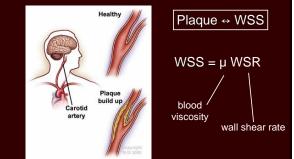
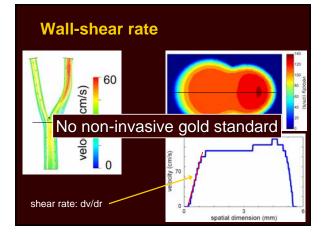
In vivo measurement of carotid wall shear rate using spiral Fourier velocity encoding




Joao L. A. Carvalho

Department of Electrical Engineering, University of Southern California

Motivation

Carotid Atherosclerosis

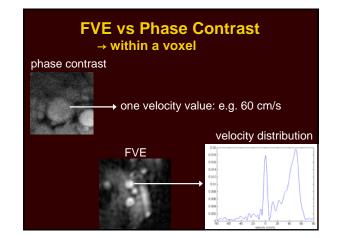
WSR w/ Phase-contrast MRI

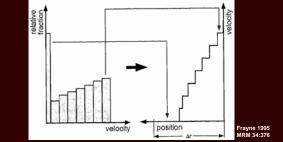
- PC assumes one velocity per pixel
- Velocity is rapidly spatially-varying
- Partial volume

 Signal loss
 - Inaccuracy
- High spatial resolution required
 Very poor SNR
- Very long scan time
 - Motion, cardiovascular variabilities
 Clinically prohibitive

WSR w/ Fourier Velocity Encoding

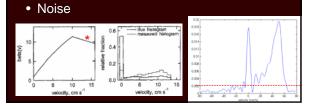
- MRM 34:378 (1995)
- University of Western Ontario, Canada

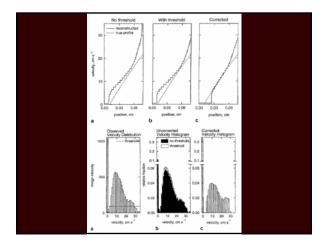




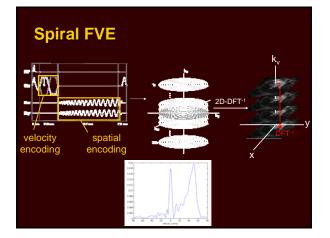
FVE vs Phase Contrast

- Phase contrast
 - Fast
 - One velocity estimate for each voxel
 - Typically high-resolution
- Fourier velocity encoding (FVE)
 - Slow
 - Velocity distribution in each voxel
 - Typically low-resolution

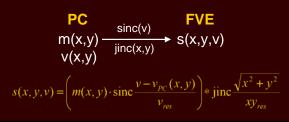


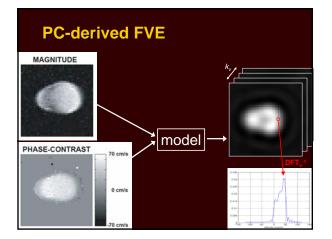


Required corrections

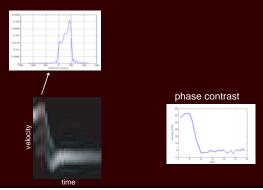

- Blood / arterial wall signal differences
 Different even for static blood
- Flow enhancement
- Rapid moving spins are brighter (less saturated)

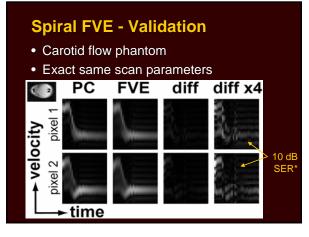
Frayne's shortcomings in 1995


- Scantime: 4.5 hours
 - Resolution: 0.8 mm, 1 cm/sVery long TR: 500 ms
- No *in vivo* experiment was made (duh...)
- In practice
 - 1.5 mm, 5 cm/s resolution is sufficient
 Short TR: 2-4 views/beat is ok
- 2DFT FVE: 7-14 minutes (per slice)
- Spiral FVE: 2 minutes (per slice)
- Both can be further reduced



PC-FVE relationship


- Assuming hi-res PC with no distortions


 partial volume, signal loss, low SNR, motion
- Can obtain FVE by blurring PC

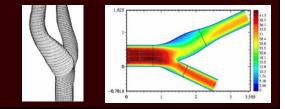
Time-velocity distribution

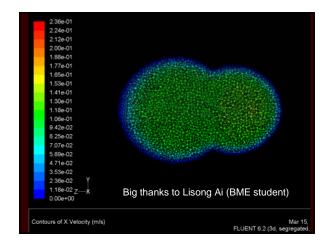
Important results

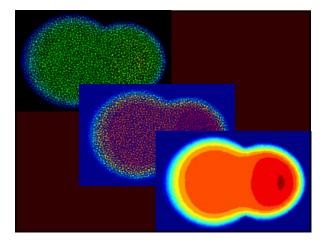
- Spiral FVE is accurately measuring the velocity distributions
- The proposed sinc/jinc method accurately models spiral FVE
 - FVE data from a hi-res velocity map
 - Can be used for simulations

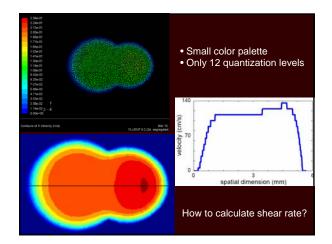
Simulation: WSR w/ spiral FVE

- No gold standard for WSR

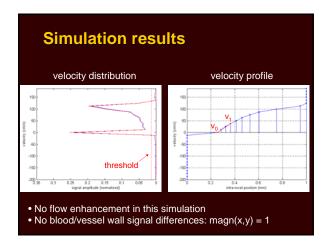

 Impossible to validate *in vivo*
- Flow phantom
 - No signal from vessel wall
 - Can't use it for WSR validation
- Simulation
 - Reasonable reality check
 - Sinc/Jinc model has been validated
 - Need a hi-res carotid velocity map

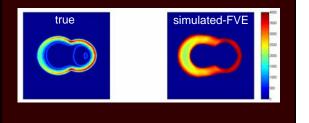

Shear rate numerical phantom velocity map numerical phantom FVE FVE Structure (my) shear rate map

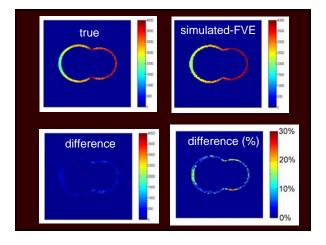

for carotid wall-shear


CFD-based numerical phantom

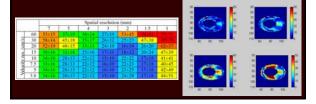
- Computational fluid dynamics (CFD)
 - User provides: vessel geometry, input and output velocity profiles
 - CFD provides: velocities through the vessel

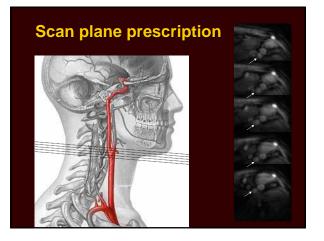


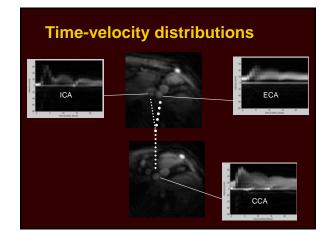


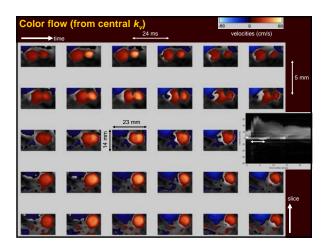


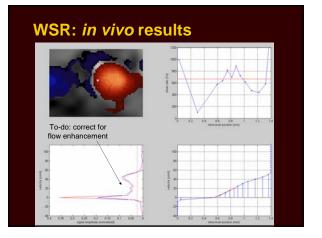
Simulation results

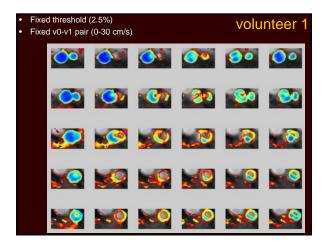

- Fixed threshold (2.5%)
- Fixed v_0 - v_1 pair (0-30 cm/s)

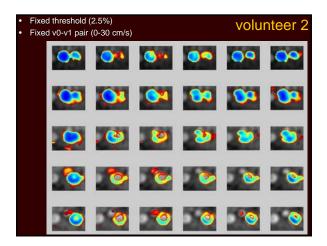

To-do list


- Resolution requirements
 - Spatial resolution
 - Velocity resolution
- Off-resonance tolerance




In vivo experiments


- Excitation: 30°, 5 mm
- TR:12 ms
- Variable density spirals:
 - 8 interleaves
 - 4 ms readout
 - FOV: 16~6.25 cm
- Resolution: 1.4 mm, 5 cm/s, 24 ms
- Velocity FOV: 160 cm/s (32 vencs)
- Scan time: 2 minutes per slice



•	Fixed threshold (2.5%) Fixed v0-v1 pair (0-30 cm/s)				volunteer 3	
	I	07	0	00	••	00
	~		<u>* (</u>	* G **	• • • •	100
	* ()	-	40	20	~ 3	20
	20	<u> </u>	NO	<mark>- 0</mark>		•
	0	<mark>></mark> 0,	NØ	60	\$ 0	• •

Discussion

- Through-plane velocities (v_z) only
- Slice not perpendicular to vessel wall: – Correction is needed
 - Geometry is usually known
- 3D FVE should have higher SNR than multi-slice FVE
- Scan time (2 min/slice) can be drastically reduced

Conclusion

- Spiral FVE was validated against ultra-hi-res 2DFT phase-contrast
- A model for deriving FVE data from PC was proposed & validated
- Spiral FVE can measure WSR in clinically practical scan time
 - Demonstrated in vivo
 - Validated on a realistic (CFD-based) numerical phantom
- To-do: re-evaluate resolution requirements & off-resonance tolerance

