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ABSTRACT

The most common strategies for reconstructing MRges acquired on an
arbitrary k-space trajectory are the gridding atpon and the direct Fourier transform
(DrFT) method. In gridding, the use of the FFT gg&in computational efficiency, but
the reconstruction accuracy varies according taldresity weighting and the convolution
kernel being used. The DrFT method does not reguaenvolution kernel, but it is very
time-consuming. Recently, a few new algorithms hbgen proposed to accelerate the
DrFT, including the generalized fast Fourier transf (GFFT) algorithm and the equal-
phase line (EPL) algorithm. In this work, these talgorithms are compared to the
gridding and DrFT methods in terms of reconstructeccuracy and computational
efficiency. The goal here is not only verify theliday of these methods, but also gain
understanding on the problem of non-Cartesian moaction by describing and
implementing these four algorithms.

INTRODUCTION

In order to reduce the scan-time, many alternaticeshe 2DFT acquisition
method have been proposed. Such sequences aremempézl by sampling k-space in
trajectories that often do not allow the acquisitem a Cartesian grid. Trajectories such
as the spiral, rosette, ROSE, Liassajou, Nortomd sinusoidal are among the most
commonly used ones.

However, one of the prices for the reduction ianstime is increased complexity
during the reconstruction phase. When k-space idagampled on a Cartesian grid, the
image can be reconstructed simply by using a 2D-DFke FFT algorithm is fast and
efficient, thus reconstruction complexity is notpeoblem. On the other hand, non-
Cartesian reconstruction can be very slow, sineeRRT can’t be directly applied. The
most common strategies for reconstructing MR imagegpiired on an arbitrary k-space
trajectory are the gridding algorithm and the difeaurier transform (DrFT) method.

In the gridding algorithm [1], the raw data is fivgeighted to compensate for the
nonuniform sampling density, then convolved witbamvolution kernel and resampled
onto a Cartesian grid, and finally transformed iim@age space using the FFT. The use of
the FFT yields in computational efficiency, but theconstruction accuracy varies
according to the density weighting and the convotutkernel being used. This
sometimes results in a reconstruction that is s@cgurate as it might be expected [2].

In the DrFT method [3] the reconstruction is siynpl Fourier summation of the
raw data weighted with a density compensation fandDCF). The DrFT method has a
few advantages over the gridding approach. Sina#oés not require a convolution
kernel, one source of degradation is excluded. Mae the MR image can be
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dynamically reconstructed by updating the image\etiene a new k-space data point is
acquired. However, the DrFT is very time-consumimgich is a major disadvantage.
Recently, a few new algorithms have been propaseddelerate the DrFT, including the
generalized fast Fourier transform (GFFT) algoritmd the equal-phase line (EPL)
algorithm.

The GFFT algorithm [4] is a 2D extension of anaaiipm for the computation of
a 1D fast Fourier transform of nonuniformly-spacgata samples [5]. The gain in
computational efficiency is related to the use ofFBT to compute most of the
calculations required in the DrFT. However, clasgpection of the GFFT reveals it to be
equivalent to a gridding method with a Gaussianvotution kernel. Thus, it might be
considered as a non DrFT-type reconstruction alyori

On the other hand, the EPL algorithm [2] can rbpiderform the DrFT
reconstruction by distributing the contributionaflata point to the pixels on the image
according to equal-phase lines (EPLs). All pixels an EPL receive the same
contribution from the data point, and only a fewtlté EPLs are required for all pixels on
the image. Thus, the computational time of the DrEtonstruction is considerably
decreased.

Both the GFFT and EPL are very recent developméntthis work, these two
algorithms are compared to the gridding and DrFThods in terms of reconstruction
accuracy and computational efficiency. The goakhsrnot only verify the validity of
these methods, but also gain understanding on tioblgmn of non-Cartesian
reconstruction by describing and implementing tHese algorithms.

THEORY
GRIDDING RECONSTRUCTION

In the gridding method, each k-space data poirtoisvolved with a gridding
kernel, and that convolution is evaluated at thiaaaht grid points. Thus, the result of
the convolution for each data point is sampled accumulated on the Cartesian grid.
When all k-space samples have been processedvitiseé FFT is used to reconstruct the
MR image.

In k-space, the gridding process can be exprdsgéie equation
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whereM is the k-space being sampl&is the non-Cartesian sampling functi@his the

gridding kernel]ll is the Cartesian sampling function aNd is the Cartesian-sampled k-
space. After the inverse Fourier transform, thisobnees
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The convolution withs(x,y) usually results in sidelobes, which are createel t
the pattern of the samples in k-space. The muagbn byc(x,y) causes apodization,
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which has the undesirable effect of producing sh@dn the image (which can be
compensated in post-processing), but also has ¢kgatile effect of suppressing the
sidelobes. Finally, the Cartesian-sampling causpbcation in image domain. Thus, the
sidelobes may interefere as aliasing in the recocistd image. This problem can be
avoided or reduced simply by using an oversampled. ¢gn practice, a 2X grid is
commonly used, mostly because of the desire tahes@ext larger power-of-two FFT.
However, by using the FFTW package available fiftm.org, computational time and
memory requirements can be reduced by using a amailbn-power-of-two
oversampling. Though, there are tradeoffs betwéensize and shape of the gridding
kernel, the amount of aliasing that can be tolekaé@d reconstruction speed. The nature
of these tradeoffs is a current research topic. [1]

Another issue with gridding (and all the other r@artesian reconstruction
methods approached in this work) is the sample igegempensation. Because the
sampling spacing is nonuniform, the area of k-spassociated with each sample is
related to the pattern in which the data pointsdis&ibuted along k-space. During image
reconstruction, the contribution of a raw data sienwhich is associated to a large k-
space area should be stronger than the contribafianrsample associated with a smaller
area. If proper density weighting is not applidsart regions of k-space with a large
concentration of data samples would have an overastd contribution to the
reconstructed images, as during the gridding psycese would have a large
concentration of convolved kernels in that areagantrast to a small concentration of
kernels in a low density region. This can be cde@dn two waysprecompensation and
postcompensation.

On precompensation, each raw data sample is mettiply its associated weight
before gridding is applied. On the other hand, gmspensation is done after the
gridding process, by multiplying the Cartesian-ggainples by a weighting matrix. This
weighting matrix can be easily estimated by griddanunity data vector. The result of
this operation is a matrix that reveals the comegioh of non-Cartesian raw data
samples on the neighborhood of each Cartesiankgsiphce sample. So, the weighting
factor for each Cartesian-grid sample should beiritierse of the concentration in that
point. However, this method can be used for pospmareation only, so other approaches
should be used for the estimation of the weighfungction for precompensation. For
simple cases, such as spirals, projection and jbissthe density can be computed using
simple geometry. For more complex cases, numeappltoaches can be used for this
estimation [1]. A popular choice is to use the \faoarea [6], which is the area of the
set whose points are closer to the given point tball other k-space sample points.

DrFT RECONSTRUCTION

The direct Fourier transform (DrFT) method is amalgtical approach to the
problem of non-Cartesian reconstruction. Each pieklthe reconstructed image is
computed as the weighted correlation of the sam@éd signal and the phase
modulation function for that pixel [3]. Thus, tmsethod can be expressed as

N-1 _
m(x, y) = D W,M g ") 3)

n=0
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where N is the total number of k-space sampggs the raw data acquired at the point
(un,vn) on the non-Cartesian grid in k-space adis the weight of that point. The same
weighting function used for gridding precompensatan be used here.

However, the DrFT method has a few advantages theemgridding approach.
Since it does not require a convolution kernel, esnarce of degradation is excluded.
Moreover, the MR image can be dynamically recors$tia by updating the image every
time a new k-space data point is acquired. On ttleerohand, there is a major
disadvantage associated with the DrFT. The caloulas very time-consuming, as for
each image pixel we need to compute and accumthlateontribution of each raw data
point.

Recently, a few new algorithms have been proposeatdelerate the DrFT. Two
of those are discussed next: the generalized tagidf transform (GFFT) algorithm and
the equal-phase line (EPL) algorithm.

GFFT ALGORITHM

The generalized fast Fourier transform (GFFT) allgm [4] is a 2D extension of
an algorithm for the computation of a 1D fast Feutransform of nonuniformly-spaced
data samples [5]. For reconstructim{x,y) as anL x L pixel image, the 2D GFFT can be
expressed by the equation
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M0, yg) =€ 0" 3 S re (4)
a=-rL/2b=-rL/2

wherex; = 2rc/L, yg = 2nd/L, r is an “oversampling” factor angl d span in the interval [—
L/2, L/2-1]. This expression may be computed usinglar rL ordinary 2D FFT. This
will give values ofm(x., yq) for c andd outside the interval |2, L/2-1]. Since we are
trying to reconstruct ah x L pixel image, these extra values are discarded.nfdtex t
is defined as

Tab = z ZWn M n F)jlncgjzn (5)
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and parametens k andq are chosen to meet reconstruction accuracy reqaints. The
choice ofr = 2 is sufficient for most practical applicatio@, and according to [5] the
choice ofg = 10 andk = 0.5993 is somewhat optimal. Indegpans in the interval {22,
/2] andn in [0, N-1], whereN is the number of k-space non-Cartesian samigles
which are associated with their respective weiglitsK-space coordinates are mapped
asmy(n) = 2rtu, andwy(n) = 2av,, andu, = [r ox(n)] and A, = [r oy(n)], where p] is here
defined as the closest integemito
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The gain in computational efficiency is relatedhe use of a FFT to compute (4).
The GFFT algorithm gives an approximation to théDQrand the accuracy of this
approximation will be affected by the choice of faameters, k andg. However, close
inspection of the GFFT reveals it to be equivatena gridding method with a Gaussian
convolution kernel [4]. The computation of matrixcan be seen as a Cartesian-grid
sampling of the convolution of the weighted k-spaamples with a separable Gaussian
kernel represented W9,Qn. The FFT transforms the raw data into image donaaich
then the complex exponential in equation (4) carséen as deapodization procedure.
Thus, the GFFT can be thought as a gridding me#imaidthus it might not be considered
a DrFT-type reconstruction algorithm [2].

EPL ALGORITHM

The equal-phase line (EPL) algorithm [2] is prambsis a more efficient way of
computing the DrFT. This algorithm is based onftie that it is not necessary to value
equation (3) for each pixek,f) on the image because the values are the sanie at t
pixels having the same phase>@i,+yv,).

If a group of pixels has the same phase, the satfieghe complex exponential
function in (3) at these pixels are also the sahiels, k-space samph, has the same
contribution to those pixels and (3) can be valoely once for each group. EPL explores
this property in order to increase computationfitieicy.

Pixels of the same phase are on a straight litleemmage space. This line can be
described byu,+yv, = C and is called an equal-phase line (EPL). Sincectimaplex
exponent function is @ periodic, than the set of constants C may be dichito the
interval [0,1). This interval will be divided int® subintervals to form P EPLs, which are
described by

xu, +y, =C =p/P, p=0,1,2 ..P-1 (7)

Thus, according to (3) the contribution of theadabintM,, to a pixel on an EPL,
Cp, is

b,(p) =W,M &' ) (8
Therefore, the EPL algorithm can be implementefbi®vs:

Step 1: setn(x,y) = 0O for all pixels.

Step 2: for a given raw data sample, comje) for all P values of p.

Step 3: for a given pixel (x,y), find C and caktelp = [CP] modP;

Step 4: addbn(p) to m(x,y) andb,(P—) to m(-x,-y). Note thatb,(P) = by(0). Also,

for x = 0, m(x,-y) andm(-x,-y) are the same pixel and therefore the contribation
should not be added twice.

Step 5: go to step 3 for the next pixekaf O.

Step 6: go to step 2 for the next raw data sample.

The accuracy and computational efficiency of th&_Ealgorithm vary with the
number of EPLs. For the DrFT reconstruction ofLlar L image acquired with N raw
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data samples, N k? complex MACs (multiplication and accumulation) aegjuired.
With EPL, this number is reduced to only NPxwhere typical values of P are on the
order of 150 to 200 EPLs for an accurate reconstmuicHowever, the multiplications,
truncations and logical operations required for ithplementation of step 3 slow down
this algorithm and therefore EPL does not run asda gridding or the GFFT. In the light
of its inherently parallel structure, the most @ént way to speed up EPL would be the
use of a multiprocessor system. [2]

MATERIALS AND METHODS

The algorithms described in the previous sectisage implemented in Matl&b
and the reconstructed images obtained with eadrigdgy were compared. The raw data
used for the tests is a simulation of an acquisititmne using 6 spiral interleaved
trajectories as illustrated in Fig. 1. A total 1% k-space samples were used on each
reconstruction.
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Fig. 1. K-space trajectory used for the reconsibast Each spiral interleave (presented
in different colors) represents a different TR.

The image was reconstructed as 128 x 128 pixefgyual four algorithms. The
RMS reconstruction signal-to-error ratio for gridgj GFFT and EPL were computed as

> > (mix y) - m(x,y))
SER,. =20log |- S My’

9)
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where the DrFT image (Fig. 2) was used as theeréam(x,y). The images were scaled
to the same range of gray levels by dividing eagklpf each image by the mean value
of that image.

Because the reconstructions were performed in ddatthe computational
efficiency won't be analyzed as a function of pigiag time, but as the number of
complex operations required for the reconstructimtess.

For gridding, a 2X Cartesian-grid along with a 2&parable triangular
(pyramidal) kernel was used for its simplicity. practice, a Kaiser-Bessel convolution
kernel is being widely used for better reconstarctccuracy [4].

For the GFFT algorithm, the parameters were chasen= 2,q = 10 andk =
0.5993, as these values seem to optimize the reggotisn accuracys. computational
efficiency trade-off [4].

For the EPL algorithm, different numbers of EPLey&used in order to evaluate
the trade-off between reconstruction accuracy amdpeitational efficiency.

RESULTS

The reconstructed images as well the respectigenstruction error for each
method are shown in Figs. 3-16. The error imagee lbe@en multiplied by a factor of 8
in order to increase visibility. There is some sation in the edges of Fig. 4 due to this
operation, but it does not affect that other ermrages at all. The maximum
reconstruction error for the GFFT reconstructiors waly 0.0041 gray levels (much less
than the image quantization precision of 1 gragllethus the corresponding error image
(Fig. 6) is blank.

Fig. 2. DrFT reconstructed image (reference)
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Fig. 6. GFFT reconstruction error (x8)

Fig. 7. EPL reconstructed image (P=25) Fig. 8. EPL reconstruction error for P = 5 (x8)
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Fig. 9. EPL recostructed image (P=50) Fig.l. L reconstuction eror or P= 0 (x8)
g d 4 i

Fig. 11. EPL recostructed image (P=100)Fig. 12. EPL reconstruction error for P = 100 (x8)
< RN

Fig. 13. EPL reconstructed image (P=150)Fig. 14. EPL reconstruction error for P = 150 (x8)



10

Fig. 15. EPL reconstructed image (P=200)Fig. 16. EPL reconstruction error for P = 200 (x8)

Using equation (9), the reconstruction error wasleated. The results are
presented in Table 1, along with the maximum rewaoson error for each
reconstruction. From these results we can plotraecwhich presents the reconstruction
accuracy as a function of the number of EPLs (E1J.

Table 1 — Signal-to-error ratio (SER) and maximurnorefor the different reconstructions

Method SER (in dB) max. error (in gray levels)
Gridding 27.1 72

GFFT 115.3 0.0041

EPL (P=25) 28.2 64

EPL (P=50) 34.1 31

EPL (P=100) 40.2 14

EPL (P=150) 43.5 10

EPL (P=200) 46.2 7
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Fig. 17. Signal-to-error as a function of the numiiieEPLs used for the reconstruction
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DISCUSSION

The performance of the gridding algorithm was veopr compared to the other
methods in terms of reconstruction accuracy. Theae for this is probably the choice of
a very simplistic pyramidal kernel instead of thelely used Kaiser-Bessel kernel. The
signal-to-error ratio for gridding was as low ae tine obtained using only 25 EPLs for
the DrFT approximation. However, with gridding #or is concentrated in the edges of
the image, while with EPL the error is spread aud does not show any resemblance
with the actual image. Another peculiar observaabout the EPL algorithm is that the
signal-to-error ratio seems to be increased by f#ctor of approximately 6 dB every
time the number of EPLs is doubled.

The GFFT algorithm has revealed itself extremelguaate as the reconstruction
error is irrelevant when compared to the DrFT rastaction. However, while there
seems to be a large difference of reconstructimuracy between the GFFT and EPL
when evaluating the numerical results, the EPL nstacted images show that the
reconstruction error is quite unnoticeable, evernvhsing as little as 50 EPLs. This is
probably due to the fact that the EPL reconstractoror is spread along the whole
image and seems to keep no visible relation wighatttual image.

In terms of computational efficiency, these methathn be compared by
evaluating the number of operations of complex iplidation (OCM) and operations of
real multiplication (ORM). In fact, there are foORMs in one OCM, so we can compute
the ORMs as being 1/4 OCM each. Table 2 presemsnttimber of OCMs in the
approached methods for a ¥2®age acquired with 9216 raw data points.

Table 2 - Number of operations required for eaclomstruction method

Mehtod Required operations [2] [4] Total of OCMsH128)
Gridding N+ 36L% + 4L%logy(2.L) 1M

DrFT (3/2).N.(1 +.9) 227 M

GFFT ¢ = 2,9 = 10) F.L.log(r.L)+r.L.q] 2 16 M

EPL (P = 150) N.[1 +P + (3/8).L7 58 M

Both gridding and GFFT algorithms run very quicklye to the FFT. Actually,
GFFT can be made even faster at the cost of reocotish accuracy, by choosing a
smallerg. The operations required in step 3 of EPL slow mldhs algorithm, and for this
reason it is not as fast one might expect, evansinall number of EPLs is used. In fact,
the number of EPLs has little weight in the finahmber of OCMs. Nevertheless, it is still
four times faster than DrFT and has the advantag#éawing the image to be updated as
each non-Cartesian k-space sample is acquirede whdridding and GFFT, all raw data
samples must be acquired before applying the FFT.

CONCLUSIONS

The performance of the gridding algorithm was veopr compared to the other
methods in terms of reconstruction accuracy. Theae for this is probably the choice of
a very simplistic pyramidal kernel instead of tha&lely used Kaiser-Bessel kernel. In
EPL the signal-to-error ratio seems to be incredgedf a factor of approximately 6 dB
every time the number of EPLs is doubled. Sincentimaber of EPLs has little weight on
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the computational efficiency, it can be increasedorder to improve reconstruction
accuracy. The GFFT algorithm has revealed itseltreexely accurate as the
reconstruction error is irrelevant when comparedh® DrFT reconstruction. However,
while there seems to be a large difference of reitoation accuracy between the GFFT
and EPL when evaluating the numerical results, ERbnstructed images show that the
reconstruction error is quite unnoticeable, evernvhsing as little as 50 EPLs. This is
probably due to the fact that the EPL reconstractoror is spread along the whole
image and seems to keep no visible relation t@theal image. Both gridding and GFFT
algorithms run very quickly due to the FFT. EPIsliswer, but it is still four times faster
than DrFT and has the advantage of allowing thegemto be updated as each non-
Cartesian k-space sample is acquired.
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