Universidade de Brasília

Estimating Highly Accurate Velocity Maps From FVE MRI Data Using a PDE-Constrained Optimization (#2930)

Vinicius C. Rispoli¹ (*vrispoli@pgea.unb.br*), João L. A. Carvalho², Cristiano J. Miosso¹, Fabiano A. Soares¹, Giordanno B. Borges¹ and Ivan R. Siqueira³

¹Engineering College at Gama, University of Brasilia, Brasilia, Brazil, ²Department of Electrical Engineering, University of Brasilia, Brasilia, Brazil, ³Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States

- ► Fourier velocity encoding (FVE) [1] provides considerably higher SNR than phase contrast (PC), and is robust to partial-volume effects.
- ► FVE data can be acquired fast with low spatial resolution.
- FVE provides the velocity distribution associated with a large voxel, but does not directly provides a velocity map.
- Previous methods for estimating velocity maps from FVE distributions were already proposed [2].
- **Goal**: proposed a better method for estimate highspatial-resolution velocity maps from low-resolution FVE data based on the FVE signal model and a flow

Figure 1: Pulsatile carotid flow phantom (Phantoms by Design, Inc., Bothell, WA).

Gama
GRUPO de Processamento de Sinais e Imagens Médicas

(a)	(b)	(c)
	. 🥮	· 🧰
	⁰ velocity (cm/s) ⁵⁰	

Figure 2: Validation experiment using a pulsatile carotid flow phantom: (a) reference phase contrast velocity map, measured at the phantom's bifurcation; (b) velocity map estimated from the simulated low-resolution spiral FVE data with $\Delta r = 1$ mm spatial resolution with the proposed method (and associated error percentages); and (c) velocity map estimated from the simulated low-resolution spiral FVE data with $\Delta r = 1$ mm spatial resolution with the method proposed in Ref.[2] (and associated error percentages).

physics model

Methods

FVE spatial-velocity distribution, $\hat{s}(x, y, v)$, model is given by [3]:

$$\hat{s}(x, y, w) = \left[m(x, y) \times \operatorname{sinc}\left(\frac{v - v_z(x, y)}{\Delta v}\right)\right] * \psi(x, y)$$

► Navier–Stokes equation gives the blood flow model [4]:

$$p\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v}.$$

Velocity map can be estimated from a measured FVE dataset through the PDE-constrained optimization problem:

$$\min_{v_z} \sum_{k=1}^{K} \int_{\Omega} \left\{ f(\mathbf{x}, v_k) - \left[m(\mathbf{x}) \times \operatorname{sinc} \left(\frac{v_k - v_z}{\Delta v} \right) \right] * \psi(\mathbf{x}) \right\}^2 dA$$

subject to

 $\rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \boldsymbol{p} + \mu \nabla^2 \mathbf{v}.$

N-S equations were discretized using the method of weighted residuals yelding a linear system [5,6]

$$Jc = -R$$

J is the residuals' Jacobian matrix and **R** is the residuals vector.

Numerically the PDE-contrained optimization problem can be written as:

$$\min_{\mathbf{v}_z} \sum_{k=1}^{K} \left\| \mathbf{f}_k - \left[\mathbf{m} \times \operatorname{sinc} \left(\frac{\mathbf{v}_k - \mathbf{v}_z}{\Delta \mathbf{v}} \right) \right] * \boldsymbol{\psi} \right\|_{c}^{2}$$

Results and discussion

- The velocity maps estimated from simulated low spatial resolution FVE data (Figs.(2)-(3)b and Figs.(2)-(3)c) are very similar qualitatively to the reference map (Figs.(2)-(3)a).
- At first glance can be noted that the velocity map obtained using the previous method previously proposed[2] (Figs.(2)-(3)c) is more similar to the acquired PC-MRI velocity map (Figs.(2)-(3)a) than the proposed method (Figs.(2)-(3)b).
- However the error images show that the velocity map obtained using the technique proposed in this work (Figs.(2)-(3)b) was more accurate than the one obtained with the previous method[2] (Figs.(2)-(3)c) for both resolution.
- Quantitative comparison was also performed based on the signal-to-error ratio (SER) calculated (in decibels) as:

$$\operatorname{SER} = 10 \log_{10} \left(\frac{\sum_{i,j} \left\| v_{\mathrm{pc}}(i,j) \right\|^2}{\sum_{i,j} \left\| v_e(i,j) - v_{\mathrm{pc}}(i,j) \right\|^2} \right),$$

where $v_{\rm pc}$ is the acquired phase contrast velocity map used as the ground-truth signal and v_e is the estimated velocity map.

- ▶ Measured SER, relative to the PC reference, was: ▶ Proposed method 50.64 dB and 44.63 dB for Δ r = 1 mm and $\Delta r = 2$ mm resolution, respectively.
 - ▶ Previously proposed[2] method 32.02 dB and 28.68 dB, for $\Delta r = 1$ mm and $\Delta r = 2$ mm resolution, respectively.

Figure 3: Validation experiment using a pulsatile carotid flow phantom: (a) reference phase contrast velocity map, measured at the phantom's bifurcation; (b) velocity map estimated from the simulated low-resolution spiral FVE data with $\Delta r = 2 \text{ mm}$ spatial resolution with the proposed method (and associated error percentages); and (c) velocity map estimated from the simulated low-resolution spiral FVE data with $\Delta r = 2 \text{ mm spatial}$ resolution with the method proposed in Ref.[2] (and associated error percentages).

References

[1] Moran PR. MRI 1:197, 1982. [2] Rispoli VC, et al. ISMRM 21:68, 2013. [3] Carvalho JLA, et al. MRM 63:1537, 2010. [4] Chorin AJ, et al. A Mathematical Introduction to Fluid Mechanics, 2000. [5] Gresho PM, et al. Incompressible Flow and the Finite Element Method, 1998. [6] Borges GB, et al. ISMRM 24: 2592, 2016.

۳Z ΔV $||\ell_2|$ $k{=}1$ $^{||}$ $+\lambda \|\mathbf{J}[\mathbf{v}_x;\mathbf{v}_z;\mathbf{p}]-\mathbf{r}\|_{\ell_2}^2.$

Experiments

► One experiment was performed:

- (1) Spiral FVE data was simulated from acquired PC data for $\Delta r = 1 mm$ and $\Delta r = 2 mm$;
- (2) then the optimization was solved;
- (3) resultant velocity map was compared with the acquired PC velocity map
- ► 4D PC-MRI data acquired for a flow phantom (Fig.1)
 - ▶ 32-channel head coil; resolution: $0.5 \times 0.5 \times 1.0 \text{ mm}^3$; FOV: $4.0 \times 3.5 \times 5.0 \text{ cm}^3$; NEX: 10; Venc: 50 cm/s; scan time: 5 hours.

► CFD assumptions:

• $\rho = 1100 \text{ kg/m}^3$; $\mu = 0.005 \text{ Pa} \cdot \text{s}$; voxel size $1.0 \times 0.5 \text{ mm}^2$; elements Q_2P_{-1} ; no-slip boundary condition.

Conclusion

- Was proposed a novel method for estimating highresolution velocity maps from low-resolution FVE measurements.
- ▶ This method is based on a PDE- constrained optimization that incorporates both the FVE signal model and the Navier-Stokes equation.
- Results showed that it is possible to obtain highly accurate velocity maps from the FVE distributions.
- ► These good results are important, meaning that FVE may potentially be a substitute of PC imaging, since it contains both a velocity distribution and also velocity map with considerably higher SNR and robustness to partial voluming.

[7] Wang Y, et al. SIIMS, 1:248, 2008.

Support

- ► Fundação de Apoio à Pesquisa do Distrito Federal: Edital FAP-DF 01/2018
- Universidade de Brasília Engineering College at Gama

Joint Annual Meeting ISMRM-ESMRMB – Paris – 16-21 June, 2018

vrispoli@pgea.unb.br