

Universidade de Brasília

Reconstrução de Imagens de Ressonância Magnética de Fluxo com Imageamento Paralelo II

Davi Marco Lyra-Leite (davi@ieee.org) João Luiz Azevedo de Carvalho (joaoluiz@pgea.unb.br)

> Departmento de Engenharia Elétrica Universidade de Brasília, Brasília–DF, Brasil

Introdução

Codificação de velocidade de Fourier (FVE) [1] é uma ferramenta útil na análise de doenças cardiovasculares [2–3], visto que consegue eliminar efeitos que podem causar perda de informação para diagnóstico em imagens por contraste de fase [4]. FVE também foi proposto como método para análise em outras regiões como na parede de artérias carótidas [5]. O tempo de imageamento em FVE pode ser reduzido significativamente utilizando aceleração temporal [6]. O uso de imageamento paralelo pode reduzir o *aliasing* espacial devido à subamostragem temporal em FVE, melhorando desse modo os resultados dessa técnica. Nós investigamos o uso da técnica SPIRiT [7] para acelerar a aquisição de dados de spiral FVE.

Métodos

A aceleração por imageamento paralelo foi avaliada usando conjuntos de dados subamostrados por fator 2 e 4, obtidos a partir dos dados de *spiral* FVE totalmente amostrados, obtidos em um exame do pescoço de um voluntário saudável. Os dados foram reconstruídos usando duas técnicas: *sum-of-squares* (SoS) [9] e SPIRiT [7].

Resultados Quantitativos

Uma avaliação quantitativa comparando SPIRiT e SoS é apresentada na Tabela 1.

Tabela: Signal-to-error ratio (in dB) para subamostragens por fator 2 e 4, relativos à referência totalmente amostrada.

Teoria

Figura: Diagrama do pescoço indicando o plano de aquisição.

Aquisição dos dados: Os exames de *spiral* FVE foram realizados em um sistema GE Signa 3T EXCITE HD (40 mT/m amplitude máxima dos gradientes, 150 T/m/s máxima taxa de variação dos gradientes), usando uma bobina para carótida de 4 canais. Parâmetros do exame: resolução espacial de $1.4 \times 1.4 \times 5$ mm³ em 16 cm de FOV, resolução de velocidade de 5 cm/s em 240 cm/s de FOV, resolução temporal de 12 ms. Tempo de imageamento foi 146 segundos (256 batimentos cardíacos a uma taxa de 105 bpm).

Resultados Qualitativos

fator de aceleração	2		4	
cécnica de reconstrução	SoS	SPIRiT	SoS	SPIRiT
imagens espaciais	5.03	16.7	-1.3	9.6
bace	9.0	11.6	6.1	8.7
vje	11.3	12.0	4.3	10
aced	11.2	10.8	5.8	7.7
acid	15.1	11.4	3.0	9.3
vjd	17.5	13.0	7.6	5.8
avd	8.0	9.9	1.8	10.1
ave	16.5	7.8	-2.0	11.8

bace = bifurcação da artéria carótida esquerda. vje = vei jugular esquerda. aced = artéria carótida externa direita. aced = artéria carótida interna direita. vjd = vei jugular direita. avd = artéria vertebral direita. ave = artéria vertebral esquerda.

Discussão

Os resultados para a técnica SPIRiT são similares àqueles para a SoS quando de subamostragem 2, e consistentemente melhores para subamostragem em fator 4. SPIRiT é capaz de reduzir os artefatos de *aliasing*, reduzindo os sinais falsos na linha $\mathbf{v} = \mathbf{0}$ cm/s. Entretanto, como essa técnica produz outros tipos de artefato, novas análises são necessárias com o objetivo de validar seu uso na aceleração de *spiral* FVE.

Gx Gy

Figura: Sequência de pulso da *spiral* FVE. Ela consiste de (a) excitação seletora de corte, (b) gradiente bipolar para codificação em velocidade, (c) leitura em espiral, e (d) gradiente de refoco e limpeza.

Os dados adquiridos consistem em uma pilha de epirais temporalmente resolvidas no espaço \mathbf{k}_x - \mathbf{k}_y - \mathbf{k}_v [2].

Figura: Trajetória no espaço **k_x-k_y-k_v.**

Os algoritmos utilizados apresentaram diferentes

Uma avaliação qualitativa dos resultados do SPIRiT foi realizada para os domínios do espaço e de tempo-velocidade, baseada nos resultados apresentados abaixo.

Figura: Imagens axiais do pescoço (linha superior) obtidas usando SoS e SPIRiT, com diferentes fatores de aceleração (totalmente amostrado, subamostragem por fatores 2 e 4). Erro das reconstruções para o SoS e o SPIRiT está presente na linha inferior. Essas imagens foram reconstruídas a partir de $M(k_x, k_y, k_v, t)$ para v = 0 e t = 0.

Conclusão

Nós demonstramos a aceleração por imageamento paralelo para *spiral* FVE usando a técnica SPIRiT aplicada ao domínio da imagem. Os resultados mostram que o SPIRiT é consideravelmente capaz de reduzir *aliasing* espacial para distribuições subamostradas de tempo-velocidade e apresentam resultados bons quantitativa e qualitativamente.

Referências

[1] Moran PR. MRI 1:197, 1982. [2] Carvalho JLA and Nayak KS. MRM 57:639, 2007. [3] Steeden JA et al. MRM 67:1538. [4] Tang C et al. JMRI 3:377, 1993. [5] Carvalho JLA et al. MRM 63:1537, 2010. [6] Carvalho JLA and Nayak KS. ISMRM 15:588, 2007. [7] Lustig M and Pauly JM. MRM 64:457, 2010. [8] Fessler JA and Sutton BP.
IEEE TSP 51:560, 2003. [9] Roemer PB. et al. MRM 16:192.

formulações para a reconstrução dos dados de *spiral* FVE, a saber: (a) reconstrução original, (b) reconstrução com inversão das transformadas de Fourier (Cartesiana e não-Cartesiana/Imageamento Paralelo [8]), (c) e (d) reconstrução dos dados a partir de um número reduzido de canais.

SPIRiT: O método *iterative self-consistent parallel imaging reconstruction* (SPIRiT) [7] é um método de reconstrução baseado em imageamento paralelo auto-calibrativo bobina por bobina baseado na auto-consistência dos dados.

O algoritmo usa informações de todos os pontos na vizinhança, em todas as bobinas — sejam eles amostrados ou não — para obter os dados em falta [7].

Figura: Distribuições velocidade-tempo para voxels escolhidos, reconstruídas usando subamostragens por fator de 2 e 4 para SoS e com acelerações com fatores 2 e 4 para o SPIRiT, em comparação com os dados de referência (linha superior) para: (a) bifurcação da artéria carótida comum esquerda; (b) artéria carótida externa direita; e (c) artéria carótida interna direita.

Apoio Financeiro

 Este trabalho foi apoiado por recursos do Edital MCT/CNPq 014/2010 – Universal.
 D. M. Lyra-leite recebou bolsa PIBIC/UnB/CNPq.

CAPES

18° Congresso de IC da UnB – Brasilia-DF, Brasil – 23 de Outubro de 2012

davi@ieee.org

http://pgea.unb.br/~joaoluiz