

High-resolution, high-SNR velocity maps reconstructed from low-resolution Fourier velocity encoded MRI data

Vinicius C. Rispoli Joao L. A. Carvalho

ISMRM 2013, 21st Annual Meeting

Salt Lake City

April 22, 2013

Declaration of Relevant Financial Interests or Relationships

Speaker Name: VINICIUS RISPOLI

I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.

High-resolution, high-SNR velocity maps reconstructed from low-resolution Fourier velocity encoded MRI data

Vinicius C. Rispoli Joao L. A. Carvalho

ISMRM 2013, 21st Annual Meeting

Salt Lake City

April 22, 2013

Phase contrast (PC)

- Current gold standard for MRI flow quantitation
- Affected by partial-volume effects [1]
 - Complex/turbulent flow
 - Lumen/vessel wall interface
- Solution: increase spatial resolution
 - Lower SNR
 - Longer scan time

[1] Tang C. et al. JMRI 3:377, 1993.

Fourier Velocity Encoding (FVE)

- Resolves the distribution of velocities s(v) within each voxel [2]
- Robust to partial-volume effects
- Usually acquired with low spatial resolution
- Multidimensional: *x*,*y*,*v*,*t*
 - Considerably higher SNR
 - Longer scan time

[2] Moran PR. MRI 1:197, 1982.

FVE Signal Model

- PC provides two spatial maps: m(x,y) and $v_0(x,y)$
- FVE provides the spatial-velocity distribution: s(x,y,v)
- If spatial resolution is sufficiently high:

$$s(x, y, v) = \begin{bmatrix} m(x, y) \times \delta(v - v_0(x, y)) \end{bmatrix} * \operatorname{sinc} \left(\frac{v}{\Delta v} \right)$$

magnitude
map velocity
map k_v truncation
effect

 Δv : FVE velocity resolution δ : Dirac's delta function

Spiral FVE (sFVE)

- Rapid method for FVE-based velocitydistribution measurement [3,4]
- Fully localized, time-resolved velocity distributions in a short breath-hold [3]
- Accurately captures peak velocities in jets [5]
- Useful in estimating wall shear rate [6]

pulse sequence

[3] Carvalho JLA and Nayak KS. MRM 57:639, 2007.
[4] Lyra-Leite et al. ISMRM 21:1352, 2013.
[5] Steeden JA et al. MRM 67:1538, 2012.
[6] Carvalho JLA et al. MRM 63:1537, 2010.

Spiral FVE Signal Model

- *k*-space truncation:
 - circular along $k_x k_y$: jinc($r/\Delta r$)
 - rectangular along k_v : sinc($v/\Delta v$)

 Δv : FVE velocity resolution Δr : FVE spatial resolution

Spiral FVE Signal Model

- *k*-space truncation:
 - circular along $k_x k_y$: jinc($r/\Delta r$)
 - rectangular along k_v : sinc($v/\Delta v$)
- s(x,y,v), may be modeled from $v_0(x,y)$ as [6]:

$$s(x, y, v) = \begin{bmatrix} m(x, y) \times \operatorname{sinc}\left(\frac{v - v_0(x, y)}{\Delta v}\right) \end{bmatrix} * \operatorname{jinc}\left(\frac{\sqrt{x^2 + y^2}}{\Delta r}\right)$$

$$k_v \operatorname{truncation}_{\text{effect}} k_x - k_y \operatorname{truncation}_{\text{effect}}$$

 Δr : FVE spatial resolution

 Λv

[6] Carvalho JLA, et al. MRM 63:1537, 2010.

Estimating v(x,y) from s(x,y,v)

• Spatial blurring effects are reduced using the deconvolution algorithm proposed in ref. [7], and we obtain: $\left[\left(y - y_0(x, y) \right) \right]$

$$\tilde{s}(x, y, v) \approx \left[m(x, y) \times \operatorname{sinc}\left(\frac{v - v_0(x, y)}{\Delta v}\right) \right]$$

• If a high-resolution spin-density map, $\tilde{m}(x,y)$, is available, the velocity \tilde{v} at position (x_0,y_0) may be estimated from $\tilde{s}(x,y,v)$ as:

$$\tilde{v}(x_0, y_0) = \underset{\mu}{\operatorname{argmin}} \left\| \frac{\tilde{s}(x_0, y_0, v)}{\tilde{m}(x_0, y_0)} - \operatorname{sinc}\left(\frac{v - \mu}{\Delta v}\right) \right\|_2$$

[7] Krishnan D and Fergus R. Proc 24th NIPS, 2009.

Experiment 1: Proof of Concept

 Simulated sFVE data (1 mm spatial resolution) was derived from a parabolic-flow numerical phantom (0.33 mm spatial resolution)

Proof of Concept: Results

- Estimated velocity map was accurate within 3% for the vast majority of the pixels
- Important result!

 (carotid flow distant to bifurcation is approximately parabolic)

Experiment 2: Phantom Demonstration

- Simulated sFVE data lacksquare
 - 1 mm spatial resolution
 - Derived from PC data (0.33 mm spatial resolution)
 - Measured at the bifurcation of a carotid flow phantom
- Pulse sequence: cine gradient-echo 2DFT PC sequence
 - 10 NEX; 80 cm/s Venc

spin-density map

carotid flow phantom

PC (0.33 mm) sFVE (1 mm)

Phantom Demonstration: Results

- Hi-res velocity maps estimated from low-res sFVE are qualitatively similar
- Spatial deconvolution (FVE-domain deblurring) improved accuracy

Conclusions

 Possible to obtain reasonably accurate hi-res velocity maps from low-res FVE distributions

• Future work:

- Verify:
 - Higher SNR than PC?
 - Robust to partial voluming?
- Use FVE for driving CFD of carotid flow [8]

Thank you!

vrispoli@pgea.unb.br

Financial Support: - DPP/UnB - ISMRM