

Reconstruction of variable-density data in Fourier velocity encoding

USC Viterbi School of Engineering

MREL - USC

Joao L. A. Carvalho¹, Julie C. DiCarlo², Adam B. Kerr³, Krishna S. Nayak¹

¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States, ²Synarc, Inc., San Francisco, CA, United States, ³Department of Electrical Engineering, Stanford University, Stanford, CA, United States

Introduction: Fourier velocity encoding (FVE) [1] is useful in the quantitation of valvular stenosis and regurgitation, as it overcomes partial-volume effects that may cause loss of diagnostic information in phase-contrast imaging [2]. Velocity resolution (*v_{res}*) can be improved using variable-density sampling along the velocity dimension (k_V) [3], but considerable aliasing artifacts arise when a density reduction factor (ρ) greater than 2 is used with conventional reconstruction methods such as gridding [4] and DrFT [5]. We propose k_V -FOCUSING (FOV Centering Using Sinc INterpolation), a reconstruction scheme that eliminates artifacts caused by variable-density sampling for typical valvular flow distributions. Phantom and in vivo validation was performed using one-shot FVE [3] and spiral FVE [6] acquisitions.

Figure 3: Numerical simulations results: (a) simulation of plug flow and static tissue; (b) simulation of a flow jet; (c) simulation of a flow jet with higher peak velocity. The proposed method reduces undersampling artifacts considerably (arrows), especially for narrow and moderately broad distributions.

Theory: k_V -FOCUSING combines variable-width sinc interpolation along k_V with velocity field-ofview (V_{FOV}) centering. Variable-width interpolation [7] reduces artifacts by trading v_{res} for v_{FOV} . This is desirable, as plug flow contains high-frequency components in k_V , but occupies only a small portion of the V_{FOV} , whereas flow jets fill a wider portion of the v_{FOV} but require lower v_{res} (Fig. 1). This approach maximizes v_{res} at the center of v_{FOV} (Fig. 2). Thus, the v_{FOV} is shifted towards the center of the distribution by applying a linear phase to the sinc kernels. Reconstruction is performed independently for each time-frame. Conventional gridding and k_{V} -FOCUSING can be represented as follows.

Figure 1: Typical (measured) velocity distributions (left) and correspondent k-space representation (right). Data obtained using spiral FVE with uniform-density sampling, in a healthy volunteer (top) and a patient with aortic stenosis (bottom). Plug flow contains high-frequency components in k_{V} , but occupies only a small portion of the v_{FOV} . Flow jets fill a wider portion of the v_{FOV} but require lower v_{res} .

Figure 4: In vivo validation of k_V -FOCUSING, using spiral FVE (aortic valve flow, healthy volunteer). k_{V} -FOCUSING reduces undersampling artifacts (arrows), and provides velocity resolution equivalent to the small FOV uniform-density reference.

Conventional gridding: $\zeta(k_v) = \sum w_n S_n \psi(k_v - \kappa_n)$ k_V -FOCUSING: $\zeta(k_v) = \sum w_n S_n \psi_n (k_v - \kappa_n) e^{-j2\pi(k_v - \kappa_n)v_o}$ S_n : sample of $S(k_v)$ taken at $k_v = \kappa_n$ $\zeta(k_v)$: reconstructed estimate of $S(k_v)$ w_n : density compensation function $\psi(x)$: constant-width convolution kernel $\psi_n(x)$: variable-width windowed sinc kernel v_o : center of distribution, estimated from S_n

Methods: To determine an appropriate value of ρ for k_V -FOCUSING, we performed simulations using numerical models of the velocity distribution in plug flow and in stenotic and regurgitant flow jets. The method was experimentally validated using one-shot FVE in a flow phantom with a wide distribution of velocities, and using spiral FVE to examine aortic valve flow in a healthy volunteer.

Figure 2: Variable-width sinc interpolation diagram. High-resolution components are more sparsely sampled then low-resolution ones, resulting in a smaller unaliased velocity FOV. Using a sinc kernel of appropriate width for each k-space sample, the resulting apodization function filters the corresponding aliasing. The velocity resolution in the reconstructed data varies across the velocity FOV.

using variable-density sampling (160% improvement compared to uniform sampling). Phantom results using one-shot FVE are shown in Fig. 5. A quantitative evaluation is presented in Table 1.

Conclusions: Variable-density sampling along the velocity dimension was used to improve the resolution in FVE by up to 160%. Artifacts were reduced using a novel reconstruction scheme (k_V -FOCUSING), which was validated using numerical simulations and a flow phantom, and *in vivo*, with both spiral FVE and one-shot FVE. In spiral FVE, k_{V-} FOCUSING allows 2.6-fold reduction in breah-hold dura-

Figure 5: Evaluation of k_V -FOCUSING, using one-shot FVE (pulsatile flow phantom). Undersampling artifacts are significantly reduced with the proposed method.

Table 1: Variable-density FVE signal-to-noise ratio (dB) comparison with a uniform-density reference.

	Plug flow with static tissue	Simulation Narrow distribution	Broad distribution	<i>In vivo</i> Healthy volunteer
Conventional gridding	-1	7	10	0
Proposed method	17	15	11	14

References:

[1] Moran PR. MRI 1:197, 1982. [2] Tang C, et al. JMRI 3:377, 1993.

[3] DiCarlo JC, et al. MRM 54:645, 2005. **Results:** Numerical simulation results suggest tion. In one-shot FVE, it provides improved temporal resolu-[4] Jackson JI, et al. IEEE TMI 10:473, 1991. that $\rho = 4$ may be used to image plug flow and flow tion and reduced off-resonance effects. k_V -FOCUSING can [5] Maeda A, et al. IEEE TMI 7:26, 1988. jets, with no significant artifacts (Fig. 3). In the *in* potentially be applied to any FVE method that utilizes [6] Carvalho JLA, et al. MRM 57:639, 2007. vivo validation (Fig. 4), the velocity resolution in variable-density sampling, requiring no modification to the [7] Cukur T, et al. ISMRM 2007 #1912. spiral FVE was improved from 86 cm/s to 33 cm/s imaging pulse-sequence.