Aquisição e Reconstrução de Imagens Médicas

Prof. João Luiz Azevedo de Carvalho, Ph.D. 11ª Semana do Dept. Engenharia Elétrica Universidade de Brasília 4 a 8 de novembro de 2013 http://pgea.unb.br/~joaoluiz/ joaoluiz@pgea.unb.br

Quem sou eu?

- Graduação em Eng. Redes (UnB, 2002)
- Mestrado em Eng. Elétrica (UnB, 2003)
 Variabilidade da frequência cardíaca
- Doutorado em Eng. Elétrica (University of Southern California, Los Angeles, EUA, 2008)
 Ressonância magnética
- Prof. Adj. Eng. Elétrica (UnB, 2009-presente)

Tópicos

- Imagens Digitais
- Radiografia
- Tomografia computadorizada
 Reconstrução de imagens a partir de projeções
- Medicina nuclear
 - Cintilografia planar
 - SPECT
 - PET
- Ultrassonografia
- Ressonância magnética

Imagens são matrizes

Imagens são matrizes

Imagens digitais

Cria-se uma grade retangular (amostragem)

- Cada ponto na grade é um pixel (*picture element*)
- A cada pixel atribui-se uma cor (ou nível de cinza)
- Imagens coloridas: 3 números por pixel
- Imagens P&B: 1 número por pixel
- No. finito de níveis de cinza (quantização)
 - Típico: 8 bits por pixel (256 níveis de cinza)
 - Imagens médicas: 12 bpp (4096 níveis)

Contraste

- Diferença de intensidade entre regiões adjacentes da imagem
- Influenciado por:
 - Características do objeto original
 - Sistema de aquisição
 - Condições de visualização (equipamento, iluminação)

Radiografia: aplicações

- Ver através dos tecidos
- Examinar ossos, cavidades, objetos engolidos
- Com modificações, pode ser utilizado para examinar tecidos macios
 - Pulmões, vasos sanguíneos, intestinos

Imagens estáticas (imagens radiográficas) • Esqueleto • Tórax • Mamografia • Raio-X dental

Imagens dinâmicas (imagens fluoróspicas)

- Durante intervenções
- Angiografia
- Gastrointestinal
- 🗖 Urografia
 - Rim
 - Bexiga

Raios-X

- Descobertos por Wilhelm Röntgen em 1895
- Experimentos com tubos catódicos
 - Raios atravessavam materiais, diferentes atenuações
 - Capturados em filmes fotográficos
- Primeira imagem
- Uso clínico poucos meses depois

Raios-X

Radiação eletromagnética (fótons) de onda curta

$$E = hf = \frac{hc}{\lambda}$$

E: energia do fóton (~10³ eV) h: constante de Planck

- f: frequência do <u>fóton</u>
- c: velocidade da luz
- λ : comprimento de onda (~10⁻¹⁰ m)

Tubo de raios-X

- Par de eletrodos dentro de um tubo de vidro (vácuo)
 Catodo
 - Filamento aquecido
 - Quando quente, libera elétrons
 Anodo
 - Feito de tungstênio
 - Carregado positivamente
 - Atrai os elétrons pelo vácuo

Máquina de radiografia

Diferença de tensão extremamente alta
Elétrons cruzam o tubo com muita energia cinética
Elétrons colidem com átomos de tungstênio do anodo

Colisão de elétrons no anodo

- Interação dos elétrons com os átomos de tungstênio
 - \blacksquare Um elétron do átomo é expelido \rightarrow radiação característica
 - Elétron é desacelerado e desviado → Bremsstrahlung
- A energia perdida pelo elétron é liberada na forma de um fóton de raio-x

Energia liberada

- Bremsstrahlung (espectro contínuo de raio-X)
- Radiação característica (picos)

- Anodo gira para feixe não
 - Resfriamento c/ banho de óleo

- Janela deixa alguns fótons
- escaparem: feixe estreito

Contraste!

Tecido macio

- Átomos menores
- Não absorvem bem os fótons
- Ossos
 - Atomos de cálcio são grandes
 - Absorvem bem os fótons de raio X

Interação de um feixe de raios-X com um tecido

- Espalhamento Rayleigh: fóton é absorvido, outro fóton com mesma energia é liberado, mas c/ desvio Acontece em energia baixa
- Absorção fotoelétrica: fóton é absorvido, elétron é liberado Predomina em energia baixa
- Espalhamento Compton: fóton é absorvido, são liberados um elétron + um fóton de menor energia Predomina em energia média
- Produção de par: fóton \rightarrow elétron + pósitron \rightarrow dois fótons - Acontece em energia alta

Formação da imagem

Material duro (ossos) aparecem claros

Detectores

- Radiografia analógica
 - Combinação filme-tela
 - Intensificador de imagem com câmera
- Radiografia digital
 - Placa com phosphors de armazenamento
 - Painel plano com matriz ativa
- Detectores com contagem de fótons
- Imageamento com dupla energia

Placa com phosphors de armazenamento

- Phosphors armazenam energia dos fótons
- Energia armazenada liberada c/ laser
- Tela reutilizável: apagada com luz forte

Matriz de fotocondutores: radiografia direta

Detector com contagem de fótons

- Dispensa conversão raio-x→luz
 "Radiografia direta"
- Mede o número de fótons detectado e a energia de cada fóton
- Tecnologia imatura

Imageamento com dupla energia

- Duas radiografias, capturando espectros de energia diferentes
- Processando-se os dados, têm-se duas imagens
 Ex: osso & tecido macio

Filtros e colimação

Raios X são radiação ionizante

- Raios X fazem átomos liberarem elétrons
- Átomos carregados eletricamente = Íons
- Cargas elétricas causam reações químicas nas células
 Quebram cadeias de DNA
 - Células morrem: várias doenças
 - Células desenvolvem mutação: câncer
 - Mutação em esperma ou óvulos: malformação de fetos
- Raio X não pode ser usado com frequência
- Outra limitação: sobreposição de órgãos na imagem

Tomografia Computadorizada: Introdução

- Imagens axiais da atenuação de raio-X no corpo
- Tomos: corte / grafia: escrever
- Em inglês: CT ou CAT-scan

Tomografia oral e maxilofacial

- Giro no plano horizontal
- No consultório

Tomografia intervencionista

Braço em forma de O

Sistema portátil dedicado para imageamento intra-operativo da cabeça

- Cavidades aéreas
- Base do crânio
- Ossos temporais

Tomografia de mama

Contraste em TC

- Discrimina densidades de tecido 1000 vezes melhor que técnicas com filme
- Contraste associado a diferentes coeficientes de atenuação do material estudado
- Detecta diferenças de densidade de menos de 1%

Evolução dos sistemas

- 1a geração
- 2a geração
- 3a geração
- 4a geração

Sistemas de primeira geração

- Único detector
- Aquisição:
 - Fonte e detector móveis
 - Transladam ao longo do paciente
 - Giram ao redor do paciente
- Muito lento
 - Leva minutos p/ 1 corte

Translate

Sistemas de segunda geração

- Vários detectores
 - Pode girar em passos maiores
- Feixe estreito (10°)
 - Translação ainda é necessária
- Lento: 20s por corte

Sistemas de terceira geração

- Modelo mais comum
- Feixe largo
- **5**00 a 1000 detectores
- Tubo e detectores giramNão há translação
- Muito mais rápido
 - Chegam a 2 rotações por seg.
- Movimento dos detectores causa artefato

Sistemas de quarta geração

- Feixe largo
- Detectores estáticos
 - **360°**
 - Somente o tubo gira
 - Evita os artefatos da 3a geração

Reconstrutor Espacial Dinâmico (Mayo Clinic, 1982)

- Para imagens de órgãos em movimento
- Múltiplas fontes
- Pulsadas em sucessãoObjetos dinâmicos:
- Imagens em milissegundos
- Objetos estáticos:
 Melhor resolução e contraste

TC cardiovascular • Volumes renderizados a partir de vários cortes

Geração do feixe de raio-X

Detectores de radiação

- Dispositivo cuja saída é um sinal elétrico proporcional à incidência de raio-X
- Classes de detectores:
 - Detectores de cintilação
 - Detectores de ionização de gás

Detectores de cintilação Cristais produzem flashes de luz quando absorvem fótons de raio-X A luz dos cristais é convertida em sinais elétricos Dois tipos mais usados: Detectores pareados cristal–fotomultiplicador Detectores pareados cristal–fotodiodo Totodiodo

Detector de cintilação pareado cristal-fotomultiplicador

cristal

- Cristal pareado com tubo fotomultiplicador
- Cristal emite luz quando absorve fótons
- Elétrons são gerados quando a luz produzida no cristal atinge o foto-catodo do tubo
- Os elétrons são multiplicados por dinodos em série, gerando uma corrente elétrica
- Alguns tipos tem ótimo tempo de resposta

foto-multiplicador

- Várias projeções são adquiridas, rotacionando o tubo e/ou detectores
- Sinal elétrico é digitalizado por um conversor A/D
- Dados são processados por um computador
- Imagem reconstruída com algoritmos computacionais

Reconstrução a partir de projeções

- Usando um algoritmo chamado retro-projeção filtrada
- Tenta fazer o processo inverso ao da aquisição

Aplicações

- Tumores
- Aneurismas
- Fluxo sanguíneo inadequado aos tecidos
- Funcionamento inadequado de órgãos
- Raio-X e tomografia mostram a anatomia
- Medicina nuclear mostra os processos fisiológicos
- Ex: região com mais atividade metabólica, região com maior ou menor fluxo de sangue, etc.

Princípio básico

- Elementos radioativos são incorporados à moléculas metabolizáveis → injetados no corpo
 - Tipos diferentes para cada função bioquímica
 - Radiação com fótons de alta energia: raios gama
- Regiões com maior metabolismo acumulam maior concentração do elemento radioativo
 Emitem mais radiação
- A radiação é captada por detectores

Cintilografia planar ou convencional

- Detecção feita em uma placa plana
- Projeção do objeto 3D em uma placa 2D
- Detectores cristal-fotomultiplicador p/ localização
 Colimadores: só são detectados raios perpendiculares à placa
- Regiões que emitem mais radiação em destaque

Colimação

- Radiografia e tomografia:
 - Posição da fonte é conhecida
 - Cada fóton está associado a uma linha de projeção (ligando fonte e ponto de detecção)
- Medicina nuclear
 - Posição da fonte é desconhecida
 - É <u>fundamental</u> usar colimação

Cintilografia Planar: Funcionamento

- Fótons emitidos do corpo são alinhados pelos colimadores
- A radiação alinhada atinge o cristal em um ponto
- O cristal emite uma cintilação ao redor desse ponto
- A luz do cristal é percebida pelos fotomultiplicadores
- O computador anota a intensidade e a localização de cada flash detectado
- Essa informação é usada para produzir a imagem

Cintilografia SPECT

SPECT

- Single photon emission computed tomography
- Tomografia computadorizada por emissão de fóton único

Princípio de funcionamento

- Regiões com maior metabolismo acumulam maior quantidade de elemento radioativo: tecido emite fótons gama
- Colimadores alinham os fótons com a placa de detecção
- Detectores cristal-fotomultiplicador medem a radiação em cada ângulo: projeções
- Placa detectora gira em volta do paciente

Reconstrução

- Imagem reconstruída no computador
 - Fonte de raios gama: dentro do paciente
 - Dados ruidosos
 - Algoritmos iterativos

Reconstrução iterativa com informação anatômica

- Obter imagem anatômica com alta resolução
- Segmentar diferentes tipos de tecidos
- Supor que pixels pertencentes a um mesmo tecido têm atividade radioativa semelhante

Perfusão miocárdica: SPECT 3D

Considerações

- A aquisição é muito parecida com a da cintilografia planar
 - Os mesmos elementos radioativos podem ser usados
 - A resolução é a mesma: baixa
- De 15 a 20 segundos para adquirir cada projeção
 Tempo total do exame: 15 a 20 minutos
- Sensitividade baixa
 - Só 0.015% da radiação emitida passa pelos colimadores e chega aos cristais

Aquisição de dados

- O hardware de detecção de fótons é bem diferente do usado na tomografia.
 - <u>Tomografia:</u> grande quantidade de fótons detectada em pouco tempo
 - Medicina nuclear: pequena quantidade de fótons detectada durante um intervalo maior de tempo
- Detectores otimizados para sensitividade
- Colimação diminui a sensitividade

Emissão de pósitrons

- Injetam-se no paciente moléculas com elementos radioativos
- Mais comum: fluoro-deoxi-glicose → açúcar, indica atividade metabólica
- Decaimento radioativo
- Isótopo emite um pósitron ("elétron" com carga positiva)
- O pósitron se choca com um elétron
 - As duas partículas são destruídas
 Um par de fótons gama é produzido
 - Os dois fótons se movem em direções opostas

Colimação em PET

- Dispensa colimação mecânica
- Par de fótons detectado com circuito eletrônico de coincidência
- Origem dos fótons está ao longo da linha que conecta os pontos de detecção
 Colimação eletrônica
- Maior sensitividade

Anel de detectores

- Mesmo princípio, mas não é preciso girar os detectores
- Todas as projeções são adquiridas simultaneamente

Sistemas cilíndricos e esféricos

- Volume 3D simultaneamente
- Podem ser feitos em tamanho menor, para determinadas parte do corpo. Ex: cabeça, seio
 - Quanto mais próximo do objeto, melhor resolução

Resolução espacial

- A detecção simultânea garante que os fótons foram emitidos em algum lugar ao longo da linha formada pelos par de detectores
 - Quanto mais detectores, melhor resolução
- PET: melhor resolução da medicina nuclear
- Limitação:
 - Colisão pósitron-elétron não ocorre no mesmo ponto de onde o pósitron foi emitido
 - Limite de resolução: 2 a 3 mm

Radionuclídeos

- Muitos radionuclídeos que emitem pósitrons têm baixo número atômico
 - Outra grande vantagem do PET
 - Meia-vida curta: baixas dosagens
- Muitos têm forte afinidade fisiológica com o corpo humano: ¹¹C, ¹³N, ¹⁵O, ¹⁸F
 - Relacionados com processos metabólicos

Aparelho TC/PET

- Exames de tomografia computadorizada e PET são feitos no paciente durante a mesma seção, na mesma máquina
- Ajuda a associar pontos de atividade metabólica com regiões dos órgãos estudados

Ultrassonografia

Ultrassonografia

- Seguro, transportável e barato
- Não requer infraestrutura especial
- Tempo real
- Método mais usado quando clinicamente útil
- Limitado a:
 - Tecido macio, fluídos, pequenas calsificações
 - Próximo a superfície
 - Requer janela acústica: não atravessa ossos

Histórico

- Usado clinicamente a mais de meio século
 - Primeiro uso p/ diagnóstico em 1942
 - Primeiras imagens na década de 50
 - Grandes melhorias nas décadas de 80 e 90

123

Imageamento

- Pulsos são utilizados para obter informação espacial.
- A aquisição dos dados pode ser feita de três formas diferentes:
 - Modo A
 - Modo M
 - Modo B

Modo A (amplitude)

- Princípio do "eco pulsado"
- Pulso é transmitido pelo transdutor
- Ondas refletidas são medidas pelo transdutor
 - Atraso → distância
 - Amplitude → refletividade acústica
- Sinal medido é chamado de sinal de RF por causa da faixa de frequência (faixa dos MHz)

Modo B (brilho)

- Modo mais usado
- Transdutor é transladado
- Imagem 2D:obtida com uma série
 - de aquisições modo A
- Vídeo:
 obtido com uma série de aquisições modo M

Janela acústica

- Osso tem alto coeficiente de atenuação
- Ondas de som chegam ao coração por entre as costelas → "janela acústica"
 - Pequena!
- Transdutor é inclinado ao invés de transladado

Tempo de aquisição

132

- Profundidade: 20 cm
 - Ir e voltar: 40 cm
- Velocidade do som no tecido: 1540 m/s
- Tempo de aquisição de cada linha: 267 μs
- Imagem com 120 linhas:
- Tempo de aquisição = 32 ms
- Framerate: 30 fps

Resolução temporal

- Para melhorar: reduzir o número de linhasPiora resolução espacial
- Scanners mais modernos adquirem múltiplas linhas simultaneamente
 - Taxas de 70 a 80 fps são alcançadas

Conversão do escaneamento

- Usada quando a imagem é obtida inclinando o transdutor
 - Problema: amostras em uma grade polar
- Solução: interpolar para uma grade retangular
- Também chamado de "reconstrução de setor"

Imageamento Doppler

- Usado para visualizar velocidade:
 - Fluxo sanguíneo
 - Movimento do miocárdio
- Abordagens:
 - Doppler de onda contínua
 - Doppler de onda pulsada
 - Fluxo a cores

- Doppler de onda contínua
- Onda senoidal transmitida continuamente
- Reflexão medida por um 2º cristal
- Não fornece informação sobre profundidade
- Freq. recebida é comparada com a transmitida
 Deslocamento em frequência → velocidade
- Freq. Doppler na faixa audívelSom agudo: alta velocidade
 - Som grave: baixa velocidade

Doppler de onda pulsada

- Posição espacial específica
- Pulsos transmitidos com determinada frequência de repetição
- and a second sec

onda contínua

- Não usa o princípio Doppler
 - Supõe que o sinal recebido não sofreu deslocamento em frequência: $f_{\rm R} = f_{\rm T}$
 - Movimento resulta em variação no atraso do pulso recebido

139

Onda pulsada vs. onda contínua

Doppler de onda pulsada:

- Distribuição de velocidades para um pixel
- Não é capaz de medir velocidades altas (>1.5 m/s)
- Usada para descobrir onde está o fluxo anormal
- Doppler de onda contínua:
 - Não há localização espacial
 - Distribuição de velocidades ao longo de toda uma linha
 - Usada para medir a velocidade de pico do fluxo

140

Onda pulsada vs. onda contínua

Onda pulsada:

- Melhor localização espacial do fluxo
- Fluxo laminar = faixa estreita de velocidades

onda pulsada

Onda pulsada vs. onda contínua

Onda pulsada: sofre com *aliasing* para velocidades altas

Fluxo a cores

velocidade do sangue

velocidade do miocárdio

Fluxo a cores

- Semelhante ao Doppler de onda pulsada
- Doppler de onda pulsada:
 - Velocidade calculada a partir de amostras de vários pulsos
 - Mede a <u>distribuição</u> de velocidades
- Fluxo a cores:
 - Velocidade é calculada a partir de somente 2 pulsos
 - Diferença de fase entre 2 reflexões $\rightarrow \underline{1 \text{ velocidade}}$

144

Fluxo a cores: localização espacial

- O pulso refletido traz informação sobre uma linha inteira
- Analisa-se segmentos dos pulsos separadamente
 - Cada segmento = uma posição espacial
 Velocidade em cada ponto ao longo da linha
 - Varredura 2D = mapa de velocidades

Fluxo a cores: mapa de velocidade

- A imagem morfológica pode ser obtida a partir dos mesmos dados
- Mapa de velocidades sobreposto à imagem morfológica
 - Vermelho: velocidade na direção do transdutor
 - Azul: velocidade na direção oposta

Fluxo a cores: resolução temporal

- Tempo de aquisição igual a:
 - No. de pulsos para estimativa de velocidade (3 a 7)
 vezes
 - Tempo de aquisição de uma imagem modo B (32 ms para uma imagem com 120 linhas)
 - Total: 100 a 200 ms
- Para melhorar:
 - Reduzir número de linhas (FOV)
 - Velocidades medidas só na região de interesse 147

<image>

149

Agente de contraste: micro-bolhas

- Sangue injetado com bolhas de ar microscópicas:
 - Espalhamento significativo
 - Aumenta a refletividade acústica do sangue
 - Sangue fica mais brilhante que o tecido
- Perfusão de sangue nos órgãos
- Visualização de cavidades com fluído

Ressonância Magnética (RM)

- Radiação não-ionizante
 - Campos magnéticos
 - Pulsos eletromagnéticos
- Bastante utilizada para todas as regiões do corpo
 - Excelente para tecido macio
 - Ruim para ossos
- 10 vezes mais caro que as demais técnicas

Apelidos

- RM: Ressonância Magnética
- RMN: Ressonância Magnética Nuclear
 - Pois são estudados os núcleos dos átomos
 - A técnica NÃO utiliza elementos radioativos!
 - Nos EUA: NMR (sigla quase não se usa mais)
- MRI: Magnetic Resonance Imaging
 - A sigla MRI é amplamente usada nos EUA

RM: Histórico

- Criada na década de 40 por Bloch e Purcell para análises químicas e biológicas
 - Avaliava a concentração de diferentes núcleos
 - Nobel de Física (1952)
- Não era possível localizar espacialmente os núcleos
 Lauterbur 1973
 - Propôs o uso de gradientes magnéticos para localização espacial → Primeira imagem
 - Permitiu o uso *in vivo*
 - Nobel de Medicina (2003)
- Uso clínico a partir da década de 80

O que é medido com RM?

- Concentração de núcleos ¹H no tecido
- Algumas propriedades químicas desses núcleos no tecido (T₁, T₂)
- Existem métodos para medir:
 - Velocidade dos núcleos (fluxo sanguíneo)
 - Função cerebral
 - Perfusão miocárdica
 - etc.

RM: Limitações

- Aquisição lenta
 - Existem técnicas de aquisição rápida: baixa qualidade
- Incompatibilidade com implantes metálicos e marca-passo
- Custo elevado:
 - ~2 milhões de dólares (nos EUA)

RM: Riscos e Contra-indicações

- Claustrofobia
- Pulsos de RF: queimaduras
- Campo magnético variando
 - Ruído sonoro
 - Estimulação de nervos
- Agente de contraste: complicações renais

RM: Riscos e Contra-indicações

- Campo magnético fortíssimo (0.5T a 7T)
 - **Campo magnético da Terra: 30 a 60 µT**
 - Atrai objetos ferromagnéticos com MUITA força
- Contra indicações:
 - Implantes metálicos, marca-passo, alguns tipos de tatuagem, etc.

Mecanismo de contraste

- Quase sempre se mede a distribuição espacial dos núcleos (prótons) de hidrogênio (¹H)
 - Abundância nos tecidos (água)
- Spin: momento angular na presença de campo magnético
- Qualquer núcleo que possua spin pode ser estudado

Outros núcleos que podem ser estudados Abundantes no corpo: podem ser medidos diretamente

* Hiper-polar wuclear de u

- Sódio-23 (²³Na)
- Isótopos gasosos: hiper-polarizados* e depois inalados
 Hélio-3 (³He)
- Administrados em forma líquida (sem hiper-polarização)
- Carbono-13 (¹³C)

Campo B₁: sinal de RF que excita os núcleos
 Bobinas de transmissão e recepção

Relaxamento

- Imediatamente após o "flip" (90°):
 - $M_{z} = M$
- Ao se desligar o campo B₁, os spins tendem a se realinhar com o campo B₀
 - A precessão ao redor de B₀ continua, gerando um sinal que pode ser detectado com uma bobina de recepção
- \blacksquare M_z aumenta, até voltar ao valor inicial (M_0)
- M_{xv} diminui, até desaparecer (M_{xv}=0)

Constantes de Relaxamento

- T₁: Constante de tempo de recuperação longitudinal
 - $M_z = M_0 (1 e^{-t/T_1})$
 - **T**₁ é o tempo que leva para M_z se recuperar 63%
- T₂: Constante de tempo de relaxamento transversal
 - $\blacksquare M_{xy} \equiv M_0 e^{-t/T_2}$
 - \blacksquare T_2 é o tempo que leva para M_{xy} diminuir 63%

M_{xy} é mais sensível do que M_z a flutuações de campo causadas pelo movimento dos dipolos magnéticos nas proximidades (outros spins)

- \mathbf{M}_{z} é afetado por flutuações no plano x-y apenas
- \blacksquare M_{xy} é afetado por flutuações tanto no plano x-y quanto no eixo z
- Consequentemente: $T_2 \leq T_1$
- |M| não é uma constante!
 - M_{xv} pode zerar antes de M_z voltar ao valor inicial

T1 (8)	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	09 08 07 06 05 05 04 03 02 01					gray natter muscle white matter kidney liver				T1 e T2 p/ diferentes tecidos	
	0.2	0.4	0.6	0.8 Magnetic	1 Field S	1.2 trength (T	1.4 esla)	1.6	1.8	2	Tissue	<i>T</i> ₂ (ms)
-	T ₁ e T ₂ tecidos O valor O valor	são ca • de T ₁ • de T ₂	racte aum é pr	rística enta o atican	is ine quane nente	erentes do se a indep	aos d iumer vende:	lifere nta B ₀ nte de	ntes e B ₀	gra wh	ay matter ite matter muscle fat kidney liver	100 92 47 85 58 43

Cálculo da transformada de Fourier: produto interno entre o sinal e cada função de base

2DFT: Codificação na Fase

 $\mathbf{B} = (0, 0, B_0 + G_v y)$

- G_v é usado para codificar a informação espacial do eixo y na fase dos spins
 - Inicialmente: todos os spins estão em fase
 - Liga-se G_v: spins precessam com frequências distintas
 - Desliga-se G_v: spins estarão com fases diferentes

2DFT: Codificação na Frequência

$\mathbf{B} = (0, 0, B_0 + G_x x)$

- G_x é usado para codificar a informação espacial do eixo x na frequência dos spins
 - Após desligar G_y: spins defasados no eixo y, em fase no eixo x

 - Adquire-se o sinal com Gx ligado
 - Sabendo-se a fase e a frequência do spin, sabe-se a coordenada x,y

Resumo (aquisição 2DFT axial)

Polarização:

- Excitação:
- Usa-se um gradiente perpendicular ao plano do corte (G₂)
 Aplica-se um pulso de RF (campo B₁) tunado na frequência dos spins que se deseja excitar

- Aquisição:
 - G_x é usado para codificar informação espacial do eixo x na frequência de precessão dos spins
- A precessão de relaxamento no plano x-y é detectada por uma bobina
 O sinal recebido é a transformada de Fourier do objeto: M(k_x,k_y)
- Reconstrução

Reconstrução de imagens de RM

- **D**ados adquiridos: $M(k_x, k_y)$
- Dados desejados: m(x,y)
- Solução: transformada de Fourier inversa

Limitações físicas dos gradientes

G_{max}: Amplitude máxima do gradiente

- Unidades: G/cm ou mT/m
- Limita a velocidade com a qual move-se pelo espaço-k
- dG/dt : taxa de variação do gradiente

■ Unidade: T/m/s

Limita a habilidade de se fazer "curvas" pelo espaço-k

dG/dt

G.

plitude: 40 mT/m iação: 150 T/m/s

Imageamento de Fluxo

- Ultra-sonografia Doppler é o padrão da indústria
- Limitações: janela acústica, ângulo de insonação

Imageamento de Fluxo em RM

- A informação de velocidade é codificada na fase dos spins, usando-se gradientes bipolares
- Mede velocidade em qualquer ângulo e direção
- RM pode oferecer um exame cardíaco completo!

Fim

- Obrigado pela atenção!
- Comentários, perguntas, etc.:
- joaoluiz@pgea.unb.br
- O material (em cores) estará disponível em:
 - http://pgea.unb.br/~joaoluiz/

João Luiz Azevedo de Carvalho, Ph.D. 11ª Semana do Dept. Engenharia Elétrica Universidade de Brasília 4 a 8 de novembro de 2013