

Joao L. A. Carvalho

Department of Electrical Engineering, University of Southern California

Previous talks

Non-Cartesian reconstruction (2005)

 \mathcal{C}

 \mathcal{L}

- Spiral FVE (Spring 2006
 - -Aortic flow
 - -Carotid flow
- Accelerated spiral FVE (Fall 2006)

2007?

Clinical applications

- Coronary flow
- Wall-shear stress in carotids
- · Cardiac output

Clinical applications

Coronary flow

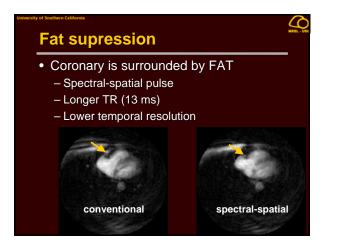
6

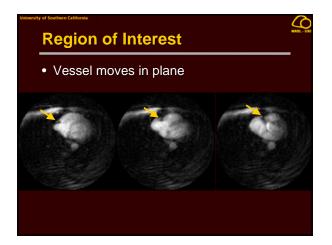
- Wall-shear stress in carotids
- Cardiac output

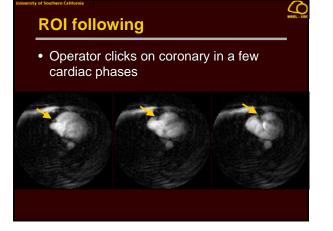
Coronary flow: Motivation Coronary stenosis is most common form of heart disease Kills 500k/year in U.S.

A product addata and a pressure drop Flow quantitation → pressure drop Gold standard: intracoronary Doppler – invasive

Voci 200

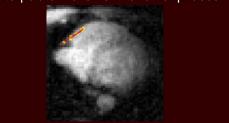



 \mathcal{C}


- Vessel is small
- Phase contrast
 - Partial volume
- FVE
 - Must be fast
 - Needs good spatial localization

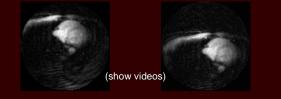
Spiral FVE!!!

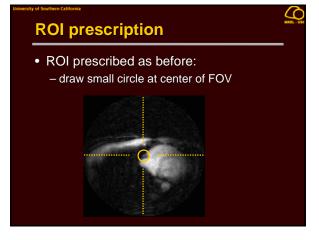
A correction of the end of the e

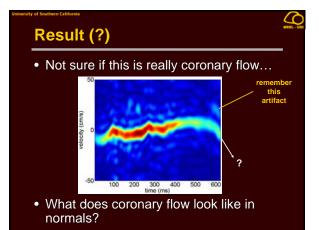


ROI following

- Operator clicks on coronary in a few cardiac phases
- Interpolate movement for other phases

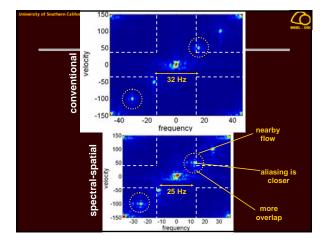


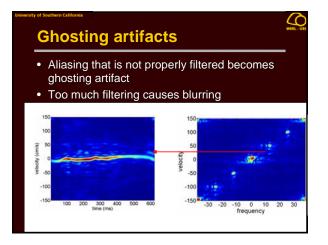

5


In reconstruction

- In each cardiac phase, the FOV is re-centered
- · Coronary artery always at center
- Heart and chest move, coronary doesn't

 \mathcal{C}




Temporal acceleration

• Longer TR → Lower temporal bandwidth

 \mathcal{C}

- Lots of pulsating neighbors
- More overlap in *v-f* – more aliasing!
- Needs to be reconsidered

Coronary flow: Future work

- Get actual coronary flow ©
- Figure out the appropriate temporal acceleration scheme

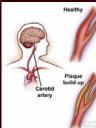
Clinical applications

✓ Coronary flow

 \mathcal{C}

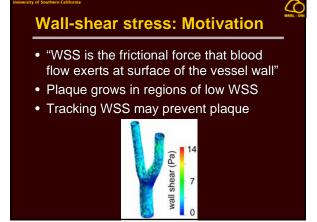
6

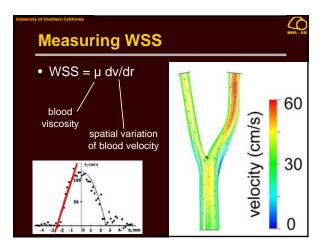
• Wall-shear stress in carotids


6

 \mathcal{C}

Cardiac output


Carotid Atherosclerosis


 Carotid arteries become blocked with plaque

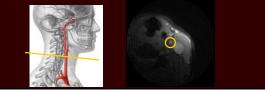
Related risks

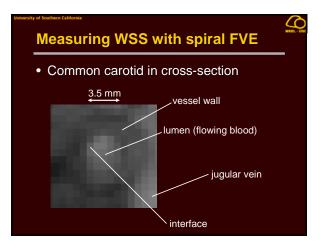
- May show no symptoms
- Plaque fragments
- Particles circulate through blood
- Blood flow to brain becomes blocked
- Stroke!
- Prevention is important!

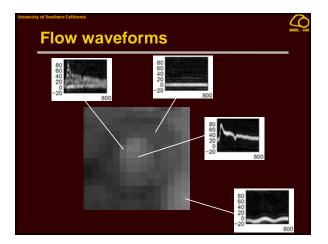
Measuring dv and dr

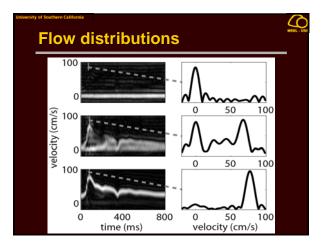
• "dv" is measured with flow encoding

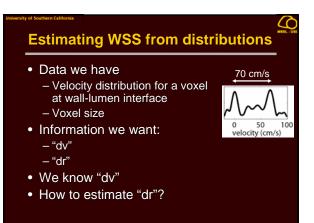
 \mathcal{C}

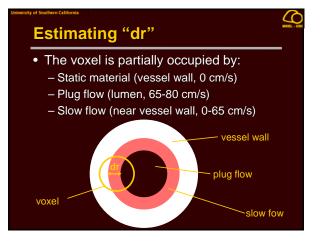

- Problem: "dr" is sub-millimeter
- Phase contrast – partial volume
- FVE
 - Must be fast
 - Needs 2D spatial localization

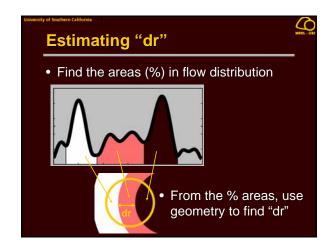

Spiral FVE!!!

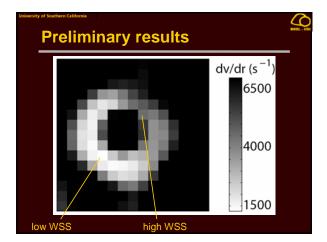

Measuring WSS with spiral FVE

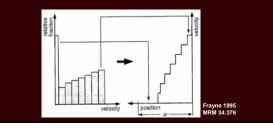

6


- Prescribe slice perpendicular to carotid
- Acquire velocity-encoded data with high spatial resolution
- Draw a small region of interest around the vessel wall









WSS: Future work

- Compensate flow enhancement
- Use more elaborate model to find dv/dr from distributions

 \mathcal{C}

5

Clinical applications

☑ Coronary flow☑ Wall-shear stress in carotids

• Cardiac output

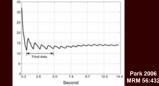
Cardiac output & stroke volume

- Cardiac output:
 - $\, {\rm Total} \ {\rm volume} \ {\rm ejected} \ {\rm by} \ {\rm heart} \ {\rm per} \ {\rm minute}$
 - L/min

 \mathcal{C}

- Stroke volume:
 - Volume ejected by heart per heartbeat
 - $-\,\mathrm{ml}$

Cardiac output: Motivation


• Ischemia, valve disease & hypertension

 Δ

- Peripheral resistance / blood pressure
- Monitoring of drug therapy
- Right ventricle
 - Lung chronic disease
 - Lung transplantation
- No non-invasive "gold standard"

CO measure with MRI

Slow: averaged through a few heartbeats

 We propose measuring beat-to-beat stroke volume (real-time cardiac output)
 "stroke volume variability"

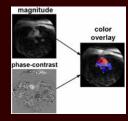
 \mathcal{C}

Beat-to-beat CO measurement

- Needs to be fast (real-time)
- Partial volume not a big issue
- We only need an "average velocity" for each voxel
- Phase contrast ok

Spiral phase-contrast!!!

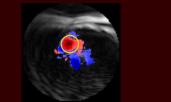
<page-header><section-header>


The big challenge

- Need a cross-sectional area estimate
- Area changes and moves
 - During RR: pulsatility
 - $-\operatorname{From}$ one RR to the other: breathing

a l

ROI prescription


Create color flow data

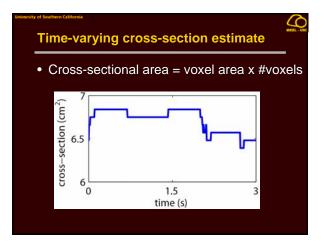
(show video)

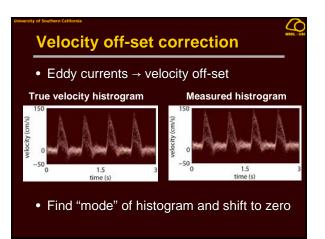
ROI prescription

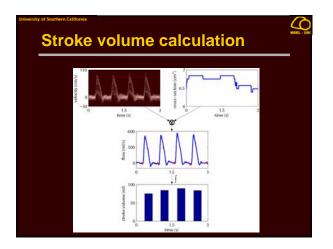
- Projection: show highest velocity in each pixel throughout entire acquisition
- Draw ROI
- Inside ROI = eligible

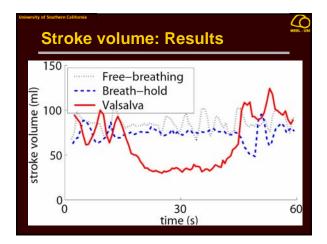
ROI following

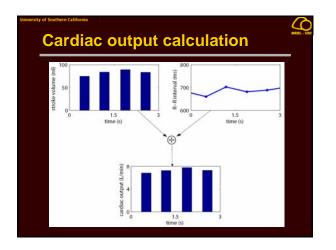
Criteria

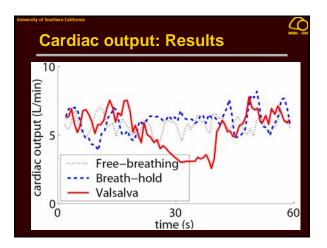

 \mathcal{C}


- Voxel is eligible
- Velocity in voxel exceeds a threshold


6


Time-window: ±1 second





 \mathcal{C}

Cardiac output: Future work

 \mathcal{C}

- Acquire longer datasets (5 minutes)
- Try different stimuli
- Correlate S.V.V. and H.R.V. - S.V.V. analysis

Clinical applications

☑ Coronary flow
 ☑ Wall-shear stress in carotids
 ☑ Cardiac output

The End

