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Abstract
The reconstruction of  magnetic resonance imaging (MRI) data can be a

computationally demanding task. Signal-to-noise ratio is also a concern,
especially in high-resolution imaging. Data compression may be useful not
only for reducing reconstruction complexity and memory requirements, but
also for reducing noise, as it is capable of  eliminating spurious components.

This work proposes the use of a singular value decomposition low-rank
approximation for reconstruction and denoising of  MRI data. The Akaike
Information Criterion is used to estimate the appropriate model order, which
is used to remove noise components and to reduce the amount of data to be
stored and processed. The proposed method is evaluated using in vivo MRI
data. We present images reconstructed using less than 20% of  the original
data size, and with a similar quality in terms of  visual inspection. A quantitative
evaluation is also presented.

Key words: data reconstruction, denoising, magnetic resonance imaging,
truncated SVD.

Resumen
La reconstrucción de datos de resonancia magnética (RM) puede ser una

tarea computacionalmente ardua. La razón señal-ruido también puede pre-
sentar complicaciones, especialmente en imágenes de alta resolución. En este
sentido, la compresión de datos puede ser útil no sólo para reducir la com-
plejidad y los requerimientos de memoria, sino también para reducir el ruido,
hasta inclusive permitir eliminar componentes espurios.

El presente trabajo propone el uso de un sistema basado en la descompo-
sición por valores singulares de bajo orden para reconstrucción y reducción
de ruido en imágenes de RM. El criterio de información de Akaike se utiliza
para estimar el orden del modelo, que es usado para remover los componen-
tes ruidosos y reducir la cantidad de datos procesados y almacenados. El
método propuesto es evaluado usando datos de RM in vivo. Se presentan
imágenes reconstruidas con menos de 20% de los datos originales y con
calidad similar en cuanto a su inspección visual. Igualmente se presenta una
evaluación cuantitativa del método.

Palabras clave: descomposición truncada de valores singulares, recons-
trucción de datos, reducción del ruido, resonancia magnética.
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1. Introduction
Magnetic resonance imaging (MRI) of living human tissue started in the 1970s with the

introduction of  gradient magnets fields, by Paul Lauterbur. Due to its recentness, MRI is a very
fruitful area of  research in the bioengineering and signal processing fields [1], as it addresses the
problem of developing an imaging tool that does not use ionizing radiation, and enables further
studies in the image reconstruction and data acquisition areas. The general MRI process is
illustrated in Figure 1. The image acquisition process can use one or multiple coils, different
pulse sequences and magnetic fields gradients, and is currently a major field of  research and
work. The acquired data corresponds to the Fourier transform of  the image, A(kx,ky ), also
called the k-space data. The image, A(x,y), is obtained using reconstruction algorithms, which
are typically based on the inverse Fourier transform.

Figura 1. General diagram of the magnetic resonance imaging
acquisition and reconstruction process.

size is generally associated with significantly lower SNR. A post-acquisition approach to improve
SNR is to use data statistics in order to identify and remove noise components.

Singular value decomposition (SVD) is a well-known technique for data compression [2] and
denoising [3]. Some applications have already been demonstrated for MRI, such as data
reconstruction [4] and denoising [3]. In ref. [4], SVD with a least-squares criterion is used to
replace the inverse Fourier transform. In ref. [3], SVD is used for denoising of  diffusion images.
In multi-channel MRI systems, SVD can also be used for coil compression [5]. SVD-based low-
rank approximation can be applied either before image reconstruction — treating the data in
k-space — or after reconstruction — dealing with the reconstructed image and aiming to redu-
ce the required storage memory space.

This paper proposes the use of model order selection and decomposition schemes for MRI data
reconstruction, based on the Akaike Information Criterion (AIC) and singular value decomposition.
SVD is used to reduce the data volume and noise. By applying the AIC model order selection, we
calculate the number of components necessary to represent the MRI data. This is an automatic
criterion, which means that no human intervention or subjective analysis is necessary. Then, SVD-
based low-rank approximation is used to reconstruct the MRI image from the reduced number of
components. This has three benefits: (i) less data needs to be stored; (ii) less data needs to be
reconstructed or processed; and (iii) noise is reduced. In order to validate this technique, both
image and k-space domain denoising are evaluated and compared by means of both signal-to-
error ratio (SER) and visual inspection. A preliminary report of this research was presented at the
2012 IEEE Workshop on Engineering Applications, held in Bogotá, Colombia [6].

The remainder of  the paper is organized as follows. Section 2 reviews the basic principles of
MRI and singular value decomposition. Section 3 introduces the problem, describes the proposed
approach, and explains how SVD and AIC are used to achieve the desired results. In Section 4,
the details of  the method are presented. Section 5 discusses the results of  truncated SVD applied
to an MRI anatomical brain image. Section 6 presents a final analysis of  the results, as well as the
conclusions and ideas for future work.

The data acquisition process usually
focuses on reducing scan time in order
to increase patient comfort and
throughput, and to reduce motion
artifacts. However, scan time reduction
is generally associated with loss of signal-
to-noise ratio (SNR). This issue is
aggravated when high-resolution
imaging is used, as a reduction in voxel
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2. Basic Principles of MRI and SVD
In this section, we present the theoretical fundamentals of  MRI, and the principles of  SVD.

2.1. Magnetic resonance imaging
MRI is a non-invasive imaging technique that uses non-ionizing radiation in order to acquire

anatomical and functional information of  the human body. It is possible to use MRI in order to
generate cross-sectional images in any plane (including oblique planes) [7] [8], and also to measure
blood flow [7]. Data acquisition is based on the use of strong magnetic fields and pulses in the
radio-frequency range in order to change nuclear spin orientation. Although this process is time-
consuming, it is harmless to the patient [7], which makes MRI a unique medical imaging modality.

An MRI scanner is composed of three important and different types of magnetic fields: a
strong magnetic field, called B0; the magnetic field gradients, that allow slice selection and spatial
encoding; and the magnetic field associated with a radio-frequency pulse, called B1 [7] [8].

The magnetic field B0 is produced by a superconductor magnet. It is always on, even when the
scanner is not being used. It aligns hydrogen nuclei in the human body, and therefore generates a
net magnetization of  particles in the body. The spinning charged particles (spins) act like tiny bar
magnets, and the net magnetization vector generated when they are aligned can be purposely
perturbed. The net magnetization is proportional to the strength of the B0 field; therefore, MRI
scanners with stronger magnetic fields (e.g., 3 Tesla) provide higher signal-to-noise ratio (SNR) [7].

The gradient coils, typically in the number of  three (Gx, Gy and Gz), produce an intentional
perturbation in the B0 field when turned on. Usually, they are designed so that the perturbation
varies linearly along each spatial direction (x, y and z), and is not perceived at the iso-center of
the magnet when the gradients are used. In the presence of an external magnetic field, the spins
rotate about the axis of  that field. B0 is (approximately) spatially uniform, so all spins initially
rotate at the same frequency (the Larmor frequency),  ω = γ • B, where γ is the gyromagnetic ratio
(for hydrogen protons, γ = 42.57 MHz/T). Then, the gradients are played to make the magnetic
field become spatially varying, and so to vary the rotation frequency of  the spins. Therefore, Gx,
Gy, and Gz are used to frequency-encode (or phase-encode) spatial position along the x, y and z
directions, respectively [7] [8].

The final major component of the MR scanner is the radio-frequency (RF) coil, which is used to
transmit a RF “excitation” pulse to the body, and may also be used to receive the frequency-encoded
signal from the “excited” portion of  the body. In practice, independent coils may be used for
transmission and reception. The RF pulse is typically modulated to the Larmor frequency. By definition,
B0 is aligned with the z-axis, while B1, which is a very weak magnetic field associated with the RF pulse,
is aligned with the x-axis. When the RF pulse is played, some of the spins, which are in resonance with
the RF pulse — i.e., rotating at the RF pulse’s frequency —, begin to rotate around the x-axis (thus the
name “magnetic resonance”). The RF pulse tilts the net magnetization towards the x-y plane, and the
net magnetization will now have a component in the x-y plane (Mxy) [7].

The RF pulse is typically designed to have an approximately rectangular profile in Fourier
domain, centered at the modulation frequency (e.g., a modulated windowed sinc). This implies
that the RF pulse in fact contains a certain range of  frequencies, thus all spins rotating within that
range become “excited”, or tilted towards the x-axis. Thus, by playing gradient(s) of  appropriate
amplitude, and designing the RF pulse accordingly, one can excite only a thin slice of  the body,
which corresponds to the region containing all spins that are in resonance with the RF pulse’s
range of  frequencies.
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When the RF pulse is turned off, Mxy begins to rotate (at the Larmor frequency) around the z-
axis, as the net magnetization begins to realign with B0. This rotating magnetization generates an
oscillating signal, which can be detected by the receive coil. The frequency content of the received
signal can be used to obtain spatial information about the excited portion of  the body. In order
to frequency-encode spatial information, gradients are also played during signal acquisition; they
are called readout gradients. For imaging a slice perpendicular to the z-axis (an axial image), Gz
is played during excitation (for slice-selection), and Gx and Gy are played during acquisition.
Gx,Gy, and Gz can be switched, for acquiring sagittal or coronal images, or all three gradients may
be used during both excitation and acquisition for imaging oblique planes.

The acquired MRI signal at a particular time instant t corresponds to the sum of different
sinusoidal signals generated by spins located at different regions of  the body, each rotating at
different frequencies, corresponding to their spatial locations. Using an axial acquisition, the
demodulated signal is equivalent to a sample of  the Fourier transform A(kx,ky ) of  the cross-
sectional image A(x,y):

 (1)

The Fourier coordinates kx and ky vary with time, according to:

 (2)

 (3)

where Gx(t) and Gy(t) are time-varying magnetic field gradients along the x- and y-axes,
respectively.

The A(x,y) image is reconstructed using a two-dimensional inverse Fourier transform along
kx and ky. The k-space data is typically digitized and reconstructed on a computer. Therefore, the
reconstructed MRI image corresponds to a matrix of  grayscale pixel-intensity values, A.

The required coverage of  k-space, and the number of  samples, depends on the specified spatial
resolution and field-of-view. For low spatial resolution imaging, only the central portion of  kx-ky
needs to be sampled. For higher spatial resolution, a portion of  the periphery of  k-space must
also be covered. The field of  view is associated with the spacing between samples. For a larger
field-of-view, k-space needs to be more densely sampled, requiring an increased number of
samples. If  k-space is not sufficiently sampled, and the resulting field-of-view is not large enough
to cover the entire object, overlap in spatial domain is observed (aliasing).

Because signal amplitude is lost as the net magnetization realigns with B0 (this is called
relaxation), multiple acquisitions (excitation + readout) may be needed in order to cover the
entire k-space. The fashion in which RF pulses and gradients are played is called pulse sequence.

2.2. Singular value decomposition
Considering the image matrix A, which is an M×N matrix of data, it is possible to obtain its

singular values and singular vectors according to:

 (4)
A = USVH ,
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where U is an M×M matrix, S is an M×N diagonal matrix, V is an N×N matrix, and H denotes
the Hermitian transpose operation. Assuming that the rank of  the signal matrix A is r, and that
M ≥ N, then r  ≤ N. Equation (4) describes the singular value decomposition of  A [9] [10].

The columns of  U are called the left singular vectors, {uK}, and the columns of  V correspond
to the right singular vectors, {vK}. The elements of  the diagonal matrix S are called the singular
values. The singular values contain information about the importance of  each vector — left
singular and right singular — in spanning the signal space (or generating the MRI data, in this
case), that is, how essential each component is for describing the data.

Furthermore, σm > 0 for 1 ≤ m ≤ r — where m is the candidate for the model order —, and σi
= 0 for (r + 1) ≤ i ≤ N, and the singular values are ordered from the highest to the lowest.
Therefore, this composition indicates that the singular values with the lowest indexes represent
the more important components of  the signal. Thus, it is possible to apply an algorithm in order
to determine the model order and therefore reduce the number of  components in the matrices
U, S, and V, so as to recover the original data without significant loss of  information, and possibly
to reduce noise by removing components not related to the data [10].

In this paper, we propose the use of this decomposition scheme for reducing MRI data to be
reconstructed. In order to correctly validate our analysis, we compare the results of  SVD
decomposition schemes considering the original signal (in k-space) and the reconstructed signal
(in image domain).

3. Problem statement
By applying the AIC, the number of  singular values is estimated (which in turn determines its

respective left and right singular vectors). Therefore, it is possible to use this number, also called
“model order”, to represent the original data.

The “principal components” are the singular values and singular vectors related to the model
order. Using the principal components, one can increase the signal-to-error ratio in the
reconstruction by removing noise components and, therefore, enhance the reconstructed image
quality. Another interesting point is that with fewer components, the data require less physical
memory for storage and/or less bandwidth for transmission.

3.1. Proposed SVD-based low-rank approximation via Akaike information criterion
The use of  decomposition schemes enables us to select data from a given set of  information

and therefore identify which components are the most important for describing the original
element. Data selection is a way of reducing noise from the acquired data based on its statistics
and the distribution of  its components. In this work, we analyze the singular value profile, obtained
by singular value decomposition of  any kind of  complex rectangular matrices.

From the singular value matrix, it is possible to identify the model order and therefore apply
a selection algorithm that deals only with the important information, i.e., the information that is
required for characterizing the original data and necessary for image reconstruction. Furthermore,
one can identify which singular value components correspond to noise, and remove them before
recomposing the original image.

 (5)
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The optimal selection of  the number of  components is performed using a selection criterion,
or — in image analysis — by visual inspection. However, the latter is a less general solution,
because it is sensitive to subjective analysis and differs from person to person. Therefore, this
option should be used only to refine the final result. In this work, the number of principal
components is selected using an objective approach: the AIC.

3.2. Akaike Information Criterion
The Akaike Information Criterion is used to select the necessary number of  components to

describe a signal without loss of  information. It is a mathematical criterion based on information
theory, in which, given a set of  candidate models for the data, the preferred model is the one
with the minimum AIC value, where the AIC value is given by [12] [13]:

 (6)

 (7)

where k is the number of parameters in the statistical model, and L is the maximized value of
the likelihood function for the estimated model.

For the proposed analysis, the AIC number is calculated according to [10]:

where M and N correspond to the image size, and m is the number of considered components
— and therefore the value that must be found in order to minimize the expression —, g(m) is the
geometric mean of the m smallest singular values of the data, and a(m) is the arithmetic mean of
m smallest singular values. Note that the eigenvalues are the square of  the singular values.

AIC(m) is calculated for several values of m. After finding the value of m that minimizes AIC(m),
it is possible to find the model order, which is given by D = M - m  [10]. The model order
provides information about the minimum number of  components that accurately represents the
signal, and, therefore, allows us to discard the other components, which are considered noise.
Thus, this algorithm is used to reduce the amount of  data used for image reconstruction, and
also for denoising.

3.3. Using the estimated model order for SVD-based low-rank approximation
After finding the optimal model order, we can reduce the singular value and singular vector

matrices by selecting only the components that are important for describing the signal. For
example, given a matrix A of  size M×N, which is originally described as stated in equation (4)
— where UM×M, SM×N, and VN×N —, then if  the model order is D ( 1  ≤ D  ≤ min(M,N) ), we can
use only the highest D singular values and the first D left and right singular vectors to represent
the original data. Therefore, we have:

ˆ

 (8)

 (9)

A = U
D
S

D
V

D
H ,

where UD and VD contain the first D columns of  U and V, respectively, and SD is the diagonal
matrix with the D highest singular values. The process is also called low-rank approximation, or
low-rank truncation.

In the next section, we evaluate the use of  truncated SVD for representing single-coil, two-
dimensional MRI data. The information is therefore in matrix form. SVD was applied in both
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k-space and image domains. Using the AIC, the singular value matrices are reduced to represent
only meaningful and useful data. Finally, image reconstruction is performed and the results are
compared both qualitatively and quantitatively.

4. Methods

Figure 2. Ground-truth reference
image obtained using all components

of its singular value matrix.

We performed reconstructions with data in both image and
frequency domain, in order to compare their results and evaluate
process differences. The obtained images were compared
qualitatively (visual inspection) and quantitatively (signal-to-error
ratio).

The data used in this work was downloaded from http://
shorty.usc.edu/class/591/fall04/. Figure 2 shows the image
reconstructed from these data, using all components of  its sin-
gular value matrix. Reconstruction was performed using an
inverse two-dimensional discrete Fourier transform. This result
will be used as ground-truth reference.

The image shown in Figure 2 is a 256 × 256 complex matrix,
which generates 256 × 256 matrices U, S, and V. In order to verify
the efficiency of the proposed method, random noise is added
to the original data (in k-space) — which is already originally noisy, due to the acquisition process
—, and then SVD is applied. Noise addition is done to both real and imaginary values of the k-
space data, according to:

 (10)X
k
(k

x
,k

y 
) = A

k
(k

x
,k

y 
) + n (k

x
,k

y 
),

where n(kx,ky) are the zero mean i.i.d. additive Gaussian noise samples with variance σ2
S =9.

The number of  singular values used for reconstruction is selected both by using the Akaike
information criterion and by visual inspection, in order to perform quantitative and qualitative
analyses. In order to calculate the signal-to-error ratio, we use the following formula:

 (11)

where X(x,y) is the ground-truth image, A(x,y) is the reconstructed image, and |·| is the
magnitude operator.

5. Results
After applying the SVD, we obtain the singular value profiles for both k-space and image

domains (Figures 3 and 4, respectively). Both profiles are very similar, thus it is likely that the
two approaches present similar results. According to these profiles, the most important singular
values lie in the first 50 components of  data — they are the ones with stronger magnitude. Thus,
by this simple analysis, it is possible to state that the singular values matrix which is originally a
256 × 256 matrix, can be reduced to a 50 × 50 matrix, without major loss of  information.

This kind of reduction means dealing with less than one fifth of the data in each dimension of
matrix S. Then, both U and V matrices can also be reduced and less data will be stored. The total
compression ratio for the stored data is given by:
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where M and N are the image size, and
D is the model order [14]. Therefore,
with M = N = 256 and D = 50, the
compression ratio will be 2.6:1 — which
means that the compressed data uses
only 39% of  the original memory.

The reconstruction root mean squared
error (RMSE) as a function of the
number of components for k-space
domain SVD is shown in Figure 5. With
50 components, the RMSE is about –11
dB. This is a reasonably good threshold
to be used in the proposed
reconstructions, as we show next.

When applying the AIC for k-space
domain, the selected number of
components to be used for data
reconstruction is 30, which is the value
that minimizes the expression in
equation (7). Therefore, matrices U, S,
and V are 256 × 30, 30 × 30, and 256 ×
30, respectively, and the compression
ratio, according to equation (12), is CR
= 4.3:1 — less than one quarter of the
original size. The reconstructed image
obtained using 30-coefficient truncated
SVD in k-space domain is shown in Fi-
gure 6(a). The residual error between
this result and the ground-truth
reference is shown in Figure 6(b). Even

 (12)

Figure 3. Singular value profile in k-space (Fourier) domain.

Figure 4. Singular value profile in image domain.

Figure 5. Root mean squared error as a function of the number of
components, for k-space domain analysis.

Figure 6: Images obtained using 30 SVD components: (a) reconstructed image obtained using the proposed AIC/SVD approach
in k-space domain; (b) error between the result shown in Fig. 6(a) and the ground-truth reference, shown in Fig. 2;

(c) reconstructed image obtained using the proposed AIC/SVD approach in image domain.; and
(d) Error between the result shown in Fig. 6(c) and the ground-truth reference.

(a) (b) (c) (d)

though the error image presents coherent brain patterns, the SER is approximately 18.8 dB.
Applying the same process in image domain, it is possible to determine the number of  essential

Improved MRI Reconstruction Using a Singular Value Decomposition Approximation



INGENIERÍA    •   Vol. 17  •  No. 2   •   ISSN 0121-750X   •   UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 43

image components. The AIC-determined number of  components was the same: 30. The image
obtained using 30-coefficient truncated SVD in image domain is shown in Figure 6(c), and its
error in Figure 6(d). As expected, the two results can be considered identical. The maximum
difference between k-space and image-domain reconstructed images is on the order of  10–14,
which can be associated to quantization errors.  Figure 7 shows the results using only 10
components, for both k-space and image-domain approaches. Both reconstructions present
degraded results, and the denoising process is not effective. Here, meaningful data is interpreted
as noise, and the error image is completely coherent with the actual image, which suggests that
important components were discarded.

Figure 7. Images obtained using 10 SVD components: (a) reconstructed image obtained using SVD in k-space domain; (b) error
between the result shown in Fig. 7(a) and the ground-truth reference, shown in Fig. 2; (c) reconstructed image obtained using

SVD in image domain; and (d) error between the result shown in Fig. 7(c) and the ground-truth reference.

(a) (b) (c) (d)

By comparing k-space domain and image
domain truncated SVD results in terms of  signal-
to-error ratio, it can be concluded that both
approaches are equivalent (Table I). Thus, it is
possible to implement the algorithm using either
the k-space or image domain approaches, without
loss of  reconstruction quality. The results in Table
I also show that the proposed approach performs
quantitatively well, as the SER is higher than 10 dB
even with a small number of  components.

When using the AIC to select the number of
components — 30, for both image and k-space

number of
components SERDF (dB) SERDI (dB) RMSE (dB)
10 13,4 13,4 –6,7
31 19,0 19,0 –9,5
55 22,4 22,4 –11,2
79 24,9 24,9 –12,5
88 25,8 25,8 –12,9
97 26,7 26,7 –13,3
109 27,9 27,9 –13,9
118 28,8 28,8 –14,4
124 29,4 29,4 –14,7
130 30,1 30,1 –15,0

Table I. Signal-to-error ratio (SER) for image and frequency
domains and root mean squared error (RMSE) for varying

number of components (from 10 to 130).

domains — the SER is 18.8 dB, which is an acceptable result. However, when computational
effort is not an issue, it is possible to use a higher number of components in order to achieve
higher SER. For example, using 128 components (half  of  the original number) will result in
greater computational complexity, because larger matrices are used; however, the SER will be
29.8 dB, and the denoising process is still performed, as non-meaningful data is removed.

The memory storage as a function of the number of components is shown in Figure 8. Using
the AIC, the reconstruction process uses 23.5% of  the memory used to reconstruct the image
with all components. However, the result is very similar to the ground-truth reference, as previously
shown. Then, in addition to reducing noise in the images, the use of  SVD reduces the amount of
memory necessary to store the data. Therefore, it may be useful when dealing with high-resolution,
multi-channel and/or multi-dimensional MRI data, which are very large compared to two-di-
mensional data corresponding only to simple anatomical information. Using a qualitative analysis,
it was possible to select points where the data becomes visually similar to the original image, and
where a visually accurate image was obtained. In this analysis, these points correspond to 10 (red
dot) and 28 (green dot) components, respectively.
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6. Conclusion
The results suggest that truncated SVD works for MRI data and can improve its reconstruction

by reducing noise, and by making the reconstruction process less computationally demanding.
The results also showed that reconstruction after decomposition in k-space and image domains
can be considered equal for both quantitative and qualitative analysis.

The use of  a larger number of  components generally presents better results. However, when
using all components, the image is reconstructed with its noise elements. Therefore, it is interesting
to perform model order selection and singular value decomposition low-rank truncation in
order to represent the data with only meaningful information.

In future works, we plan to address the following aspects: (i) use of  high order SVD so as to
evaluate the reduction of noise components in temporally-resolved or tridimensional MRI data;
(ii) use of SVD for coil compression for parallel MRI data; and (iii) use of other principal
component analysis techniques.

Acknowledgements
Lyra-Leite received a Scientific Initiation Fellowship from the Brazilian National Council of

Technological and Scientific Development (CNPq). This project was funded by a grant from the
Brazilian Ministry of  Science and Technology (MCT/CNPq 14/2010).

References
[1] D. J. Larkman, R. G. Nunes, “Parallel magnetic resonance imaging”, Physics in Medicine and Biology, Issue 52, R15-R55, 2007.
[2] W. Chen, W. Duan, “Computational aspects of mathematical models in image compression”, Master’s Thesis, Chalmers University of

Technology, Goteborg, Sweden, 2009.
[3] V. Patel, Y. Shi, P. H. Thompson, A. W. Toga, “K-SVD for HARDI denoising”, Proceedings of the 8th IEEE International Symposium on

Biomedical Imaging (ISBI 2011), Chicago, United States, 2011.
[4] F. Yaacoub, A. Abche, E. Karam, Y. Hamam, “MRI reconstruction using SVD in the least square sense”, Proceedings of the 21st IEEE

International Symposium on Computer-Based Medical Systems, Jyväskylä, Finland, 2008.
[5] M. Buehrer, K. Pruessmann, P. Boesiger, S. Kozerke, “Array compression for MRI with large coil arrays”, Magnetic Resonance in Medicine,

Volume 57, Issue6, pp. 1131-1139, 2007.
[6] D. M. Lyra-Leite, J. P. C. L. da Costa, J. L. A. Carvalho, “Improved MRI reconstruction and denoising using SVD-based low-rank

approximation”, Proceedings of the 2012 IEEE Workshop on Engineering Applications, 2012.
[7] J.L.A. Carvalho, K.S. Nayak, “Rapid quantitation of aortic valve flow using spiral Fourier velocity encoded MRI”, Aortic Valve, edited by Ying-

Fu Chen and Chwan-Yao Luo, InTech, Rijeka, Croatia, 2011, pp. 3-28.

Figure 8. Memory storage necessary for data reconstruction, according to the number of principal
components used.

Improved MRI Reconstruction Using a Singular Value Decomposition Approximation



INGENIERÍA    •   Vol. 17  •  No. 2   •   ISSN 0121-750X   •   UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 45

[8] P. Suetens, Fundamentals of Medical Imaging, Second Edition, Cambridge University Press, Cambridge, United Kingdom, 2009.
[9] S. Haykin, Adaptive Filter Theory, Third Edition, Prentice-Hall International, New Jersey, United States, 1993.
[10] M. E. Wall, A. Rechtsteiner, L. M. Rocha, “Singular value decomposition and principal component analysis”, A Practical Approach to

Microarray Data Analysis, edited by D. P. Berrar, W. Dubitzky, M. Granzowr, Kluwer, Norwell, Massachusetts, 2003, pp. 91-109.
[11] M. Wax, T. Kailath, “Detection of signals by information theoretic criterion”, IEEE Transactions on Acoustics, Speech and Signal Processing,

Volume 33, 1985, pp. 387-392.
[12] H. Bozdogan, “Akaike’s Information Criterion and Recent Developments on Information Complexity”, Journal of Mathematical Psychology,

Volume 44, 2000 62-91.
[13] K. P. Burnhamand, D. R., Anderson, “Multimodel inference: understanding AIC and BIC in Model Selection”, Sociological Methods and

Research, Volume 33, 2004, 261-304.
[14] M. Pourhomayoun, M. Fowler, “An SVD approach for data compression in emitter location systems”, Proceedings of the 45th Asilomar

Conference on Signals, Systems and Computers, Monterrey, United States, 2011.

Davi Marco LDavi Marco LDavi Marco LDavi Marco LDavi Marco Lyra-Leiteyra-Leiteyra-Leiteyra-Leiteyra-Leite
was born in Brasília-DF, Brazil. He received his B.E. degree in electrical engineering in 2012 from the University of Brasília, in Brasília-DF, Brazil.
During his undergraduate studies, he received a scientific initiation scholarship from the National Council of Technological and Scientific Development
(Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq) of the Brazilian Government.
Currently, he is a Ph.D. student at the University of Southern California, in Los Angeles, CA, United States. His research interests are in the area
of magnetic resonance imaging, biomedical signal processing, medical image formation and analysis, and cardiovascular diseases.
e-mail: davi@ieee.org

João PJoão PJoão PJoão PJoão Paulo Carvalho Lustosa da Costaaulo Carvalho Lustosa da Costaaulo Carvalho Lustosa da Costaaulo Carvalho Lustosa da Costaaulo Carvalho Lustosa da Costa
was born in Fortaleza, Brazil. He received his Diploma degree in electronic engineering in 2003 from the Military Institute of Engineering (IME) in Rio
de Janeiro, Brazil, his M.S. degree in 2006 from University of Brasília (UnB) in Brazil, and his Doktor-Ingenieur (Ph.D.) degree with Magna cum
Laude in 2010 from Ilmenau University of Technology (TU Ilmenau) in Germany.
During his Ph.D. studies, he was a scholarship holder of the National Council of Technological and Scientific Development (Conselho Nacional de
Desenvolvimento Científico e Tecnológico, CNPq) of the Brazilian Government, and also a captain of the Brazilian Army.
Currently, he is a professor at the Department of Electrical Engineering of the University of Brasília (UnB), and he participates in the Digital Signal
Processing Group and in the Laboratory of Technologies for Decision Making (LATITUDE), supported by DELL computers of Brazil. He is co-
responsible for the Laboratory of Array Signal Processing (LASP) at UnB. His research interests are in the areas of multi-dimensional array signal
processing, model order selection, principal component analysis, MIMO communications systems, parameter estimation schemes, development of
communication solutions and of sensors for UAVs, and business intelligence.
e-mail: joaopaulo.dacosta@ene.unb.br

João Luiz Azevedo de CarvalhoJoão Luiz Azevedo de CarvalhoJoão Luiz Azevedo de CarvalhoJoão Luiz Azevedo de CarvalhoJoão Luiz Azevedo de Carvalho
was born in Campinas, Brazil. He received his B.E. degree in network engineering in 2002 from the University of Brasília, in Brasília-DF, Brazil, his
M.S. degree in electrical engineering in 2003 from the University of Brasília, in Brasília-DF, Brazil, and M.S. and Ph.D. degrees in electrical
engineering in 2006 and 2008, respectively, from the University of Southern California, in Los Angeles, CA, United States.
Currently, he is a professor at the Department of Electrical Engineering of the University of Brasília. His research interests are in the field of biomedical
signal and image processing, including magnetic resonance flow imaging, reconstruction from undersampled MRI data, heart rate variability, and
surface electromyography.
e-mail: joaoluiz@pgea.unb.br

Davi Marco Lyra-Leite    •    João Paulo Carvalho Lustosa da Costa    •    João Luiz Azevedo de Carvalho



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


