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Introduction: Fourier velocity encoding (FVE) [1] is useful in the assessment of valvular disease [2], as it eliminates partial volume effects that may 
cause loss of diagnostic information in phase-contrast imaging [3]. FVE has also been proposed as a method for measuring wall shear rate in the 
carotid arteries [4,5]. Although the scan-time of 2DFT FVE is prohibitively long for clinical use, the spiral FVE method [2] shows promise, as it is 
substantially faster. However, the reconstruction of spiral FVE data is time-consuming, due to its multidimensionality and the use of non-Cartesian 
sampling. This is particularly true for multi-slice/3D and/or multi-channel acquisitions. Spiral FVE datasets consist of temporally-resolved stacks-of- 
spirals in kx-ky-kv space [2]. The spatial-temporal-velocity distribution, m(x,y,v,t), is 
typically obtained from the k-space data, M(kx,ky,kv,t), by first using a non-Cartesian 
inverse Fourier transform along along kx-ky (e.g., gridding [6], NUFFT [7]), followed 
by a Cartesian inverse Fourier transform along kv (Fig. 1a). With this approach, the 
entire m(x,y,v,t) matrix is calculated. However, we are typically only interested in the 
velocity distributions associated with a small region-of-interest within the x-y plane. 

We propose the use of single-voxel direct Fourier transform (DrFT) [8] to 
reconstruct spiral FVE data (Fig. 1b). While whole-image DrFT is orders of 
magnitude slower than gridding and NUFFT algorithms, the DrFT equation allows 
the reconstruction of individual voxels of interest, which considerably reduces the 
computation time. Additionally, we propose the use of general-purpose computing 
on graphics processing units (GPGPUs) to further accelerate computation and 
achieve seemingly instantaneous spiral FVE reconstruction. 
 

Methods: For the accelerated reconstruction of spiral FVE data, we begin by 
reducing the dimensionality of the k-space data, M(kx,ky,kv,t), by calculating 
Mxy(kv,t) for only one select voxel, at position (x,y). This is performed using the 
DrFT [8], in which a pixel of the reconstructed image is computed as the weighted 
correlation of the k-space samples and the phase modulation function for that pixel: 

where N is the total number of k-space samples, Mn is 
the raw data acquired at the point (un,vn) on the non-
Cartesian grid in k-space, and Wn is the weight 

attributed to that point. The weights may be calculated based on the Voronoi areas 
associated with the non-Cartesian k-space sampling grid. 

Note that single-voxel NUFFT is not practical, because NUFFT is an iterative 
algorithm. A 2D-FFT could be calculated for a single pixel of the image, but this 
would reduce FFT complexity by no more than 50%. Furthermore, gridding of the 
entire k-space data would still be needed, prior to FFT computation. The proposed 

 
Fig. 1: Reconstruction of spiral FVE data using: (a) NUFFT; 
and (b) single-voxel DrFT. 
  

Fig.2: Time-velocity distributions for select voxels from an 
axial slice prescribed at the neck of a healthy volunteer:  
(a) right external carotid artery, (b) left carotid bifurcation; 
(c) right internal carotid artery; and (d) left jugular vein. 

approach reduces DrFT’s complexity by 99.99%! 
The Mxy(kv,t) matrices from each coil element are combined using sum-of-squares, and the time-velocity distribution, mxy(v,t), is obtained by 

inverse 1D-FFT along kv. The voxel of interest may be prescribed by clicking on a magnitude image, m(x,y), obtained by reconstructing—using 
gridding or NUFFT—only the M(kx,ky) data associated with kv = 0 and t = 0 (this takes only 90 ms) (see Fig. 2). 

A multi-slice CINE spiral FVE dataset was acquired on a GE Signa 3T EXCITE HD system (40 mT/m, 150 T/m/s gradients), using a 4-channel 
carotid coil. Scan parameters: 1.4×1.4×5 mm3 spatial resolution (8×1012-sample variable-density spiral readout), 5 cm/s velocity resolution (32 
velocity encodes), 12 ms temporal resolution (43 cardiac phases), 5 axial slices, 146-second acquisition per slice (256 heartbeats at 105 bpm). The 
data were reconstructed on an Intel 2.9 GHz Core i7 CPU with an Nvidia GTX570 graphics card, running MATLAB on Linux. Single-voxel DrFT 
was implemented in MATLAB, using segments of code written in CUDA, the parallel computing architecture developed by Nvidia for its GPUs. 
 

Results and Discussion: Single-voxel DrFT was able to reconstruct the spiral FVE data in only 5 seconds (per voxel of interest), while 
reconstruction using NUFFT required 1 minute per slice (5 minutes total). The CUDA implementation of single-voxel DrFT was able to reconstruct 
the data in only 135 ms, which is seemingly instantaneous. The time-velocity distributions for select voxels are shown in Fig. 2. 

The NUFFT approach has the advantage of providing instantaneous visualization of the time-velocity distribution in any voxel, after 
reconstruction. However, the reconstruction process takes minutes, because the distributions are calculated even for voxels containing no signal or 
only static material. Typically, only a very small fraction of the voxels contains flows of interest. Also, this approach requires considerable amount of 
RAM memory (1.4 GB for a 115×115×5×32×43 m(x,y,z,v,t) matrix). Single-voxel DrFT reconstructs data only for select voxels, prescribed by the 
user. Since this process is seemingly instantaneous when running on GPGPUs, there is no advantage in using the NUFFT approach. 
 

Conclusions: Single-voxel DrFT allows seemingly instantaneous reconstruction of spiral FVE data. The use of GPGPUs for DrFT computation 
provided a 37-fold reduction in reconstruction time, compared with the CPU implementation of the same reconstruction algorithm. 
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