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ABSTRACT 
 

The most common strategies for reconstructing MR images acquired on an 
arbitrary k-space trajectory are the gridding algorithm and the direct Fourier transform 
(DrFT) method. In gridding, the use of the FFT yields in computational efficiency, but 
the reconstruction accuracy varies according to the density weighting and the convolution 
kernel being used. The DrFT method does not require a convolution kernel, but it is very 
time-consuming. Recently, a few new algorithms have been proposed to accelerate the 
DrFT, including the generalized fast Fourier transform (GFFT) algorithm and the equal-
phase line (EPL) algorithm. In this work, these two algorithms are compared to the 
gridding and DrFT methods in terms of reconstruction accuracy and computational 
efficiency. The goal here is not only verify the validity of these methods, but also gain 
understanding on the problem of non-Cartesian reconstruction by describing and 
implementing these four algorithms. 
 
INTRODUCTION 
 

In order to reduce the scan-time, many alternatives to the 2DFT acquisition 
method have been proposed. Such sequences are implemented by sampling k-space in 
trajectories that often do not allow the acquisition on a Cartesian grid. Trajectories such 
as the spiral, rosette, ROSE, Liassajou, Norton’s and sinusoidal are among the most 
commonly used ones. 
 However, one of the prices for the reduction in scan time is increased complexity 
during the reconstruction phase. When k-space data is sampled on a Cartesian grid, the 
image can be reconstructed simply by using a 2D-DFT. The FFT algorithm is fast and 
efficient, thus reconstruction complexity is not a problem. On the other hand, non-
Cartesian reconstruction can be very slow, since the FFT can’t be directly applied. The 
most common strategies for reconstructing MR images acquired on an arbitrary k-space 
trajectory are the gridding algorithm and the direct Fourier transform (DrFT) method. 

In the gridding algorithm [1], the raw data is first weighted to compensate for the 
nonuniform sampling density, then convolved with a convolution kernel and resampled 
onto a Cartesian grid, and finally transformed into image space using the FFT. The use of 
the FFT yields in computational efficiency, but the reconstruction accuracy varies 
according to the density weighting and the convolution kernel being used. This 
sometimes results in a reconstruction that is not as accurate as it might be expected [2]. 
 In the DrFT method [3] the reconstruction is simply a Fourier summation of the 
raw data weighted with a density compensation function (DCF). The DrFT method has a 
few advantages over the gridding approach. Since it does not require a convolution 
kernel, one source of degradation is excluded. Moreover, the MR image can be 
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dynamically reconstructed by updating the image every time a new k-space data point is 
acquired. However, the DrFT is very time-consuming which is a major disadvantage. 
Recently, a few new algorithms have been proposed to accelerate the DrFT, including the 
generalized fast Fourier transform (GFFT) algorithm and the equal-phase line (EPL) 
algorithm. 
 The GFFT algorithm [4] is a 2D extension of an algorithm for the computation of 
a 1D fast Fourier transform of nonuniformly-spaced data samples [5]. The gain in 
computational efficiency is related to the use of a FFT to compute most of the 
calculations required in the DrFT. However, close inspection of the GFFT reveals it to be 
equivalent to a gridding method with a Gaussian convolution kernel. Thus, it might be 
considered as a non DrFT-type reconstruction algorithm. 
 On the other hand, the EPL algorithm [2] can rapidly perform the DrFT 
reconstruction by distributing the contribution of a data point to the pixels on the image 
according to equal-phase lines (EPLs). All pixels on an EPL receive the same 
contribution from the data point, and only a few of the EPLs are required for all pixels on 
the image. Thus, the computational time of the DrFT reconstruction is considerably 
decreased. 
 Both the GFFT and EPL are very recent developments. In this work, these two 
algorithms are compared to the gridding and DrFT methods in terms of reconstruction 
accuracy and computational efficiency. The goal here is not only verify the validity of 
these methods, but also gain understanding on the problem of non-Cartesian 
reconstruction by describing and implementing these four algorithms. 
 
THEORY 
 
GRIDDING RECONSTRUCTION 
 
 In the gridding method, each k-space data point is convolved with a gridding 
kernel, and that convolution is evaluated at the adjacent grid points. Thus, the result of 
the convolution for each data point is sampled and accumulated on the Cartesian grid. 
When all k-space samples have been processed, the inverse FFT is used to reconstruct the 
MR image. 
 In k-space, the gridding process can be expressed by the equation 
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where M is the k-space being sampled, S is the non-Cartesian sampling function, C is the 
gridding kernel, III is the Cartesian sampling function and M̂  is the Cartesian-sampled k-
space. After the inverse Fourier transform, this becomes 
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The convolution with s(x,y) usually results in sidelobes, which are created due to 

the pattern of the samples in k-space. The multiplication by c(x,y) causes apodization, 
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which has the undesirable effect of producing shading in the image (which can be 
compensated in post-processing), but also has the desirable effect of suppressing the 
sidelobes. Finally, the Cartesian-sampling causes replication in image domain. Thus, the 
sidelobes may interefere as aliasing in the reconstructed image. This problem can be 
avoided or reduced simply by using an oversampled grid. In practice, a 2X grid is 
commonly used, mostly because of the desire to use the next larger power-of-two FFT. 
However, by using the FFTW package available from fftw.org, computational time and 
memory requirements can be reduced by using a smaller non-power-of-two 
oversampling. Though, there are tradeoffs between the size and shape of the gridding 
kernel, the amount of aliasing that can be tolerated, and reconstruction speed. The nature 
of these tradeoffs is a current research topic. [1] 

Another issue with gridding (and all the other non-Cartesian reconstruction 
methods approached in this work) is the sample density compensation. Because the 
sampling spacing is nonuniform, the area of k-space associated with each sample is 
related to the pattern in which the data points are distributed along k-space. During image 
reconstruction, the contribution of a raw data sample which is associated to a large k-
space area should be stronger than the contribution of a sample associated with a smaller 
area. If proper density weighting is not applied, than regions of k-space with a large 
concentration of data samples would have an overestimated contribution to the 
reconstructed images, as during the gridding process, we would have a large 
concentration of convolved kernels in that area, in contrast to a small concentration of 
kernels in a low density region. This can be corrected in two ways: precompensation and 
postcompensation. 

On precompensation, each raw data sample is multiplied by its associated weight 
before gridding is applied. On the other hand, postcompensation is done after the 
gridding process, by multiplying the Cartesian-grid samples by a weighting matrix. This 
weighting matrix can be easily estimated by gridding a unity data vector. The result of 
this operation is a matrix that reveals the concentration of non-Cartesian raw data 
samples on the neighborhood of each Cartesian-grid k-space sample. So, the weighting 
factor for each Cartesian-grid sample should be the inverse of the concentration in that 
point. However, this method can be used for postcompensation only, so other approaches 
should be used for the estimation of the weighting function for precompensation. For 
simple cases, such as spirals, projection and Lissajou, the density can be computed using 
simple geometry. For more complex cases, numerical approaches can be used for this 
estimation [1]. A popular choice is to use the Voronoi area [6], which is the area of the 
set whose points are closer to the given point than to all other k-space sample points. 
 
DrFT RECONSTRUCTION 
 
 The direct Fourier transform (DrFT) method is an analytical approach to the 
problem of non-Cartesian reconstruction. Each pixel of the reconstructed image is 
computed as the weighted correlation of the sampled FID signal and the phase 
modulation function for that pixel [3]. Thus, this method can be expressed as 
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where N is the total number of k-space samples, Mn is the raw data acquired at the point 
(un,vn) on the non-Cartesian grid in k-space and Wn is the weight of that point. The same 
weighting function used for gridding precompensation can be used here. 

However, the DrFT method has a few advantages over the gridding approach. 
Since it does not require a convolution kernel, one source of degradation is excluded. 
Moreover, the MR image can be dynamically reconstructed by updating the image every 
time a new k-space data point is acquired. On the other hand, there is a major 
disadvantage associated with the DrFT. The calculation is very time-consuming, as for 
each image pixel we need to compute and accumulate the contribution of each raw data 
point.  

Recently, a few new algorithms have been proposed to accelerate the DrFT. Two 
of those are discussed next: the generalized fast Fourier transform (GFFT) algorithm and 
the equal-phase line (EPL) algorithm. 
 
GFFT ALGORITHM 
 
 The generalized fast Fourier transform (GFFT) algorithm [4] is a 2D extension of 
an algorithm for the computation of a 1D fast Fourier transform of nonuniformly-spaced 
data samples [5]. For reconstructing m(x,y) as an L × L pixel image, the 2D GFFT can be 
expressed by the equation 
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where xc = 2πc/L, yd = 2πd/L, r is an “oversampling” factor and c, d span in the interval [–
L/2, L/2–1]. This expression may be computed using an rL × rL ordinary 2D FFT. This 
will give values of m(xc, yd) for c and d outside the interval [–L/2, L/2–1]. Since we are 
trying to reconstruct an L × L pixel image, these extra values are discarded. The matrix τ 
is defined as 
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and parameters r, k and q are chosen to meet reconstruction accuracy requirements. The 
choice of r = 2 is sufficient for most practical applications [4], and according to [5] the 
choice of q = 10 and k = 0.5993 is somewhat optimal. Index j spans in the interval [–q/2, 
q/2] and n in [0, N–1], where N is the number of k-space non-Cartesian samples Mn 
which are associated with their respective weights Wn. K-space coordinates are mapped 
as ωx(n) = 2πun and ωy(n) = 2πvn, and µn = [r ωx(n)] and  λn = [r ωy(n)], where [α] is here 
defined as the closest integer to α. 
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The gain in computational efficiency is related to the use of a FFT to compute (4). 
The GFFT algorithm gives an approximation to the DrFT, and the accuracy of this 
approximation will be affected by the choice of the parameters r, k and q. However, close 
inspection of the GFFT reveals it to be equivalent to a gridding method with a Gaussian 
convolution kernel [4]. The computation of matrix τ can be seen as a Cartesian-grid 
sampling of the convolution of the weighted k-space samples with a separable Gaussian 
kernel represented by PjnQjn. The FFT transforms the raw data into image domain and 
then the complex exponential in equation (4) can be seen as deapodization procedure. 
Thus, the GFFT can be thought as a gridding method and thus it might not be considered 
a DrFT-type reconstruction algorithm [2]. 
 
EPL ALGORITHM 
 
 The equal-phase line (EPL) algorithm [2] is proposed as a more efficient way of 
computing the DrFT.  This algorithm is based on the fact that it is not necessary to value 
equation (3) for each pixel (x,y) on the image because the values are the same at the 
pixels having the same phase 2π(xun+yvn). 
 If a group of pixels has the same phase, the values of the complex exponential 
function in (3) at these pixels are also the same. Thus, k-space sample Mn has the same 
contribution to those pixels and (3) can be valued only once for each group. EPL explores 
this property in order to increase computational efficiency. 
 Pixels of the same phase are on a straight line in the image space. This line can be 
described by xun+yvn = C and is called an equal-phase line (EPL). Since the complex 
exponent function is 2π periodic, than the set of constants C may be limited to the 
interval [0,1). This interval will be divided into P subintervals to form P EPLs, which are 
described by 
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 Thus, according to (3) the contribution of the data point Mn to a pixel on an EPL, 
Cp, is 
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 Therefore, the EPL algorithm can be implemented as follows: 
 
 Step 1: set m(x,y) = 0 for all pixels. 
 Step 2: for a given raw data sample, compute bn(p) for all P values of p. 
 Step 3: for a given pixel (x,y), find C and calculate p = [CP] mod P; 
 Step 4: add bn(p) to m(x,y) and bn(P–p) to m(-x,-y). Note that bn(P) = bn(0). Also, 

for x = 0, m(x,-y) and m(-x,-y) are the same pixel and therefore the contributions 
should not be added twice. 

 Step 5: go to step 3 for the next pixel of x ≥ 0. 
 Step 6: go to step 2 for the next raw data sample. 
 
 The accuracy and computational efficiency of the EPL algorithm vary with the 
number of EPLs. For the DrFT reconstruction of an L × L image acquired with N raw 
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data samples, N × L2 complex MACs (multiplication and accumulation) are required. 
With EPL, this number is reduced to only N × P, where typical values of P are on the 
order of 150 to 200 EPLs for an accurate reconstruction. However, the multiplications, 
truncations and logical operations required for the implementation of step 3 slow down 
this algorithm and therefore EPL does not run as fast as gridding or the GFFT. In the light 
of its inherently parallel structure, the most efficient way to speed up EPL would be the 
use of a multiprocessor system. [2] 
 
MATERIALS AND METHODS 
 
 The algorithms described in the previous sections were implemented in Matlab® 
and the reconstructed images obtained with each algorithm were compared. The raw data 
used for the tests is a simulation of an acquisition done using 6 spiral interleaved 
trajectories as illustrated in Fig. 1. A total of 9216 k-space samples were used on each 
reconstruction. 
 

 
Fig. 1. K-space trajectory used for the reconstructions. Each spiral interleave (presented 
in different colors) represents a different TR. 
 

The image was reconstructed as 128 × 128 pixels using all four algorithms. The 
RMS reconstruction signal-to-error ratio for gridding, GFFT and EPL were computed as 
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where the DrFT image (Fig. 2) was used as the reference m(x,y). The images were scaled 
to the same range of gray levels by dividing each pixel of each image by the mean value 
of that image. 
 Because the reconstructions were performed in Matlab, the computational 
efficiency won’t be analyzed as a function of processing time, but as the number of 
complex operations required for the reconstruction process. 
 For gridding, a 2X Cartesian-grid along with a 2D separable triangular 
(pyramidal) kernel was used for its simplicity. In practice, a Kaiser-Bessel convolution 
kernel is being widely used for better reconstruction accuracy [4]. 
 For the GFFT algorithm, the parameters were chosen as r = 2, q = 10 and k = 
0.5993, as these values seem to optimize the reconstruction accuracy vs. computational 
efficiency trade-off [4]. 
 For the EPL algorithm, different numbers of EPLs were used in order to evaluate 
the trade-off between reconstruction accuracy and computational efficiency. 
 
RESULTS 
 
 The reconstructed images as well the respective reconstruction error for each 
method are shown in Figs. 3-16. The error images have been multiplied by a factor of 8 
in order to increase visibility. There is some saturation in the edges of Fig. 4 due to this 
operation, but it does not affect that other error images at all. The maximum 
reconstruction error for the GFFT reconstruction was only 0.0041 gray levels (much less 
than the image quantization precision of 1 gray level) thus the corresponding error image 
(Fig. 6) is blank. 
 

 
Fig. 2. DrFT reconstructed image (reference) 
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Fig. 3. Gridding reconstructed image 
 

 
Fig. 4. Gridding reconstruction error (x8) 

Fig. 5. GFFT reconstructed image 
 

 
Fig. 6. GFFT reconstruction error (x8) 

Fig. 7. EPL reconstructed image (P=25) 
 

Fig. 8. EPL reconstruction error for P = 25 (x8) 
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Fig. 9. EPL reconstructed image (P=50) 
 

 
Fig. 10. EPL reconstruction error for P = 50 (x8) 

Fig. 11. EPL reconstructed image (P=100) 
 

 
Fig. 12. EPL reconstruction error for P = 100 (x8) 

Fig. 13. EPL reconstructed image (P=150) 
 

Fig. 14. EPL reconstruction error for P = 150 (x8) 
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Fig. 15. EPL reconstructed image (P=200) 
 

Fig. 16. EPL reconstruction error for P = 200 (x8) 
 
 Using equation (9), the reconstruction error was evaluated. The results are 
presented in Table 1, along with the maximum reconstruction error for each 
reconstruction. From these results we can plot a curve which presents the reconstruction 
accuracy as a function of the number of EPLs (Fig. 17). 
 
Table 1 – Signal-to-error ratio (SER) and maximum error for the different reconstructions 
Method SER (in dB) max. error (in gray levels) 
Gridding 27.1 72 
GFFT 115.3 0.0041 
EPL (P=25) 28.2 64 
EPL (P=50) 34.1 31 
EPL (P=100) 40.2 14 
EPL (P=150) 43.5 10 
EPL (P=200) 46.2 7 
 

 
Fig. 17. Signal-to-error as a function of the number of EPLs used for the reconstruction 
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DISCUSSION 
 
 The performance of the gridding algorithm was very poor compared to the other 
methods in terms of reconstruction accuracy. The reason for this is probably the choice of 
a very simplistic pyramidal kernel instead of the widely used Kaiser-Bessel kernel. The 
signal-to-error ratio for gridding was as low as the one obtained using only 25 EPLs for 
the DrFT approximation. However, with gridding the error is concentrated in the edges of 
the image, while with EPL the error is spread out and does not show any resemblance 
with the actual image. Another peculiar observation about the EPL algorithm is that the 
signal-to-error ratio seems to be increased by of a factor of approximately 6 dB every 
time the number of EPLs is doubled. 
 The GFFT algorithm has revealed itself extremely accurate as the reconstruction 
error is irrelevant when compared to the DrFT reconstruction. However, while there 
seems to be a large difference of reconstruction accuracy between the GFFT and EPL 
when evaluating the numerical results, the EPL reconstructed images show that the 
reconstruction error is quite unnoticeable, even when using as little as 50 EPLs. This is 
probably due to the fact that the EPL reconstruction error is spread along the whole 
image and seems to keep no visible relation with the actual image. 
 In terms of computational efficiency, these methods can be compared by 
evaluating the number of operations of complex multiplication (OCM) and operations of 
real multiplication (ORM). In fact, there are four ORMs in one OCM, so we can compute 
the ORMs as being 1/4 OCM each. Table 2 presents the number of OCMs in the 
approached methods for a 1282 image acquired with 9216 raw data points. 
 

Table 2 - Number of operations required for each reconstruction method 
Mehtod Required operations [2] [4] Total of OCMs (L = 128) 
Gridding N + 36.L2 + 4.L2.log2(2.L) 1 M 
DrFT (3/2).N.(1 + L2) 227 M 
GFFT (r = 2, q = 10) [r.L.log(r.L)+r.L.q]  2 16 M 
EPL (P = 150) N.[1 + P + (3/8). L2] 58 M 
 

Both gridding and GFFT algorithms run very quickly due to the FFT. Actually, 
GFFT can be made even faster at the cost of reconstruction accuracy, by choosing a 
smaller q. The operations required in step 3 of EPL slow down this algorithm, and for this 
reason it is not as fast one might expect, even if a small number of EPLs is used. In fact, 
the number of EPLs has little weight in the final number of OCMs. Nevertheless, it is still 
four times faster than DrFT and has the advantage of allowing the image to be updated as 
each non-Cartesian k-space sample is acquired, while in gridding and GFFT, all raw data 
samples must be acquired before applying the FFT. 
 
CONCLUSIONS 
 
 The performance of the gridding algorithm was very poor compared to the other 
methods in terms of reconstruction accuracy. The reason for this is probably the choice of 
a very simplistic pyramidal kernel instead of the widely used Kaiser-Bessel kernel. In 
EPL the signal-to-error ratio seems to be increased by of a factor of approximately 6 dB 
every time the number of EPLs is doubled. Since the number of EPLs has little weight on 
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the computational efficiency, it can be increased in order to improve reconstruction 
accuracy. The GFFT algorithm has revealed itself extremely accurate as the 
reconstruction error is irrelevant when compared to the DrFT reconstruction. However, 
while there seems to be a large difference of reconstruction accuracy between the GFFT 
and EPL when evaluating the numerical results, EPL reconstructed images show that the 
reconstruction error is quite unnoticeable, even when using as little as 50 EPLs. This is 
probably due to the fact that the EPL reconstruction error is spread along the whole 
image and seems to keep no visible relation to the actual image. Both gridding and GFFT 
algorithms run very quickly due to the FFT. EPL is slower, but it is still four times faster 
than DrFT and has the advantage of allowing the image to be updated as each non-
Cartesian k-space sample is acquired. 
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