiz@pgea.unb.br)

*Electrical Engineering, University of Brasilia, Brazil – [†]Biomedical Engineering, University of Michigan, USA [‡]Electrical Engineering, University of Southern California, USA

Introduction	Experiments	PC (9 NEX) $\delta r = 0.5 \text{ mm}$	FVE $\delta r = 1.0 \text{ mm}$	FVE $\delta r = 2.0 \text{ mm}$
 Fourier velocity encoding (FVE) [1] provides considerably higher SNR than phase contrast (PC), and is robust to partial-volume effects [2]. FVE data can be acquired fast with low spatial resolution [3,4]. FVE provides the velocity distribution associated with a large voxel, but does not directly provides a 	 3D PC-MRI data were acquired for a carotid flow phantom (Fig.1). Voxel: 0.5 × 0.5 × 1.0 mm³; FOV: 4.0 × 3.5 × 5.0 cm³; NEX: 9; Venc: 50 cm/s. Spiral FVE data were simulated from 9-NEX PC-MRI with δr = 1mm and δr = 2mm (SNR_{fve} > SNR_{pc}) 	(a)		spin density (n.u.) 0 0 0 0 0 0 0 0 0 0
 velocity map. CFD can be an alternative for long scan times that occur in MR flow quantification CFD has arbitrary SNR and spatio-temporal reso- 	 Two ŵ_{fve} were reconstructed from the simulated sFVE FVE-guided CFD velocity fields were compared with: Pure CFD solution; 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10 vel. error (cm/s)

Figure 2: (a) Spin-density maps for PC (0.5 mm spatial reso-NEX of the PC scan (same scan time as FVE scan with *| lution, 9 NEX), FVE with 1 mm spatial resolution, and FVE with*

► **Goal**: derive high-resolution velocity maps from simulated low-resolution FVE data [5] and use it to perform guided CFD simulations.

Estimating the velocity map

lution

► FVE spatial-velocity distribution, s(x, y, w),model is:

$$s(x, y, w) = \left[m(x, y) \times \operatorname{sinc} \left(\frac{w - w_{\operatorname{pc}}(x, y)}{\delta w} \right) \right] * \operatorname{psf} \left(\frac{r}{\delta r} \right)$$
(1)

(エノ Spatial blurring effects in FVE data are reduced, using the deconvolution algorithm proposed in ref. [6]:

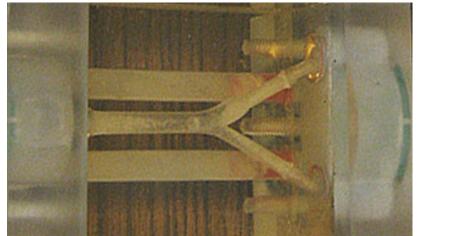
$$\tilde{s}(x, y, w) \approx m(x, y) \times \operatorname{sinc}\left(\frac{w - w_{\operatorname{pc}}(x, y)}{\delta w}\right).$$
 (2)

• Given a high-resolution spin-density map, $\tilde{m}(x, y)$ velocity \hat{w}_{fve} at (x_o, y_o) is estimated from $\tilde{s}(x, y, w)$ as:

$$\hat{w}_{\text{fve}}(x_o, y_o) = \arg\min_{\omega} \left\| \frac{\tilde{s}(x_o, y_o, w)}{\tilde{m}(x_o, y_o)} - \operatorname{sinc}\left(\frac{w - \omega}{\delta w}\right) \right\|_2$$
(3)

Numerical Procedure

► Navier-Stokes equation,


$$\rho\left(\frac{\partial\boldsymbol{\nu}}{\partial t}+\boldsymbol{\nu}\cdot\nabla\boldsymbol{\nu}\right)=-\nabla\boldsymbol{p}+\mu\Delta\boldsymbol{\nu},\qquad (4)$$

is numerically solved with a modified SIMPLER

 $\delta r = 1$ mm)

► PC-guided CFD velocity field obtained using a single

► PC-guided CFD velocity field obtained using all all 9-NEX of the PC scan

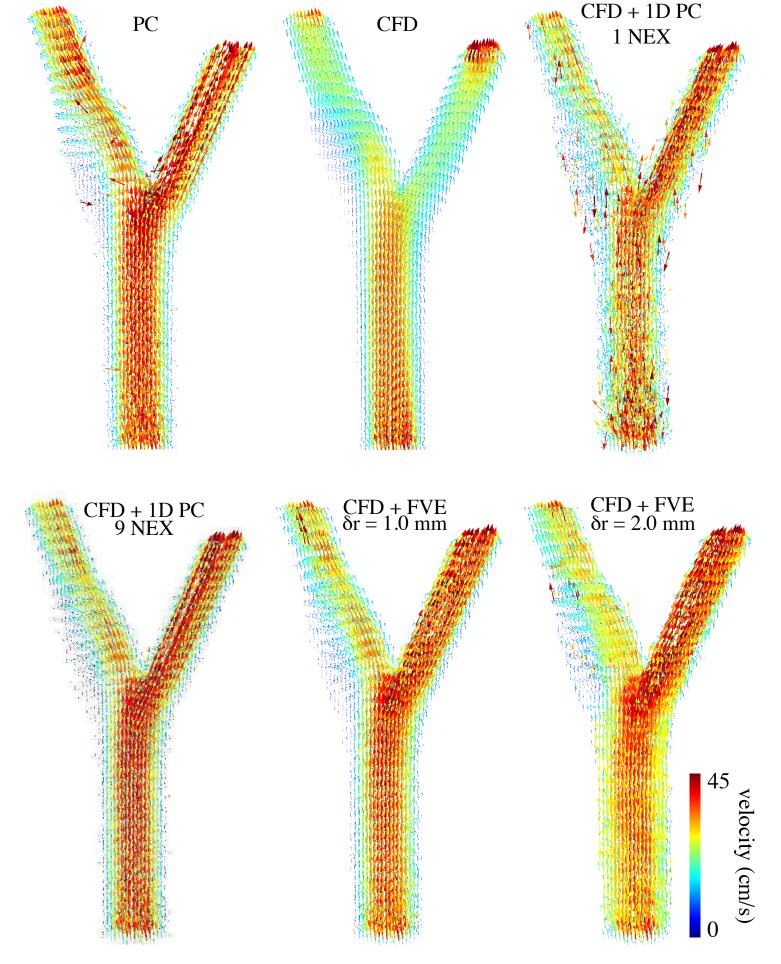


Figure 1: Pulsatile carotid flow phantom (Phantoms by Design, Inc., Bothell, WA).

Results and Conclusion

- **Result 1**: Figure 2 presents the FVE-estimated velocity maps, \hat{w}_{fve} . Abs. error was greater than:
 - ▶ 5 cm/s for 9% of the voxels for $\delta r = 1$ mm
 - ▶ 5 cm/s for 26.5% of the voxels for $\delta r = 2$ mm
- Result 2: Figure 3 shows the PC-measured velocity field; and all CFD-simulated velocity fields: pure CFD, PC-driven CFD (1 and 9 NEX), and FVE-driven CFD ($\delta r = 1$ and 2 mm).
 - Considerable qualitative improvement for FVE-driven results, when compared with the pure CFD result and with PC-driven CFD with similar scan time (1 NEX).
- **Result 3**: Table 1 presents signal-to-error ratio (SER), relative to PC reference, for CFD results
 - ► Both FVE-driven solutions had higher SER than pure CFD and single-NEX PC-driven CFD
 - ▶ When evaluating 3D velocity vector $\vec{\nu}$, the SER gain for $\delta r = 1 \text{ mm}$ (similar scan time): relative to pure CFD

2 mm spatial resolution, for a slice perpendicular to a carotid phantom's bifurcation; (b) corresponding velocity maps; and (c) absolute error for the FVE-estimated velocity maps, relative to the PC reference.

algorithm	[7].
-----------	------

Discretization of the Navier-Stokes equation yelds three linear systems:

 $\mathbf{S}_{\nu,i}\boldsymbol{\nu}_{i+1}=\mathbf{f}_{\nu,i},$

for each velocity component $\boldsymbol{\nu} = \mathbf{u}, \mathbf{v}$ or \mathbf{w} . Approach [7]: solve the modified linear systems

 $\boldsymbol{\nu}_{i+1} = (\mathbf{S}_{\nu i}^{T} \mathbf{S}_{\nu,i} + \lambda_{\nu} \mathbf{\Gamma}_{\nu}^{T} \mathbf{\Gamma}_{\nu}) (\mathbf{S}_{\nu i}^{T} \mathbf{f}_{\nu,i} + \lambda_{\nu} \mathbf{\Gamma}_{\nu}^{T} \boldsymbol{\nu}_{\mathrm{mri}}), \quad (6)$

which corresponds to the optimal solution of the following regularization

 $J(\boldsymbol{\nu}_{i+1}) = \frac{1}{2} ||\mathbf{S}_{\nu,i}\boldsymbol{\nu}_{i+1} - \mathbf{f}_{\nu,i}||^2 + \frac{\lambda_{\nu}}{2} ||\mathbf{\Gamma}_{\nu}\boldsymbol{\nu}_{i+1} - \boldsymbol{\nu}_{mri}||^2.$ (7)

▶ Γ_{ν} adjusts size of the vectors $\nu_{\rm mri}$ and ν_{i+1} to SER" be compared and λ_{ν} controls the weight of the SERw regularization.

Solution obtained is the best one that fits both $SER_{\vec{\nu}}$ Navier-Stokes and the MRI data.

was 1.49 dB; relative to single-NEX PC-driven CFD was 3.65 dB

- Conclusion: Results show that FVE-guided CFD has better agreement with PC-measured velocity field than pure CFD.
 - ▶ 1-mm resolution sFVE dataset has the same scan time as 1 NEX of a 0.5-mm resolution PC dataset with same parameters
 - ► FVE dataset would have SNR 23 dB higher than that of PC

Figure 3: Vector field visualization of the velocity field $(\vec{\nu})$ over the entire tridimensional volume of the carotid bifurcation of the phantom: PC; pure CFD; CFD guided by w_{pc}, reconstructed from 1 NEX and 9 NEX; CFD guided by \hat{w}_{fve} , recovered from simulated sFVE data with $\delta r = 1.0$ mm and 2.0 mm.

²[7] Rispoli VC, et al. Proc ISMRM 22: 2490, 20014.

References

[1] Moran PR. MRI 1:197, 1982.

CFD + sFVE^[2] Tang C, et al. JMRI 3:377, 1993. pure CFD CFD + 1D PC $\delta r = 1.0 \text{ mm}$ [3] Carvalho JLA and Nayak KS. MRM 57:639, 2007. 1 NEX 3.93 dB (\uparrow) [4] Carvalho JLA, et al. MRM 63:1537, 2010. 2.72 dB (↓) 2.97 dB $-0.36 \text{ dB}(\downarrow)$ [5] Rispoli VC and Carvalho JLA. ISBI 10: 334, 2013. -0.88 dB (↓) SER_v –0.25 dB 10.97 dB $(\uparrow\uparrow)$ [6] Krishnan D and Fergus R. Proc 24th NIPS, 2009. 5.44 dB 6.21 dB (↑)

8.06 dB (↑) 6.57 dB 4.41 dB (↓) **Table 1:** Signal-to-error ratio between each of the CFD approaches and the PC reference.

International Symposium on Biomedical Imaging: From Nano to Macro – Brooklyn, NY – April 16-19, 2015

(5)