

Finite-Element Computational Fluid Dynamics Simulations Constrained by Phase-Contrast MRI Data

Giordanno B. F. Borges¹, Ivan R. Siqueira², Joao L. A. Carvalho³, Jon-Fredrik Nielsen⁴, and Vinicius C. Rispoli⁵ (*vrispoli@pgea.unb.br*)

¹Department of Mathematics, University of Brasilia, Brasilia, Brazil, ²Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Brazil, ³Department of Electrical Engineering, University of Brasilia, Brazil, ⁴Biomedical Engineering, University of Brasilia, Brazil, ⁴Biomedical Engineering, University of Brasilia, Brazil, ⁸Department of Electrical Engineering, University of Brasilia, Brazil, ⁹Department, Brazil, ⁹Department, Brazil, ⁹Department, Brazil, ⁹Department, Brazil, ¹Biomedical Engineering, University of Brasilia, Brazil, ⁹Department, Brazil, ¹Biomedical Engineering, University of Brasilia, Brazil, ¹Biomedical Engineering, University, ¹Biomedical Engineering, ¹Biomedical Engineering

Introduction

- Hybrid PC-MRI/CFD solvers [1-4] can be used to:
 reduce noise in PC-MRI data;
- enforce PC-MRI data to satisfy fluid physics equations;
- generate CFD-MRI data that is closer to PC-MRI than pure CFD.
- On the literature, hybrid solvers' fluid mechanics equations are solved using:

 finite volume method and SIMPLER algorithm [1,3-4];
 commercial software and synthetic data [2].

 Goal: implement a free hybrid PC-MRI/CFD solver based on Finite Element Method (FEM)*.
 FEM is more flexible with complex geometries and boundary conditions [5];
 FEM allows higher order approximations [5].

Numerical Procedure

Numerical procedure is based on the solution of the PDE-constrained optimization

 $\min_{\mathbf{u}}\frac{1}{2}\int_{\Omega}|\mathbf{u}-\mathbf{u}_{\mathrm{mri}}|^{2}d\Omega,$

subject to the steady incompressible 2D Navier-Stokescontinuity system of equations [5]

 $\rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mu \Delta \mathbf{u} \text{ and } \nabla \cdot \mathbf{u} = \mathbf{0}.$

Equations were discretized using the method of weighted residuals, which yelds a linear system [5]

Figure 1: Pulsatile carotid flow phantom (Phantoms by Design, Inc., Bothell, WA).

Results and discussion

- Constrained solution (Fig.2(c)) is qualitatively closer to the measured PC-MRI data (Fig.2(a)) than pure CFD (Fig.2(b)).
- This behavior is quantitatively confirmed using the signal-to-error ratio (SER), considering measured PC-MRI as "ground truth":
 - ► pure CFD solution provided <u>4.53dB SER</u>;
 - ► MRI-constrained CFD solution provided 8.17dB SER;
- In Fig.1(b), the misbehavior of the solution near the bifurcation is caused by the difference between the Navier-Stokes equation's diffusive term (Δ²u) and the convective term (u · ∇u), requiring a numerical stabilization term.

x 0 velocity (cm/s) 50 (c)

Figure 2: Velocity component on x direction: (a) measured PC-MRI data; (b) pure CFD solution ($\lambda = 0$); and (c) CFD solution constrained by PC-MRI ($\lambda = 10^{-2}$).

$$Jc = -R$$
,

J is the residuals' Jacobian matrix and **R** is the residuals vector.

Simulated velocity field c is then obtained solving the quadratic minimization problem

 $\min_{\mathbf{c}} \frac{1}{2} |\mathbf{J}\mathbf{c} + \mathbf{R}|_2^2 + \frac{\lambda}{2} |\mathbf{S}\mathbf{c} - \mathbf{u}_{mri}|_2^2,$

where **S** is an adjustment matrix, since MRI measurements are acquired on a coarse grid.

Experiments

- AD PC-MRI data acquired for a flow phantom (Fig.1)
 32-channel head coil; resolution: 0.5 × 0.5 × 1.0 mm³; FOV: 4.0 × 3.5 × 5.0 cm³; NEX: 10; Venc: 50 cm/s; scan time: 5 hours.
- ► Two experiments were performed:
- Combined solution with x and y PC-MRI velocity components constraining CFD for different λ;
- Combined solution with x and y PC-MRI velocity components corrupted by 7.5cm/s Gaussian noise constraining CFD for different λ;

- On the denoising experiment, the constrained solution (Fig.3(c)) corrected the noisy PC flow (Fig.3(b)), leading to a solution that is very similar to the original PC-MRI data.
- This was quantitatively confirmed using the signal-tonoise ratio (SNR), considering PC-MRI as "ground truth":
 - ▶ noisy PC-MRI has <u>5.39dB SNR</u>;
- ▶ noisy MRI-constrained CFD solution provided <u>6.86dB SNR</u>.

Conclusion and Future Works

- Hybrid solutions are closer to PC-MRI than pure CFD solution satisfying fluid equations.
- ► Works as a noise reduction technique.
- Convergence of hybrid solution is faster than pure CFD solution.
- FW: implementation of a stabilization term, in order to avoid numerical errors [6].
- FW: was proposed in [4] an undersampled PC-MRI reconstruction method with synthetic CFD data as a pri-

Figure 3: Vector field visualization: (a) measured PC-MRI data; (b) PC-MRI corrupted by Gaussian noise (standard deviation: 7.5cm/s); and (c) CFD solution constrained by noisy PC-MRI ($\lambda = 10^{-3}$).

References

 Rispoli V, et al. ISMRM 22:2490, 2014.
 Guerra T, et al. Int J Nonlinear Mech 64:57, 2014.
 Rispoli V, et al. Biomed Eng Online 14:110, 2015.
 Christodoulou A, et al. ISMRM 23:2735, 2015.
 Gresho PM et al. Incompressible Flow and the Finite Element Method, 1998.
 Donea J et al. Finite Element Method for Flow Problems, 2003.
 MATLAB code avaliable at: http://bit.do/vrispoli

Support

► Fundação de Apoio à Pesquisa do Distrito

ori information. It is possible to adapt the method in

[4], so the reconstruction can use N-S equations as a

constrain for the l_1 -minimization problem.

